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Abstract: Fe-Cr-based soft magnetic alloy (SMA) monolayer coatings with high saturation magneti-
zation (Ms) above 1.3 T were deposited onto AISI 1010 substrate by co-axial powder feeding plasma
transferred arc (PTA) welding, using FeCrBSi self-fluxing powders Fe313, which have a similar
chemical composition to AISI 430 ferritic stainless steel (FSS). The effect of welding parameters
on the phase assemblage, microstructure, hardness and magnetic performance of the coatings was
investigated. The results show that the coating’s maximum width and the welding surplus height
increased with the rise in welding heat input and powder distribution density, respectively. The
coating’s Ms increased sharply, but its coercivity (Hc) decreased with the growth in the substrate
dilution ratio. The coating’s Hc increased whereas its Ms decreased with the increment in welding
heat input. The as-welded coating C3 with optimum magnetic performance had a dendrites–eutectics
composite structure, where the columnar or equiaxed sorbitic pearlite dendritic cores surrounded
by network-like eutectics α(Fe,Cr) + (Fe1−xCrx)2B were the main contents. Moreover, (Fe,Cr)7C3

and CrB had also been detected, and they were mainly distributed in the interdendritic regions.
The body-centered cubic (b.c.c.) α(Fe,Cr) multi-element solid solution contributes to a high Ms
of 1.61 T, and the borides (Fe1−xCrx)2B and CrB as well as (Fe,Cr)7C3 and other carbides cause a
high Hc of 58.6 Oe and hardness HV0.3 of 4.90 ± 0.06 GPa, much higher than that of AISI 430 FSS
(HV < 1.8 GPa). The current work verifies the feasibility of fabricating Ni- and Co-free FeCrBSi SMA
coatings with high Ms and high hardness via PTA welding, and since the feedstock powders have
chemical composition similar to AISI 430 FSS, the work may bring about novel applications for AISI
430 FSS in particular cases where the considerable wear-resistant performance as well as superior
soft magnetic and anti-corrosive properties are required.

Keywords: soft magnetic alloy; saturation magnetization; coercivity; hardness; plasma transferred
arc welding; coating; AISI 430

1. Introduction

Ferritic stainless steels (FSSs) without high-cost Ni as an alloying element have mod-
erate corrosion resistance with lower material cost [1], and have soft magnetic properties
with low coercivity (Hc), suitable saturation magnetization (Ms), high permeability, etc. An
efficient method to minimize the eddy current losses in AC magnet applications is increas-
ing electrical resistivity, and fortunately, FSSs have relatively higher electrical resistivity
compared with soft iron and silicon steel. Furthermore, FSSs can be produced to large
dimensions in some special applications, and their machinability is acceptable [2]. They
also have a lower expansion coefficient compared with austenitic stainless steels, which is
a significant advantage when temperature cycling resistance is required [3]. Considering
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all of these features means that FSSs have been used in a wide range of magnetic appli-
cations [4]. Moreover, they can be applied in electrical motors, generators and relays [5].
Thus, AISI 430 stainless steel as a low-cost material for replacing austenitic stainless steel
has received particular attention [1–3,6–8] due to its higher yield strength, higher ductility
and better polarization resistance in harsh environments and its suitable soft magnetic
properties.

However, soft magnetic alloys (SMAs) for electrical motors must be subject to severe
mechanical loads and need high strength and ductility, and some magnetic devices need
not only superior soft magnetic performance but also considerable wear resistance, such
as magnetic poles in magnetic abrasive finishing [9], magnetic bearing [10] and magnetic
fluid seal [11]. For these applications, traditional SMAs based on ferritic steels cannot
meet the requirements alone. Multi-constituent SMAs with a ferromagnetic matrix [12,13]
may address the issues mentioned above. Therefore, Ni- and Co-free self-fluxing [14]
SMA Fe313 [15–17] powders with chemical composition similar to AISI 430 were used as
feedstock in our current work, and Fe-Cr-based soft magnetic coatings with appropriately
high Ms and much higher hardness than AISI 430, which are beneficial to lower material
cost and higher wear resistance, are investigated in this paper.

