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Abstract: Disordered molecular solids present a rather broad class of substances of different origin—
amorphous polymers, materials for photonics and optoelectronics, amorphous pharmaceutics, simple
molecular glass formers, and others. Frozen biological media in many respects also may be referred
to this class. Theoretical description of dynamics and structure of disordered solids still does not
exist, and only some phenomenological models can be developed to explain results of particular
experiments. Among different experimental approaches, electron paramagnetic resonance (EPR)
applied to spin probes and labels also can deliver useful information. EPR allows probing small-
angle orientational molecular motions (molecular librations), which intrinsically are inherent to all
molecular solids. EPR is employed in its conventional continuous wave (CW) and pulsed—electron
spin echo (ESE)—versions. CW EPR spectra are sensitive to dynamical librations of molecules
while ESE probes stochastic molecular librations. In this review, different manifestations of small-
angle motions in EPR of spin probes and labels are discussed. It is shown that CW-EPR-detected
dynamical librations provide information on dynamical transition in these media, similar to that
explored with neutron scattering, and ESE-detected stochastic librations allow elucidating some
features of nanoscale molecular packing. The possible EPR applications are analyzed for gel-phase
lipid bilayers, for biological membranes interacting with proteins, peptides and cryoprotectants, for
supercooled ionic liquids (ILs) and supercooled deep eutectic solvents (DESs), for globular proteins
and intrinsically disordered proteins (IDPs), and for some other molecular solids.

Keywords: spin labels and probes; electron spin echo; molecular glasses; supercooled liquids;
gel-phase lipid bilayers; intrinsically disordered proteins; ionic liquids

1. Introduction

Organic and biological solids with a disordered molecular structure are interesting
from points of view of their practical importance and their unusual fundamental properties.
Amorphous polymers [1], materials for photonics and optoelectronic applications [2], and
amorphous pharmaceutics [3] possess various advantages compared to their crystalline
counterparts: good processability, transparency, uniform physical properties. Biological
media always contain disordered fragments [4]. Frozen biological systems are interest-
ing (i) in relation to the problem of cryopreservation of biological tissues; (ii) because
of the application of high-resolution spectroscopic techniques carried out at cryogenic
temperatures; and (iii) because studies of biological systems at low temperatures may
allow an understanding their structure–function relationship, which would be useful to
dissect out specific dynamic and structural features that are inevitably also present at higher
physiological temperatures.

From a fundamental point of view, disordered molecular solids possess many in-
triguing properties of a nature that still remains unclear. For example, these media show
anomalous thermal conductivity and a specific heat at cryogenic temperatures [5–7]. This
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anomaly may be described within a model of tunneling localized excitations or Two-Level
Systems model (TLSs) [8–10], in which it is postulated that some atoms or groups of atoms
have two equilibrium positions between which they can tunnel [7]. Amorphous solids ex-
hibit also an excess of low-energy vibrational excitations, which is called Boson peak [11,12].
These and other properties are described only at a phenomenological level; for the recent
development of theoretical concepts here, see, e.g., reviews [13,14].

For our further narrative, it is helpful also to mention a so-called “Soft Potential
Model” [14–18]. This model assumes importance of cubic and quartic terms in Taylor
expansion for the potential energy of the molecule near its equilibrium position in the solid.
Assuming that the potential U(q) for some selected molecules in the cage formed by its
surrounding (q is some generalized coordinate for the molecule) attains a minimum at
q = q0, we can write:

U(s) = U0 +
1
2

b2s2 +
1
3!

b3s3 +
1
4!

b4s4 + O(s5), (1)

where s = q − q0, U0 = U(q0).
In Figure 1 the potential well given by Equation (1) is schematically depicted as a

function of the variable s. The motions within the well with hard boundaries (Figure 1a) are
restricted dynamical motions, occurring in a periodic way with high frequency (typically in
the THz range). In this review, only orientational motions are considered; small-angle dy-
namical reorientations of the molecules we refer to here as dynamical (molecular) librations.
(Although, other terms are sometimes used—e.g., rattling in a cage [19].)

