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Abstract: We report the continuous argon ions irradiation of itinerant Fe3GeTe2, a two-dimensional
ferromagnetic metal, with the modification to its transport properties measured in situ. Our results
show that defects generated by argon ions irradiation can significantly weaken the magnetization (M)
and coercive field (Hc) of Fe3GeTe2, demonstrating the tunable magnetism of this material. Specifi-
cally, at base temperature, we observed a reduction of M and Hc by up to 40% and 62.4%, respectively.
After separating the contribution from different mechanisms based on the Tian-Ye-Jin (TYJ) scaling
relation, it’s the skew scattering that dominates the contribution to anomalous Hall effect in argon
ions irradiated Fe3GeTe2. These findings highlight the potential of in situ transport modification as
an effective method for tailoring the magnetic properties of two-dimensional magnetic materials, and
provides new insights into the mechanisms underlying the tunable magnetism in Fe3GeTe2.

Keywords: two-dimensional magnetism; in situ transport; Fe3GeTe2

1. Introduction

The field of two-dimensional (2D) layered materials has experienced rapid growth
since the discovery of graphene in 2004 [1–9]. Significant research efforts have been
devoted to studying the electrical, optical, and topological properties of 2D materials, with
notable achievements in phenomena such as the quantum Hall effect (QHE) [4], valley Hall
effect (VHE) [10] and nonlinear Hall effect (NLHE) [11–13]. However, the discovery and
study of 2D layered magnetic materials has been surprisingly delayed until 2017, when
the confirmation of the existence of long-range magnetic order is achieved by magnetic
crystalline anisotropy in single-layer CrI3 [14] and by the application of a small external
magnetic field in Cr2Ge2Te6 [15]. As a result, much attention has been devoted to the
search for and tuning of 2D magnets with higher Curie temperatures (Tc) in order to further
explore their mechanisms and potential applications [16–21]. Recent advancements, such as
the ionic-gate tunable room temperature 2D itinerant magnet in Fe3GeTe2, using an Al2O3
assisted exfoliation method [22], have inspired various modulation techniques including
gate-controlled Li+ doping and Fe defects [22–24]. However, despite these developments,
understanding the modulation of magnetic properties, particularly the anomalous Hall
effect, remains an active area of research and requires further investigation.

With its high surface-to-volume ratio, thin layered materials possess excellent surface
sensitivity and can be effectively modified by surface treatments such as doping, irradiation
and etching [25–28]. In situ modification measurements can ensure that the physical
properties are only affected by the intended modifications and exclude unwanted influences,
thereby improving the accuracy of tuning particularly sensitive materials. In situ transport
measurements have demonstrated unique advantages in materials such as Co-decorated
graphene [29], hydrogenated graphene [30] and so on [31,32]. Therefore, combining tunable
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thin flake Fe3GeTe2 with in situ transport provides an exciting opportunity to explore the
mechanism of anomalous Hall effect and the tuning of magnetic properties.

In this study, we report on the tunable magnetic properties of argon ions irradiated thin
flake Fe3GeTe2, where the remanent Hall resistance (Rr

xy) and coercive field (Hc) decreased
with increasing irradiation. The anomalous Hall effect in irradiated Fe3GeTe2 mainly
originates from skew scattering induced by argon ions by scaling analysis. Our results
suggest that argon irradiation can effectively tune the magnetic properties of Fe3GeTe2 and
provide valuable insights into the underlying physics of this system.

2. Materials and Methods

In this work, we report the tunable magnetic properties of argon-irradiated thin
flakes of Fe3GeTe2. The exfoliation of thin flakes of Fe3GeTe2 on SiO2/Si substrates was
assisted by the evaporation of Al2O3, as previously described [22]. Cr/Au (3 nm/70 nm)
electrodes were evaporated onto the thin flakes of Fe3GeTe2 through stencil masks to
avoid any possible degradation from the conventional lithography process. The fabrication
process was conducted in a glovebox to preserve sample quality. Seven runs of argon ions
irradiation were performed, and the transport properties of Fe3GeTe2 were studied in situ
after each round using the lock-in detection technique. The simplified schematic of the
in situ transport measurement setup is shown in Figure 1a, and the base temperature was
maintained at 10 K. The argon ions generation was accomplished through a radio-frequency
ions source with a working voltage of 2 kV and current of 20 mA. The irradiation time was
in the range of 5–10 s for each run.
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Figure 1. The simplified schematic of in situ transport measurement setup for argon ions irradiated
thin flake Fe3GeTe2 device. (a)The demonstration of in situ irradiation process, the gray area in
the center represents vacuum environment. (b)The electrical measurement geometry of thin flake
Fe3GeTe2 device on SiO2/Si substrate.