Plasma transferred arc (PTA) welding is a rapidly growing method of surface cladding
technology due to many advantages such as the low cost of equipment and operation
and the free option of feedstock powders [18,19]. It has been confirmed to be a feasible
and reliable way to process three-dimensional (3D) complex geometry parts based on
experimental investigations [20], and can be used to produce SMAs [21,22], but the research
on Fe-Cr-based SMAs fabricated by PTA welding is still scarce. Therefore, in the current
study, the co-axial powder feeding PTA welding was adopted to prepare coatings using
FeCrBSi self-fluxing powders with constituents similar to AISI 430 FSS, and the influence
of welding parameters on the phase composition, microstructure, microhardness and
magnetic properties of the coatings was investigated in detail. The current work may
explore the feasibility of fabricating Co- and Ni-free Fe-Cr-based SMA coatings via PTA
welding and propose new applications for AISI 430 FSS.

2. Experiment
2.1. PTA Welding Materials and Process

Quality carbon steel AISI 1010 was selected as a substrate with dimensions of
200 × 80 × 10 mm3. The feedstock was Fe-based self-fluxing powder Fe313 [15–17],
whose X-ray diffraction (XRD) pattern, scanning electron microscope (SEM) images and
energy dispersive X-ray (EDX) analysis results are presented in Figure 1. The powder phase
assemblage contains a predominant phase, a multi-element b.c.c. α(Fe,Cr) solid solution,
and minor (Fe,Cr)7C3 (Figure 1a). Its constituent elements are Fe, Cr, B, Si, C, Mn and Ni
(Figure 1a) and its chemical composition is similar to AISI 430 [23] FSS. The gas-atomized
powders with a near-spherical shape (shown in Figure 1b,c) have a size of 120–325 screen
mesh. Their chemical compositions are shown in Table 1. The upper surface of the substrate
was prepared by surface grinding and cleaned thoroughly with absolute ethanol before
deposition. The feedstock powders were dried in a vacuum oven, and then deposited onto
AISI 1010 steel substrate with a PTA welding machine LU-F400-F300 [22]. High pure Ar gas
was used as plasma, carrier and shielding gas, and the single-track PTA-welded coating
was obtained with the parameters shown in Tables 2 and 3. The selection of the welding
parameters was based on past experience and the equipartition method.
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Figure 1. (a) XRD pattern. Inset: EDX spectrum showing peaks of each element. (b–d) SEM images 
for Fe313 feedstock powders presenting their overview and representative morphology. 
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Figure 1. (a) XRD pattern. Inset: EDX spectrum showing peaks of each element. (b–d) SEM images
for Fe313 feedstock powders presenting their overview and representative morphology.

Table 1. Chemical composition (wt.%) of substrate, Fe313 self-fluxing powders and AISI 430 FSS.

Materials C Si B Cr Ni Cu Mn S P Fe

AISI 1010 0.07–0.14 0.17–0.37 - ≤0.15 ≤0.25 ≤0.25 0.35–0.65 ≤0.04 ≤0.35 Bal.
Fe313 0.1–0.2 1.0–1.5 1.0–2.0 14.0–18.0 0.2–0.5 - 0.2–0.5 - - Bal.

AISI 430 [23] 0.12 1.00 - 16.0–18.0 - - 1.00 0.03 0.04 Bal.

Table 2. Constant parameters during PTA welding process.

Parameter Value

Plasma gas (Ar) flow rate/(L·min−1) 7.5
Carrier gas (Ar) flow rate/(L·min−1) 7.0
Shielding gas (Ar) flow rate/(L·min−1) 8.0
Stand-off distance/mm 13
Preheat temperature/◦C 25
Internal diameter of coaxial nozzle D/mm 6
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Table 3. Varying parameters during PTA welding, welding surplus height H, coating maximum
width B, volumetric dilution ratio from substrate Dv, cross-sectional hardness HV0.3 and magnetic
properties of the as-welded coatings.

Sample No. C-I C-II C-III C1 C2 C3

Welding current I/A 75 85 95 100 100 100
Transferred arc voltage U/V
(average) 22.5 22.5 22.5 25.1 26.3 26.8

Powder feed rate F/(g·min−1) 16 16 16 20 16 12
Welding speed S/(m·min−1) 0.16 0.16 0.16 0.14 0.18 0.22
Powder distribution density
Pd/(mg·mm−2) 16.7 16.7 16.7 23.8 14.8 9.1

Welding heat input HI/(kJ·cm−1)
[η = 0.7] (average)

4.4 5.0 5.6 7.5 6.1 5.1

Welding surplus height H/mm 1.7 1.5 1.2 4.3 2.2 1.5
Maximum width B/mm 5.3 4.9 4.8 12.1 9.5 8.2
Volumetric dilution ratio Dv/%
(average) 0.6 3.6 7.6 4.97 18.78 32.50