Figure 1. Schematic presentation of molecular motions in a solid, described by a generalized coor-
dinate s—see Equation (1)—for the molecule captured in a cage formed by its nearest surrounding.
(a) At low temperatures, the cage is fixed so that only dynamical periodic motion occurs. However
random jumps between vibrational level in anharmonic well (small solid arrow) or between nearby
shallow wells (curved dashed arrow) results in stochasticity of the motion. (b) At higher temperatures,
the cage fluctuates and another source of motional stochasticity appear.

Because of the weakness of intermolecular interactions in molecular solids, the cage
boundaries may fluctuate (Figure 1b), especially at temperatures close to glass transition
temperature (Tg). These fluctuations provide a source of stochasticity of motion, so li-
brations may become stochastic. Stochasticity may appear also for random transitions
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between vibrational levels in an anharmonic potential, for which the mean amplitude,
<s>, is a non-zero fluctuating value (Figure 1a, the small solid arrow). Another source of
stochasticity could be random jumps between two or more closely spaced shallow wells
(Figure 1a, the curved arrow). Small-angle stochastic reorientations of the molecules are
here called stochastic (molecular) librations. Furthermore, these motions may be called
wobbling motion [20], or quasi-librations [21,22].

Of course, all these hypothetical situations may take place simultaneously, and it is
clear that above Tg these intermolecular potentials are destroyed.

Closer to Tg, molecular solids transform into supercooled liquids, for which also
unusual phenomena are known: secondary Johari–Goldstein β-relaxation seen in dielectric
relaxation [23–26], dynamical transition in neutron scattering and Mössbauer absorp-
tion [19,27–29], cooperativity of motions and nanoscale heterogeneity [30,31], and others.
The phenomenon of secondary β-relaxation was also addressed by NMR [32,33]. Some
theoretical aspects of supercooled liquids may be described with idealized “mode-coupling
theory” [34].

Structure and intrinsic dynamics of molecular glass solids, supercooled liquids and
biological systems are extensively explored by different experimental and computational
methods. Except for the above-mentioned dielectric and NMR spectroscopies, neutron
scattering and Mössbauer absorption, these are optical “hole” burning, single-molecule
spectroscopy, atomic force microscopy, dynamics of solvation [30,31], X-ray scattering [35],
Raman and Brillouin scattering [35,36], and molecular dynamics (MD) simulations [4,35].

Among others, electron paramagnetic resonance (EPR) of spin probes and labels can
also be applied to study the structure and dynamics of disordered media, in its versions of
conventional continuous wave (CW) EPR [37] and of more advanced pulsed EPR—electron
spin echo (ESE)—spectroscopy [20,38–40].

In spite of the huge amount of literature in the field, the problem with a comprehensive
theoretical description of the structure and dynamics of molecular disordered media still re-
mains unsolved. Nevertheless, useful phenomenological models for the molecular packing
and motions can be developed. First of all, in solids, molecular motions are restricted in a
cage formed by the nearest molecular surrounding, which forms a well potential, as shown
in Figure 1, and so only restricted vibrational or small-angle orientational (librational)
motions may exist. Second, because of the weakness of intermolecular bonds in molecular
solids, it is reasonable to consider this potential as smooth and essentially anharmonic.
Finally, also because of the weakness of intermolecular bonds, the well potential may
fluctuate stochastically, and stochasticity may appear also because of random transitions
between anharmonic sublevels.

2. Methodology
2.1. CW EPR Spectra of Nitroxides in Molecular Glasses

EPR spectroscopy of spin labels and probes [41], because of anisotropic character of
g-tensor and hyperfine interactions, is sensitive to orientational molecular motion. CW EPR
is widely employed for obtaining rotational correlation times, in the timescale lying between
10−7 s and 10−10 s, for studying anisotropy of the motion, for elucidating its heterogeneity.
In solids, unrestricted rotations, however, are suppressed and only small-angle motions
(librations, wobbling, etc.) exist.