3. Results

In ferromagnetic (FM) materials, the transverse Hall resistance comprises ordinary
Hall and anomalous Hall terms, which can be expressed as a function of the applied
magnetic field and magnetization [33]:

Rxy = R0µ0H + RS M (1)
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where R0 and RS represent the ordinary Hall coefficient and anomalous Hall coefficient,
respectively; H is the applied magnetic field perpendicular to the sample surface and M is
the magnetization. The Rxy under zero magnetic field after the application of saturation
magnetic field is called the remanent Hall resistance (Rr

xy), which is proportional to the
spontaneous magnetization and reflects the long-range FM order of the sample. In this
study, we investigated the magnetic properties of thin flake Fe3GeTe2 through transport
measurements. The temperature-dependent Hall resistance (Rxy) of the pristine sample
as a function of applied magnetic field is shown in Figure 2a, revealing square-shaped
magnetic hysteresis below 140 K, indicating the presence of a single magnetization domain
and confirming the establishment of long-range FM order in the sample. As shown in
Figure 2b, the Rr

xy of the pristine sample appears at 140 K and increases to 3.45 Ω at 10 K.
Since Rr

xy is proportional to the zero field spontaneous magnetization, the onset of non-
zero Rr

xy represents the appearance [34] of long-range magnetic order below 140 K, which
indicates that the Curie temperature is around 140 K. Thus determining the thickness
of our sample to be approximately 3.2 nm (four layers) according to previous transport
reports [22]. The coercive field (Hc) increases from 0.0076 T at 120 K to 0.1255 T at 10 K; at
higher temperatures the hysteresis loop disappears due to thermal fluctuations.
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(a) Hall resistance (Rxy) as a function of magnetic field (perpendicular to plane) at 10–180 K. (b) Re-

manent Hall resistance ( Rr
xy

)
and coercive field (Hc) vs. T.

In order to explore the irradiation tunability of thin flakes Fe3GeTe2, we conducted
in situ irradiation with argon ions and transport measurement. As depicted in Figure 3a,
Rr

xy for each run of irradiation shows similar behavior with temperature, but the over-
all curves are decreasing with increasing Ar+ irradiation under the same temperature.
At base temperature, the Rr

xy of the pristine sample was measured to be 3.45 Ω, while
after the seventh irradiation, it decreased to 2.08 Ω. This indicates a ~40% reduction in
magnetization, as shown in Figure 3b, which suggests that the magnetization is disrupted
by defects induced by argon ions.

In recent reports, the “chemical pressure” generated by substituting Ni or Co into
the Fe sites, played an important role in suppressing ferromagnetism in Fe3−xGeTe2
crystals [34–37]. They all showed a significant modification of Curie temperature accompa-
nied by the change of lattice parameters. Taking Fe3GeTe2 substituted by non-magnetic
nickel (Ni) as an example [36], the long-range FM order was smeared into a glassy phase and
even vanished above the inflection point around x = 0.3 in (Fe1−xNix)3GeTe2 (x = 0–0.84).
However, although the Rr

xy can be greatly tuned by Ar+ irradiation in our report, the
onset temperature with the appearance of Rr

xy accompanied by FM hysteresis is almost
unchanged, which indicates that the long-range FM order always persists and was not
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destroyed by defects. Therefore, the irradiated Fe3GeTe2 will provide a good platform for
continuously controllable modification with persisting long-range FM order.
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by argon ions irradiation. (a,c) Rr
xy and Hc vs. T after each round of argon doping. (b,d) Rr

xy and Hc

after each round of argon ions irradiation at 10 K.

Apart from Rr
xy, the coercive field (Hc) is another crucial parameter for characterizing

magnetic properties. We found that Hc can also be modified by the introduction of defects,
as demonstrated in Figure 3c. It is worth noting that the Hc value drops by approximately
62.4% from 0.125 T to 0.047 T at 10 K after seven rounds of irradiation with argon ions, as
depicted in Figure 3d. This finding suggests that defects induced by argon ions does not
induce domain wall pinning, but rather, reduces such pinning in Fe3GeTe2, resulting in a
reduction in the coercivity. Notably, the slight bump in Hc observed after the sixth round
of irradiation at 60–90 K may stem from the local magnetic moment and warrants further
investigation using other characterization techniques in future studies.

Combined with the report from previous neutron and X-ray diffraction studies about
Fe-deficient Fe3−xGeTe2 [38], we can speculate that the suppressed magnetization in Ar+

irradiated Fe3GeTe2 probably derived from increasing vacancies on the Fe(2) site generated
by implanted argon ions, although the confirmation of which requires a scanning tunneling
experiment in the future. The increasing disorder and magnetic dilution via vacancies
may cause a disruption of the magnetic exchange and induce the suppressed magnetism.
More efforts, such as theoretical simulation, adatoms doping, should be investigated in
the future.