Microhardness HV0.3/GPa
(average) 5.67 ± 0.17 5.83 ± 0.19 5.53 ± 0.19 4.87 ± 0.11 5.18 ± 0.09 4.90 ± 0.06

Saturation magnetization Ms/T 0.23 0.82 1.44 1.42 1.47 1.61
Coercivity Hc/Oe 113.4 70.0 109.8 76.4 74.2 58.6

2.2. Microstructure and Properties’ Characterization

The as-welded coating samples were wire-electrical-discharge-machined and ground
to have a uniformly flat surface or cross-section, then polished and etched. The etched
specimens and feedstock powders were characterized by an Olympus GX51F comput-
erized optical microscope (OM) and SEM (SUPRA55 SAPPHIRE, CARL ZEISS) with an
EDX spectroscope (X-Max, OXFORD). XRD analysis was performed on the powders and
coating surface XOY (plasma torch scanning plane) using an X-ray diffractometer (D/MAX-
Ultima+/PC, Rigaku, Tokyo, Japan) with Cu Kα radiation (λ = 0.15406 nm) at a scanning
speed of 8◦/min. The coating microhardness HV0.3 at a load of 2.94 N and a dwell time
of 10 s was measured by an MH-6 hardness tester, and Vickers indentation marks were
performed on 9 different locations on the coating cross-section YOZ plane (vertical to
welding speed). A vibrating sample magnetometer (VSM) (7400-S, LakeShore, Westerville,
OH, USA) under a maximum applied field of 15,000 Oe and a DC B-H loop tracer (MATS-
2010SD, Linkjoin, Loudi, Hunan, China) were used to measure the values of Ms and Hc
for the welded coating at room temperature. The measured magnetic field direction was
perpendicular to the coating surface (i.e., direction Z).

3. Discussion
3.1. Microstructure

As shown in Table 3, six monolayer coatings were prepared by PTA welding, and
the typical geometry characteristics of the coating cross-section are illustrated in Figure 2,
including the coating maximum width (B), welding surplus height (H), melting depth (h),
upper melting area (AP) and bottom melting area (AS).

In order to understand the effect of process parameters on coating geometry, the
powder distribution density (Pd), welding heat input (HI) and substrate volumetric dilution
ratio in the coating (Dv) were calculated (or roughly estimated) by Equation (1) [17],
Equation (2) [24] and Equation (3) [24], respectively.

Pd = F/(S·D), (1)

where Pd, F, S and D represent powder distribution density, powder feed rate, welding
speed and internal diameter of the coaxial nozzle, as shown in Tables 2 and 3.

HI = η·U·I/S, (2)
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where HI, I, S, U and η (shown in Table 3) represent welding heat input, welding current,
welding speed, transferred arc voltage and thermal efficiency of the co-axial powder feeding
PTA welding process (η = 0.7) [24], respectively.

Dv = AS/(AP + AS), (3)

where Dv, AS and AP represent volumetric dilution ratio (shown in Table 3), bottom melting
area and upper melting area, as illustrated in Figure 2. Factually, the dilution ratio varies
across coating thickness, and it is larger close to the interface adjacent to the substrate and
declines towards the upper surface, so each coating’s Dv only denotes the average of the
substrate dilution ratio. The PTA welding process conventionally has dilution ratios of
5–30% [25], and the Dv values for most of the coatings (shown in Table 3) were approx-
imately within the scope, except C-I and C-II. These two coating samples have inferior
soft magnetic properties with relatively lower Ms (<1 T), due to their unsuitable process
parameters. The welding current I and heat input HI for them are too low to produce
quality coatings, as there is not enough energy to heat and melt feedstock powders and
substrate adequately. As for the sample C-III, its Hc value is extremely high (>100 Oe) and
could not meet the project requirements, though it has a high Ms of 1.44 T. Thus, these three
coatings (C-I, C-II and C-III, shown in Table 3) are excluded from the following discussion.
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The effect of welding heat input (HI) and powder distribution density (Pd) on coating
maximum width (B) can be seen in Figure 3. The coating maximum width increases with
the increasing HI and Pd. According to the definition of welding heat input HI, it refers to
the effective energy in the unit length along the welding direction (i.e., welding speed S),
which is transferred to the powders and substrate, so it is also called welding linear energy.
Therefore, it is not difficult to understand that with larger HI, more powders can melt in the
unit length along S, and the extra powders which have not been melted are blown away,
so the melting width, i.e., the coating maximum width B, is greater. Similarly, when HI is
within the range where powders can be melted, the larger the powder distribution density
Pd is, the greater the amount of powders melted per unit area is, and the greater the value
of B is. Obviously, the influences of both on B are similar.