Nitroxide spin probes may be of different structures, possessing the common paramag-

netic N
•
−O fragment (the unpaired electron is approximately equally distributed between

N and O atoms). Two examples are shown in Scheme 1.
The spin Hamiltonian of a nitroxide spin label at the EPR X-band may be taken

as [41,42]
Ĥ = βBextgS + geβSAI (2)

where β is the Bohr magneton, Bext the external magnetic field, g is the g-tensor, ge is the
g-factor of free electron, A is the hyperfine interaction (hfi) tensor for interaction with a
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nitrogen nucleus, expressed in the magnetic field units. Nuclear Zeeman and quadrupole
interactions are here neglected because of their smallness. The laboratory framework
typically used suggest that the z axis is directed along the magnetic field Bext, when an
alternative magnetic field with the microwave frequency ω is also applied to the system,
the solution of Hamiltonian (2) results in the EPR line positions:

Bext ≡ Bm(θ, ϕ) =
}ω

βgzz(θ, ϕ)
−ma(θ, ϕ), (3)

where a(θ, ϕ) =
√

A2
xz + A2

yz + A2
zz, and m is the nitrogen nucleus spin projection onto its

quantization axis. For 14N m acquires three values, −1, 0, 1.
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Note that in the angular frequency units the γa(θ, ϕ) value (γ is the gyromagnetic
ratio) for nitroxides typically is of the order of 108 rad/s. This is a measure of spectral
anisotropy that is an essential value for analyzing motions detected by CW and pulsed EPR.

EPR spectra of nitroxide spin labels in solids are determined by anisotropy of the
g-factor and hfi tensors and by the nitrogen spin projection m. Three m values result in three
hyperfine structure components, broadened in solids due to the anisotropy of magnetic
interactions. Also, additional line broadening induced by unresolved hfi with nearby nuclei
exists. Then Bext is not equal to Bm(θ,ϕ) that is given by Equation (3), and in polyoriented
media the EPR lineshape g(Bext) is determined by averaging over all angles θ and ϕ:

g(Bext) =
1

∑
m=−1

1
4π

¨
sin θdθdϕ f (Bext − Bm(θ, ϕ)), (4)

where function f (B) describes this additional broadening induced by unresolved hfi with
nearby nuclei. In simulations, f (B) usually is approximated by a convolution of Gaussian
and Lorentzian lineshapes. The typical result of these simulations is given in Figure 2.
The insert in Figure 2 shows the NO paramagnetic fragment and the directions of the
molecular axes: the Z molecular axis is assumed to be directed along the axis of the
unpaired p-electron, the X axis is along the NO bond of the nitroxide, and the Y axis is
perpendicular to both. One can see that two side components (m = ±1) are essentially
broadened—because of anisotropy of magnetic interactions—while the central component
(m = 0) is almost isotropic.

Conventional CW EPR spectra are sensitive to librations because of partial averaging
of the parameters of magnetic interaction. Stochastic molecular librations result also in
spin relaxation, which can be probed in pulsed EPR, in its version of ESE spectroscopy:
spin relaxation induces ESE signal decay. Stochastic molecular librations in the schematic
presentation of Figure 1 appear for the cases of a fluctuating surrounding cage and/or
fluctuating transitions between vibrational levels in anharmonic potential. Note that
random transitions in harmonic potential can hardly induce spin relaxation, because of the
high frequency of librational motions (assessed as ~1012 s−1 [43]).
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2.2. CW EPR: Dynamical Librations

For a librating molecule, Hamiltonian (2) depends on time t and may be separated into
the time-independent part, Ĥ0 ≡< Ĥ(t) > and the time-dependent one, ∆Ĥ(t) = Ĥ(t)− Ĥ0,
where the angular brackets means the average taken over the motion. In the first order pertur-
bation theory,

Ĥ0 = β < gzz(t) > BextSz + geβSz < a(t) > I, (5)

where the vector a(t) ≡ [Azx(t), Azy(t), Azz(t)] is introduced. Its averaging we denote as

a0 ≡< a(t) >= [< Azx(t) >,< Azy(t) >,< Azz(t) >]. (6)