To summarize, our above results demonstrate that defects generated by argon ions
irradiation can effectively tune the magnetization and coercivity of Fe3GeTe2 in situ, high-
lighting the potential of in situ transport measurement as a powerful tool for modifying the
magnetic properties of materials.
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4. Discussion

The scaling between anomalous Hall resistivity (ρah) and longitudinal resistivity (ρxx)
provided by Xiaofeng Jin et al. can clearly separate the contribution involving skew
scattering, side jump and Berry curvature [39], which was widely used in the analysis
of anomalous Hall effect. This scaling is also called the TYJ scaling relation and can be
expressed as [40]:

ρah = a′ ρxx0 + a′′ ρxxT + bρ2
xx (2)

where the ρxx0 and ρxxT represent the residual resistivity at zero temperature and the
phonon-induced resistivity at temperature T, respectively. They satisfy the relationship of
ρxx = ρxx0 + ρxxT . The parameters a′ and a′′ represent the impurity and phonon contribution
to the skew scattering, and the parameter b represents joint contributions from the extrinsic
side-jump and intrinsic Berry curvature.

To gain further insight into the reduction of magnetism in Ar+ irradiated Fe3GeTe2,
we employ fitting between ρah and ρxx based on Equation (2) to determine contribution
from different mechanisms. The longitudinal resistivity (ρxx) is obtained by the relation of
ρxx = Rxx ·d

L/W , where the d is the thickness of device and the L/W is the aspect ratio between
the measured electrodes. The transverse resistivity (ρxy) is derived according to the relation
of ρxy = Rxy·d. Wherein the Rxx(Rxy) is the longitudinal (transverse) resistance after the
standard symmetrization (anti-symmetrization) procedure [22,33]. Then the anomalous
Hall resistivity (ρah) can be determined by extrapolating the high field (H > 1 T) part of ρxy
back to zero field. The fitting results are shown in Figure 4 for data from the Ar+ irradiation
run 2–7, which demonstrated the applicability of the TYJ scaling relation.
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Next, we plot the fitting parameters a′ , a′′ , and b with irradiation time as shown in
Figure 5. First, it is obvious from the parameters that the skew scattering contribution
dominates the anomalous Hall effect due to higher value. Moreover, the opposite sign
between a′ (a′′ ) and b indicates that the contribution between joint contribution from
intrinsic Berry curvature as well as side-jump and skew scattering is opposite, which was
also observed recently in pristine single crystal Fe3GeTe2 [41]. As irradiation time increases,
the amplitude of a′ ,a′′ , and b gradually decrease, especially in the range of the first 15–25 s,
then tend to zero. This means that the defects generated by Ar+ irradiation can effectively
reduce the skew scattering strength in Fe3GeTe2. Ar+ irradiation can also strongly reduce
the combined effect of Berry curvature and side-jump scattering in the material. The overall
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effect is that the scattering in Ar+ irradiated Fe3GeTe2 becomes increasingly non-magnetic,
which is an interesting observation, since the contribution from magnetic scattering reduces
drastically when disorders are introduced.
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5. Conclusions

In conclusion, we have demonstrated the tunable magnetism of Fe3GeTe2 via in situ
argon ions irradiation and subsequent transport measurement in continuous vacuum
environment. Our results show that defects induced by argon ions can significantly weaken
the magnetization, with a 40% reduction observed at base temperature after seven runs
of irradiation in 4 layers of Fe3GeTe2. Additionally, we observed a 62.4% decrease in the
coercive field at 10K, meaning the magnetic domain wall pinning effect is also weakened
by the disorder, contrary to common expectation [22,42]. The suppressed magnetization
might stem from increasing vacancies generated by argon ions irradiation on the Fe(2) site
in Fe3GeTe2. The persisting long-range FM order below onset temperature is different from
chemical doping Fe3GeTe2, which showed vanished long-range FM order with doping.
Moreover, the TYJ scaling reveals that the main contribution to the anomalous Hall effect
is from skew scattering. The scaling shows that Ar+ irradiation strongly reduces the
effect of skew scattering, side-jump and Berry curvature, turning charge carriers scattering
in Ar+ irradiated Fe3GeTe2 to become increasingly non-magnetic. Finally, these show
that magnetism in Fe3GeTe2 is highly tunable by disorders, and emphasize the powerful
capability of in situ transport measurements to clarify the magnetic properties and scattering
mechanisms of low-dimensional magnetic materials.
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