The influences of HI and Pd on welding surplus height (H) are shown in Figure 4.
The welding surplus height H increases with the growth in HI and Pd. Hence, for the
same reason mentioned above, with higher HI, more powders can melt per unit length
along S, and the extra unmelted powders are blown away, so the welding surplus height
H is greater. In a similar way, when HI is within the range where powders can be melted,
the larger the powder distribution density Pd, the greater the amount of melted powders
per unit area, and the greater the value of H. The influences of HI and Pd on H are in the
same manner.
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The overall cross-section morphologies of the coatings at a low magnification are
shown in Figure 5a. The coating exhibits a uniform appearance without cracks and metal-
lurgical bonding is formed between the coating and substrate. The coating’s sharp XRD
peaks shown in Figure 5b correspond to a high crystallinity, and are indexed as a repre-
sentative b.c.c. phase that is verified to be ferritic α(Fe,Cr) solid solution. Moreover, it is
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confirmed from the EDX results (Figure 1a) combined with XRD analysis that Cr, Mn, Ni,
Si, B and C solute elements dissolved in this multi-element α(Fe,Cr) solid solution. Not
surprisingly, (Fe,Cr)7C3 which exists in the Fe313 powders is distinguished in the coatings.
(Fe1−xCrx)2B, which was indexed as “Fe2B” in Ref. [26] with a CuAl2-type tetragonal struc-
ture, is not detected in the feedstock powders (Figure 1a) but identified in the coatings
(Figure 5b). Compared with gas atomization of the powders, PTA welding of the coatings
has a relatively slower cooling rate, which facilitates boron rejecting from α(Fe,Cr) solid so-
lution and the formation of (Fe1−xCrx)2B. For a similar reason, CrB precipitates undetected
in feedstock powders are found in the coatings, which is consistent with Ref. [27].
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Figure 5. (a) Overall cross-section photographs at a low magnification and (b) XRD patterns of the
PTA-welded coatings.

It can be observed from Figure 6 that the coatings have a typical rapid solidification
structure with predominant dendrites, and the coating morphology varies across thick-
ness. Each coating has three layers: the upper layer (shown in Figure 6a–c), middle layer
(Figure 6d–f) and bottom layer or fusion layer [21] (Figure 6g–l). In the fusion layer, there
is an interface (marked by the green word “Interface” between the green dashed line and
the fusion line in Figure 6g–i) of about 200–300 µm thick, adjacent to the fusion line marked
by white arrows in Figure 6g–l. The fusion line consists of planar grains, above which
columnar cellular and even cellular dendritic grains for C1 (Figure 6g,j) and C3 (Figure 6i,l)
or equiaxed grains for C2 (Figure 6h,k) exist. In the middle layer over this interface, the
preformed columnar dendrites overlap and interlace with one another to form a dendrite
network (Figure 6d–i), in which there are also minor equiaxed dendrites. With increasing
distance from the fusion line, the columnar dendrite content declines gradually, and the
equiaxed grain content increases [28,29]. Finally, the equiaxed dendrites almost totally
dominate the upper layer of each coating (Figure 6a–c).
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Figure 6. Optical micrographs of different zones in PTA-welded coatings (C1, C2 and C3): (a–c) upper
microstructures of the coatings; (d–f) middle microstructures of the coatings; (g–l) bottom microstruc-
tures of the coatings.

The welded coating crystallization is mainly influenced by two factors: temperature
gradient G and growth rate R [30]. The ratio of G to R dominates the solidification mi-
crostructure of the PTA-welded coating that can be planar, cellular or dendritic based on the
solidification condition and the composition involved. At the beginning of solidification, a
large temperature gradient G is produced in the interface between the liquid phase at the
bottom of the welding molten pool and the cold substrate. The solid–liquid (S/L) interface