We denote AXX, AYY, and AZZ as the principal values of the hfi tensor. Let librational
motion occur for simplicity via rotations around the X molecular axis, and let α(t) be the
instant small deviation angle (α2(t) << 1) for the motion from the equilibrium position (see
Figure 3). Then the new motion-averaged principal values are [42]:

< AXX >≡ A′XX = AXX
< AYY >≡ A′YY = AYY + (AZZ − AYY) < α2(t) >
< AZZ >≡ A′ZZ = AZZ − (AZZ − AYY) < α2(t) >

(7)

(Note that the tensor trace does not change upon motion, as it must be expected in this
case). The analogous relation is valid for the g-tensor principal values, if the axes of the two
tensors coincide. For motion around the other principal axes, the subscripts in Equation (7)
are to be permuted accordingly.

Detailed simulations based on Equations (4) and (7) were performed in [44] for ni-
troxides in water-glycerol glass; the results showed good agreement with the experiment.
In these simulations, all the motion-averaged principal values, A′XX , A′YY and A′ZZ, were
obtained. Below 200 K (that is close to Tg), all of them depended linearly on temperature T.
This linearity may be ascribed to harmonic oscillations for which the relation is expected:

1
2

IΩ2
libr < α(t)2 >=

1
2

kT (8)
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where I is the moment of inertia of the molecule, Ωlibr is the librational frequency in angular
units. In combination with Equation (7), Equation (8) indeed provides a linear temperature
dependence of the hfi values.
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It is interesting to note also that the slopes of the straight lines determined in [44] for
different molecular glass formers were found to correlate with the “fragility” [45] of the
glass, see also the discussion below, in Section 4.9.

At low temperatures, the thermal energy of librating molecules is comparable with
the elementary quantum, so the onset of quantum effects is expected. Then < AXX > will be
determined by the Bose factor n(Ω) = 1/(exp(}Ω/kT)− 1):

< AXX >= AXX + (AYY + AZZ − 2AXX)
}

IΩlibr

{
1

exp(}Ωlibr/kT)− 1
+

1
2

}
. (9)

When kT > }Ωlibr, <AXX> linearly depends here on a temperature that is in line with
Equation (8).

In [43], the motion-averaged <AXX> principle values were measured at cryogenic
temperatures by a pulsed electron-nuclear double resonance (ENDOR) technique for
15N-substituted nitroxides. The results are given in Figure 4 for glycerol and o-terphenyl
glasses, along with the <AZZ> principle values found from the splitting between the
two outmost spectral components (cf. Figure 2). The fitting of <AXX> temperature de-
pendence allowed to assess the Ωlibr/2π value as 60 cm−1 for glycerol and 90 cm−1 for
o-terphenyl. This result coincided fairly well with the Raman scattering data also obtained
for these glasses [43], which showed that dynamical librations of guest nitroxide molecules
is determined by the vibrations of the host molecules. The similar results were also obtained
for glassy liquid crystals [46].

Note that above 80 K in glycerol and above 112 K in o-terphenyl the <AXX> tem-
perature dependences in Figure 4 manifest a kink with a slope slightly smaller at higher
temperatures. The reason for this kink is not clear. It is likely a result of influence of
anharmonicity of the motion, which may become essential at higher temperatures—up to
the overcoming of one of the barriers in the potential well (see Figure 1a).

Therefore, CW EPR spectra of guest spin probes in molecular glasses provide information on
mean squared amplitude < α(t)2 > of dynamical librations. The < α(t)2 > value may directly
obtained from the experimental data in Figure 4, employing Equations (7), (8) or (9); it attains
maximal value of ~0.1 rad2.
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2.3. ESE: Stochastic Librations

In ESE spectroscopy—a pulsed version of EPR—an echo signal appearing after ap-
plication of several microwave pulses on an electron spin system in the magnetic field is
studied. The microwave frequency is the EPR resonance frequency. The simplest pulse
ESE sequence contains only two pulses, with the 90◦ and 180◦ magnetization turning
angles, and is denoted as 90◦–τ–180◦–τ–echo detection, where τ is the time delay between
pulses. The echo signal time dependence, E(2τ), decays with a 2τ increase because of
spin relaxation.