Magnetochemistry 2023, 9, 93 9 of 18

advances gradually towards the liquid phase and the G/R ratio increases, resulting in the
formation of a layer of planar grains next to the substrate (Figure 6j–l), i.e., the fusion line.
As the solidification proceeds, the G starts to diminish, while the R gradually increases,
which leads to the increment in the constitutional supercooling (CS) in front of the S/L
interface. Consequently, the stability of the planar grain boundary is destroyed, above
which the typical columnar cellular and even cellular dendritic grains epitaxially grow for
the coatings C1 (Figure 6j) and C3 (Figure 6l). However, non-dendritic equiaxed grains are
formed above the fusion line in the coating C2, as shown in Figure 6k. Lippold et al. [31]
have suggested that the non-dendritic equiaxed grain zone forms in a narrow temperature
region adjacent to the fusion line by a heterogeneous nucleation mechanism aided by some
high-temperature precipitates. M. Shakil et al. [32] have proved that the equiaxed cellular
microstructure is highly dependent upon the alloy composition, turbulence and thermal
gradients at the S/L interface and its formation is due to the uniform and symmetric
cooling. As for the coating C2, compared with C1 and C3, its welding heat input HI of
6.1 kJ/cm is lower than that of C1 (7.5 kJ/cm) and higher than that of C3 (5.1 kJ/cm), i.e.,
HIC1 > HIC2 > HIC3. The higher HI prolongs the high temperature retention time to slow
down the cooling rate, which is helpful for grain growth. Thus, in the same position of the
coating, the grain size (GS) of C1 is the largest and that of C3 is the smallest for these three
coatings. In other words, C1 has the coarsest grains and C3 has the finest grains, as shown
in Figure 6a–i. Moreover, the HI of C2 is between that of C1 and C3, and facilitates C2 to
form a narrow temperature region, in which the non-dendritic equiaxed grains next to the
fusion line can be formed, complying with a heterogeneous nucleation mechanism similar
to Ref. [31], aided by (Fe,Cr)7C3, (Fe1−xCrx)2B and CrB. With the G decreasing continually,
the G/R ratio becomes smaller and the CS in front of the S/L interface becomes larger. Thus,
the columnar dendrites begin to grow preferentially in a direction approximately vertical
to the fusion line since the heat dissipation in this direction is the fastest. The mechanism of
the dendrite structure is as follows: the formation of planar and cellular grains (including
the non-dendritic equiaxed grains mentioned above) at the bottom of the coating causes
the release of crystallization latent heat, which decreases the supercooling degree of the
liquid phase, so the nucleation rate declines rapidly. Therefore, cellular grains tend to grow
orientationally in a direction approximately perpendicular to the fusion line, in which the
heat dissipation is the fastest. The grown grains form the long trunks of the columnar
dendrites and secondary dendrite arms grow vertical to the trunks, as shown in Figure 6g–l.
When the crystallization proceeds to a certain extent, the grown columnar dendrites overlap
and interlace with one another to form dendrite networks (Figure 6d–i). The formation
of columnar grains results from epitaxial grain growth along the direction normal to the
substrate [33], i.e., the direction of the maximal thermal gradient in the welding molten
pool [34]. In the subsequent crystallization stage, the top surface of the molten pool directly
contacts the outside air, so that the G at the surface becomes smaller. The CS zone in front
of the crystallization interface enlarges, which is beneficial to the nucleation and growth of
new crystal nuclei. New surficial and endogenic heterogeneous nucleation sites surge and
grow in random directions, restricting epitaxial growth for columnar grains and facilitating
the formation of equiaxed grains [35]. Therefore, the fine equiaxed dendrites have become
the predominant structures in the upper region near the coating surface (Figure 6a–c).

Figure 7 presents the high-magnification SEM micrograph and EDX elemental map-
ping of a typical dendrite microstructure of the coating C3, which consists of dendrites and
interdendritic structures. Similar dendrite microstructures have also been reported in other
research [36–38]. For instance, Lu et al. [37] reported that dendrites were firstly precipitated
from the molten pool and then the intercrystalline metal was cooled to form netlike eutectics
in the interdendritic regions. The EDX results (shown in Figures 7 and 8 and Table 4) reveal
the composition segregation of the alloying elements in the coating. Fe, C and Si elements
prefer to distribute in the dendrite more, while Cr and B elements tend to concentrate
in the interdendritic area. The result that boron is more distributed in the interdendritic
regions has also been observed by Gao et al. [39]. The composition segregation results from
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the high cooling rate during welding, which restricts the solute atoms in the coating from
sufficiently diffusing. Thus, the chemical compositions of the preformed dendrite and the
interdendritic region are non-uniform. Additionally, the interaction between the alloying
elements and surface tension of the molten pool, and the convection in the molten pool
attributed to the uneven distribution of the plasma arc energy density, will also influence
the composition segregation [40].
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Table 4. EDX point scanning results of points (denoted by the white asterisks in Figure 8) in the
coating C3.

Elements
Weight Percent (wt.%)

Point 1 Point 2 Point 3 Point 4

Fe 66.46 61.54 77.59 65.77
Cr 14.18 16.26 12.63 11.05
B 11.76 13.13 - -
Si 0.65 0.51 1.32 1.34
C 6.95 8.07 8.07 21.47
Mn - 0.49 0.39 0.36
Ni - - - -

It can be observed that the PTA-welded coating has a dendrites–eutectics composite
structure, in which the columnar or equiaxed sorbite dendrite cores (denoted by “S”) are
surrounded by the network-like eutectics (marked by “E”), as shown in Figures 7 and 8.
According to the Fe-B phase diagram [41], the austenite + Fe2B eutectic exists at 3.8 wt.%
boron, while the average boron content in the PTA-welded coating conforms to a hypoeutec-
tic constitution, containing primary austenite (γ-Fe) and an eutectic (γ-Fe + Fe2B). Similarly,
the coating corresponds to a hypoeutectoid steel composition, consisting of proeutectoid
ferrite and pearlite. Combined with the phase diagrams [41] and XRD results, SEM and
EDX analyses show that this ultrafine eutectic structure in the interdendritic region has
a ferritic matrix of α(Fe,Cr) solid solution with inclusions of (Fe1−xCrx)2B, denoted in
Figure 8 by yellow and white arrows, respectively. The dendritic islands in the coating
are sorbitic pearlites, indicated by “S” in Figure 8. They are transformed from primary
austenite γ-Fe (rich in carbon) at room temperature [42], and the formation of these finer
pearlites, called sorbitic pearlites [43,44], may be attributed to the relatively faster cooling
rate of PTA welding (compared with conventional casting).
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3.2. Hardness

The average microhardness (HV0.3) values of the coating cross-sections are shown
in Table 3, which are higher than those of AISI 1010 substrate [22] and AISI 430 FSS
(HV < 1.8 GPa) [23], due to the high solid solubility of B, C, Si, Ni and Mn, as well as
(Fe1−xCrx)2B, (Fe,Cr)7C3 and CrB hard phases included in the α(Fe,Cr) solid solution
matrix, and uniform fine crystalline grains. It is well reasoned that the coating hardness
declines with the increasing substrate dilution ratio Dv, since the rise in the dilution ratio
of relatively soft AISI 1010 substrate with much lower hardness (<1.8 GPa) reduces the
volume fraction of hard phases and the solute content in α(Fe,Cr) solid solution. As well
as the substrate dilution ratio Dv, the welding HI has a considerable effect on the coating
hardness. With the rise in HI, the energy for melting feedstock powders and substrate
increases, and the cooling rate of molten pool becomes slower, promoting grain growth
and solute (Ni, Mn, Si, B, C) precipitation from α(Fe,Cr) solid solution, and decreasing the
coating hardness. However, increasing HI also facilitates the formation of hard phases such
as (Fe1−xCrx)2B, (Fe,Cr)7C3 and CrB, leading to the coating hardness increment. The effect
of the former surpasses that of the latter on the coating hardness, under the experimental
conditions in this paper. Thus, the hardness of the coating with a lower substrate dilution
ratio Dv (<20%) decreased with the rise in HI, and the influence of Dv on its hardness can
nearly be omitted. In other words, the lower the HI, the higher the coating hardness, as
shown in Table 3 (C-I, C-II, C-III, C1 and C2). As for C3, the influence of its high Dv (32.5%)
on its hardness cannot be neglected, and it prevailed over that of HI, so the hardness of C3
is not higher but lower than that of C2, though C3 has lower welding HI. Therefore, C2 has
the highest hardness, whereas C1 and C3 have similar hardness values that are lower than
that of C2 (Table 3 and Figure 9).
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3.3. Magnetic Properties

The magnetic properties of the feedstock powders and the PTA-welded coatings, with
Hc and Ms measured by a VSM, are shown in Table 3 and Figure 10. The coatings’ VSM
sample cuboids (2.0 mm × 2.0 mm × 1.5 mm) were cut from the welded overlayer by wire
electrical discharge machining, as shown in Figure 10b, and they contained only the coating
without the substrate.
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From the hysteresis loops (Figure 10), the powders and the PTA-welded coatings
present adequate soft magnetic performance with high Ms above 1.3 T. Compared with the
powders with Ms of 1.39 T and Hc of 104.9 Oe (Figure 10a), all the coatings have lower Hc
and higher Ms (Figure 10b–d), i.e., the coatings have soft magnetic properties superior to
the feedstock powders. Among all the coatings, C3 has the best soft magnetic properties
with the lowest Hc of 58.6 Oe and the highest Ms of 1.61 T (Figure 10d).