Spin relaxation appears because of stochastic fluctuations of magnetic interactions,
and stochastic molecular motion provides an important source of these fluctuations. For
nitroxide spin probes dissolved in molecular glasses, spin relaxation induced by molecular
motion in molecular glasses was first detected with ESE in [38–40], and these ESE-detected
motions in molecular glasses were then ascribed to stochastic molecular librations [47,48].

The assignment [47,48] to stochastic molecular librations was performed on the fol-
lowing basis. Microwave pulses normally employed in ESE spectrometers excite only a
small portion of the EPR spectrum. In solids, different EPR spectral positions correspond
to different orientations of nitroxide (see Figure 2), and these positions possess a different
degree of anisotropy of magnetic interactions. Then for restricted small-angle motion the
EPR spectral positions with a larger spectral anisotropy are characterized by a faster ESE
decay, which is indeed observed in experiment.

Figure 5 shows echo-detected EPR spectra (the spectra obtained as an echo signal
intensity taken upon the scanning magnetic field) for nitroxide tempone in glycerol glass
at different time delays τ, at two different temperatures (200 and 216 K) [49]. The spectra
are normalized by their central peak amplitude, which excludes from consideration all
field-independent spin-relaxation mechanisms. One can see in Figure 5 that, first, the echo
signal decays with a τ increase faster for low- and high-field hyperfine components, making
these components lower in amplitude. These components are essentially anisotropic, and
so this relaxation rate enhancement may indeed be ascribed to the orientational motion.
Second, relaxation at the middle of these two components is faster compared with two outer
shoulders of the spectrum. Third, intensity of the spectral position 2 decays exponentially
with time τ, as it is seen in the insert. As the zero time τ cannot be achieved in experiment
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because of the ESE spectrometer dead time problem, the spectral intensity for τ = 0 for both
temperatures 200 and 216 K in Figure 5 is ascribed to that at the reduced temperature of
181 K, where the motions may be assumed to be frozen out (at time τ =136 ns that is the
starting τ delay after the dead time).
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Figure 5. Echo-detected EPR spectra normalized by their maximal intensity, for nitroxide tempone in
glycerol glass at temperatures 200 K and 216 K (τ sequentially equals 136, 256 and 400 ns). Dashed
lines present simulations for the model of stochastic molecular librations (see text). The insert shows
time dependence of the ln(E2(2τ)/E1(2τ)) value for the field positions 1 and 2 indicated by arrows in
the main figure, this value at τ = 0 is assumed to be determined by that at τ = 136 ns for 181 K (it is
then subtracted). Adapted with permission from [49], Springer.

These three features of manifestation of spin relaxation seen in experimental spectra
in Figure 5 can be readily explained theoretically within the librational model. We consider
here the case of small-amplitude motions, resulting in spectral diffusion within the excita-
tion bandwidth only. The general expression for the echo signal E(2τ) then is given by the
relation [50]:

E(2τ) ∝< exp

−i

τˆ

0

dt∆ω(t)

 exp

i

2τˆ

τ

dt∆ω(t)

 >, (10)

where ∆ω(t) = 1
} (< 1

∣∣∣Ĥ(t)− Ĥ0

∣∣∣1 > − < 2
∣∣∣Ĥ(t)− Ĥ0

∣∣∣2 >) , and 1 and 2 denote two elec-

tron spin states of the unperturbed Hamiltonian Ĥ0—see Equation (5). If spectral diffusion
due to stochastic motions is fast (correlation time of the motion τc << τ), and occurs via
random walks within a restricted frequency interval, Equation (10) results in an exponential
decay [50,51]:

E(2τ) ∝ exp(−2τ < ∆ω2(t) > τc). (11)
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Note that for restricted small-angle librations one may assume that < ∆ω2(t) > exists.
Also note that the condition τc << τ of fast motion may be alternatively presented as [50,51]

< ∆ω2(t) > τ2
c << 1 (12)

(the so-called limit of Redfield’s theory of spin relaxation).
Let us consider reorientation by small angle α(t) around the X molecular axis—see