The coercivity of soft magnetic materials depends on many structural features, such
as phase composition, volume fractions of ordered and disordered phases, the critical size
of magnetic single-domain state and the size of magnetically independent grains. Conven-
tionally affected by most defects such as precipitates, dislocations and grain boundaries,
the coercivity Hc relies on grain size, as in the following Equation (4) [45]:

Hc ≈ 3

√
kBTcK1

aMs

1
D

(4)

where Hc, kB, Tc, K1, a, Ms and D represent the coercivity, Boltzmann constant, Curie
temperature, magnetocrystalline anisotropy, lattice constant, saturation magnetization and
grain size, respectively.
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The generally used correlation between coercivity and non-magnetic or low-Ms (com-
pared with α-Fe) inclusions is given in Equation (5) [45], following Kersten’s theory.

Hc ∝
δωK1

Msµ0r
V2/3

f (5)

where δw, K1, Ms, µ0, r and Vf represent the magnetic domain wall thickness, magnetocrys-
talline anisotropy, saturation magnetization, permeability of vacuum, average radius and
volume fraction of the non-magnetic or low-Ms inclusions. Equation (5) does not take effect
if δw >> r or δw << r. For the current welded coatings, the magnetic domain wall thickness
δw can be estimated to be about 40–250 nm by referring to soft iron (~0.1 µm) [4] and
silicon iron [46]. The particle size of most “low-Ms” (compared with α-Fe) inclusions in the
welded coatings was estimated to be about 20~2000 nm [26,44,47,48], i.e., r is comparable to
δw (40–250 nm), so Equation (5) can be used to evaluate the influence of low-Ms inclusions
(such as (Fe1−xCrx)2B, (Fe,Cr)7C3 and CrB) on the coating’s Hc.

The solubility limit of Cr, B and even C in α-Fe solid solution results in precipitating
out low-Ms particles, accompanied by a decline in Ms and an increase in Hc. The relatively
slower cooling rate of PTA welding releases internal stress induced by feedstock powder
gas atomizing, and facilitates grain growth as well as the precipitation of low-Ms inclusions.
The larger grains inhibit domain wall motion less effectively, leading to softer magnetic
properties, whereas domain wall motion is resisted by these low-Ms inclusions, leading
to harder magnetic properties [2]. The internal stress release and grain growth decrease
Hc based on Equation (4), while low-Ms precipitates increase Hc according to Equation (5).
The influence of the former on Hc surpassed that of the latter, and thus all the coatings
have lower Hc than that of the feedstock powders (Figure 10).

Nevertheless, for the welded coatings (C1, C2, C3) prepared with different weld-
ing HI, the coating with larger grains unexpectedly has higher Hc, as shown in Table 3,
Figures 6 and 11. This may be explained as follows. As mentioned above, the rise in PTA
welding HI prolongs the high temperature retention time of the molten pool to slow down
the cooling rate, which is helpful for grain growth and the precipitation of low-Ms inclu-
sions. So, in the same position of the coating, C1 has the coarsest grains and C3 has the
finest grains, as shown in Figure 6a–i. Meanwhile, C1 has more low-Ms precipitates than
C2 and C3, and C3 contains the fewest low-Ms inclusions. For the current welded coatings,
the effect of low-Ms precipitates on Hc prevails over that of grain growth. Moreover, the
increase in the substrate dilution ratio Dv can decrease the volume fraction of low-Ms
inclusions Vf, leading to the decline in Hc according to Equation (5), as illustrated in
Figure 11b. Hence, the higher the welding HI, the larger the grains and the higher the Hc
for the coating, as shown in Table 3, Figures 6 and 11a.