Figure 3. For nitroxides, ∆ω(t) depends also on the angles θ and ϕ determining the
orientation of the magnetic field in the molecular framework (see Figure 3). For α2(t) << 1
we may write [52,53]:

∆ω(t, θ, ϕ) = α(t)RX(θ, ϕ, m) (13)

with
RX(θ, ϕ, m) = [ β

} Bext(gYY − gZZ)

+
m(A2

YY−A2
ZZ)√

A2
XX sin2 θ cos2 ϕ+A2

YY sin2 θ sin2 ϕ+A2
ZZ cos2 θ

] sin θ cos θ sin ϕ (14)

For motion around the Y molecular axis, the (gYY− gZZ), (A2
YY− A2

ZZ) and sin θ cos θ sin ϕ
factors are to be replaced correspondingly by the (gXX− gZZ), (A2

XX− A2
ZZ) and sin θ cos θ cos ϕ

ones. If magnetic tensors are (nearly) axially symmetrical, the motion around the Z molecular axis
does not result in spin relaxation.

If the reorientation angle α(t) is small, angles θ and ϕ in Equations (13) and (14) may be
considered as constants. The nitrogen nuclear spin projection m in principle also fluctuates
upon motion, because of fluctuation of hyperfine interaction. This fluctuation would result
in large-scale spectral diffusion between three hyperfine structure components, which
may be directly monitored by a magnetization transfer experiment in double electron-
electron resonance technique [54–56]. However, these experiments have shown that the
nitrogen nuclear spin relaxation rate WN is of the order or less than 105 s−1, which is much
smaller than the rate of echo decay in organic solids that is typically larger than 106 s−1 (cf.
Figure 5). Therefore, nitrogen nuclear relaxation in nitroxides normally may be neglected
then analyzing the spin relaxation induced by stochastic molecular librations, and m in
Equation (14) may be considered as a constant.

Equations (11) and (13) for the motion around the X molecular axis result in the expression

E(2τ) ∝ exp(−2τR2
X(θ, ϕ, m) < α2(t) > τc). (15)

If one assumes the axial symmetry for the nitroxide g- and hfi tensors, so that AXX =
AYY ≡ A⊥, AZZ ≡ A|| (with the analogous expressions for the g-tensor), then Equation (14)
reduces to

RX(θ, ϕ, m) = γ[Bext(g⊥ − g||) + m(A2
⊥ − A2

||)/a0] sin θ cos θ sin ϕ (16)

For the echo-detected EPR lineshape, gED(Bext, 2τ), instead of Equation (4) we have:

gED(Bext, 2τ) = 1
4π

1
∑

m=−1

˜
sin θdθdϕ f (Bext − Bm(θ, ϕ))×

exp(−2τR2
X(θ, ϕ, m) < α2(t) > τc)

(17)

When comparing experimental ESE signal decay with these theoretical predictions,
one has to take into account that except for molecular motion, spin relaxation in solids is
induced also by other physical mechanisms: spin relaxation of nearby nuclear and electron
spins and spin–spin interactions, spin–lattice relaxation (see [57–61] for more details). Some
of these additional mechanisms, however, are too slow to influence the ESE signal decay
(spin–lattice relaxation, e.g.,); the others are field-independent (spin relaxation of the nearby
spins, e.g.) and so cannot influence the echo-detected EPR lineshapes. The only example
of the mechanism which is also field-dependent is the so-called “instantaneous spectral
diffusion” [50], see e.g. [62] for description of its manifestation for nitroxides. Fortunately,
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this additional mechanism is temperature-independent, and so its contribution may be
easily selected at a temperature that is low enough that motions are suppressed. The way
that its influence on echo-detected EPR spectra may be eliminated is described in detail
in [62]. And this mechanism certainly does not intervene to the echo decays when the spin
concentration in the sample is small.

If the echo-detected EPR spectra are normalized by their maxima, all field-independent
relaxational mechanisms are excluded from our consideration and the spectral changes observed
may be ascribed to stochastic molecular librations (taking in mind only the possible influence
of the instantaneous diffusion mechanism). Simulations based on Equations (15)–(17) fitted to
experimental spectra are given in Figure 5 by dashed lines. Note that all the spectral parameters
are obtained by fitting the CW EPR spectra and only one free fitting parameter is employed here
for echo-detected EPR spectra: the < α2(t) > τc product.