As shown in Figure 10, it is revealed that the saturation magnetization Ms was in-
creased after PTA welding, i.e., all the coatings have higher Ms than the feedstock powders.
The formation of grains in the welded coating which are preferably oriented in the easiest
direction of magnetization may be the main reason for the increase in Ms [2]. The maximum
possible Ms of a ferromagnetic material represents the magnetization that results when all
the magnetic dipoles in a solid piece are mutually aligned with the external field. The Ms
of magnetic materials depends on the element composition, the number of magnetic atoms,
the crystal structure and magnetic moment of atom [45]. It was mentioned above that there
were some low-Ms precipitates distributed in a ferritic matrix in the PTA-welded coatings.
These low-Ms inclusions decrease the coating Ms, and the reduction in volume fraction
of these inclusions or the absence of these inclusions during PTA welding may increase
the coating Ms, which is consistent with Ref. [2]. Thus, the coating Ms increases with the
rise in the substrate volumetric dilution ratio Dv, resulting from the decrease in volume
fraction of these low-Ms inclusions (Figure 11b). Furthermore, with increasing chromium
content in the material, its Ms declines, which has previously been reported for ferritic
stainless steels [49] and for iron chromium alloys [50], and in both cases, a linear decrease
in Ms was observed. In other words, the Ms increases with the reduction in chromium
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content in the material. The increase in the substrate volumetric dilution ratio Dv also
promotes decreasing chromium content in the coating, leading to the rise in Ms. Hence, the
Ms of the coating increases sharply with the growth in Dv (Figure 11b). On the other hand,
with increasing welding HI for the coating, low-Ms precipitates proliferate, leading to the
decrease in the Ms, shown in Figure 11a.
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In summary, all the PTA-welded coatings (C1, C2 and C3) present adequate soft
magnetic properties superior to the feedstock Fe313 powders, which are attributed to the
existence of b.c.c. α(Fe,Cr) solid solution with larger grain size. The Ms is from 1.42 T to
1.61 T and the Hc is from 76.4 Oe to 58.6 Oe. Among all the coatings, C3 had the highest
Ms of 1.61 T and the lowest Hc of 58.6 Oe, and the optimal values for the powder flow rate,
welding current and welding speed were 12 g/min, 100 A and 0.22 m/min, respectively.
The precipitation of (Fe1−xCrx)2B, (Fe,Cr)7C3 and CrB seems to be detrimental for soft
magnetic properties [45], but is helpful for the increase in hardness, so the coatings have
hardness (HV > 4.50 GPa) much higher than that of AISI 430 FSS (HV < 1.8 GPa) [23],
which may extend their applications in some special working conditions where appropriate
wear-resistant and anti-corrosive properties as well as suitable soft magnetic performance
are required.

4. Conclusions

1. The high-crystallinity FeCrBSi monolayer coatings were fabricated by PTA weld-
ing using Fe313 self-fluxing powders with constituents similar to AISI 430 FSS. The
welded coating has hypoeutectic structures composed of columnar or equiaxed den-
drites of sorbitic pearlites and interdendritic network-like α(Fe,Cr) + (Fe1−xCrx)2B
eutectics, with hardness (HV > 4.5 GPa) much higher than that of AISI 430 FSS
(HRB < 88 or HV < 1.8 GPa) [23] and high Ms (>1.3 T), which are not lower (or even
higher) than those of the ferritic steels with the same or similar nominal compositions
(1.1–1.6 T) [4,49]. This may broaden the application for AISI 430 FSS in some special
fields requiring not only fair corrosion and wear resistance but also superior soft
magnetic properties.

2. All the welded coatings (C1, C2 and C3) have superior soft magnetic performance
than the original powders, i.e., the coatings have lower Hc and higher Ms than those
of the Fe313 powders. The decrease in Hc is attributed to the formation of larger
grains, and the grains in the PTA-welded coatings are preferably oriented in the
easiest direction of magnetization, resulting in the increase in Ms.
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3. Under the experimental conditions in this paper, the coating maximum width and
the welding surplus height increase with the rise in welding HI and Pd, respectively.
The coating’s Hc decreases whereas its Ms increases sharply with the growth in Dv,
and the former increases but the latter decreases with the increasing welding HI. The
coating C3 presents the best soft magnetic properties with Ms of 1.61 T and Hc of
58.6 Oe. The coating’s highest Ms is due to its highest Dv, lowest Vf of non-magnetic
or low-Ms (compared with α-Fe) inclusions and lowest Cr content. The coating’s
highest Dv and lowest Vf also are responsible for its lowest Hc.

4. The high Hc of 58.6~76.4 Oe for the coatings, which resulted from the residual
stress and deformation caused by the relatively rapid solidification of the PTA weld-
ing process, may be decreased by the further optimization of welding parame-
ters or post-weld vacuum annealing, and these issues will be investigated in our
follow-up research.
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