As was said above, the zero-time delay τ = 0 is inaccessible in the experiment because
of the ESE spectrometer dead time problem. In simulations, this problem does not exist, and
in Figure 6 the results of simulations are presented, starting from τ = 0. The EPR spectral
parameters were used: g⊥ − g‖ = 0.0050, Bext = 3400 G (0.34 T), A‖ = 35 G, A⊥ = 5 G,
and an individual Gaussian line broadening was of 3 G. The insert in Figure 6 shows the
ln(E2(2τ)/E1(2τ)) ratio at different delays 2τ. One can see that this ratio depends almost
linearly on 2τ:

E2(2τ)/E1(2τ) ∼= const exp(−2τ∆W) (18)

where ∆W may be referred to as an anisotropic relaxation rate experimentally obtained
using this approximation. This dependence in principle follows from the theoretical
Equation (11), which however, is to be averaged over the different angles θ and ϕ.
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Figure 6. Simulations employing Equations (15)–(17), for the spectra normalized by their maximal
amplitude. The EPR spectrum parameters are given in the text. The < α2(t) > τc parameter is
10−11 rad2s, and 2τ acquires the sequential values of 0, 0.2, 0.4, 0.6, 0.8 and 1 µs. The insert shows
time dependence of the ln(E2(2τ)/E1(2τ)) value, with that at τ = 0 subtracted from all the data; the
straight line shows a linear approximation for 2τ > 0

The tangent in insert to Figure 6 is equal to ~0.9× 106 s−1. Comparing Equations (15) and (18),
we can write

∆W = R12 < α2(t) > τc, (19)

with the constant R12 = 0.9 × 1017 rad−2s−2.
The alternative mechanism of molecular motion could be unrestricted Brownian

orientational diffusion via infinitesimal steps. This mechanism is commonly employed to
describe molecular motions in liquids. For this mechanism, unrestricted spectral diffusion
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appears (still developing within the excitation bandwidth, otherwise the echo signal will
not appear), with echo decaying as [49]:

E(2τ) ∝ exp(−R2
X(θ, ϕ, m)DX

2
3

τ3), (20)

where DX is the diffusion coefficient in the angular space, for motion around the X molecular
axis. Note that RX(θ, ϕ, m) here plays the role of the field gradient that in the NMR studies
of molecular diffusion is applied artificially [51]. However, this mechanism establishes the
cubic dependence on the time delay τ under the exponent, which is not observed in the
experiment for molecular solids (cf. Figure 5), which excludes this possibility. However,
some admixture of this mechanism may also appear for large time delays τ [49].

The condition (12) for fast stochastic motion depends on the EPR frequency band.
The simulations described here (Figures 5 and 6) refer only to the X-band (microwave fre-
quency ~9 GHz). For high-frequency EPR, this condition may be violated. However, good
agreement between theory and experiment was also obtained for Q-band (35 GHz) [63]
and for 3, 95 and 180 GHz [64]. On the other hand, high-frequency EPR, because of higher
sensitivity to anisotropy, may also probe intermolecular motion [65] instead of the motion
of a molecule as a whole, that takes place for X-band EPR. Stochastic molecular librations
were detected in high-field EPR also in [66–71].

Note that the result of the < α2(t) > averaging in Equation (15) for stochastic motion
may differ from the analogous averaging in Equation (7) for dynamical librations. Indeed,
dynamical librations may be of a very high frequency, lying in the THz region (see above).
ESE decays become insensitive to this high-frequency motion, even if these motions are
stochastically damped [49]. Then, the amplitude of dynamical librations is determined by
the width of the potential well, while for the stochastic process the amplitude is determined
by the scale of fluctuation of the well walls, or by fluctuating the < α(t) > value upon the
transitions in an anharmonic potential (see Figure 1a,b). The results of these two averaging
may be of the same order of magnitude, but they also may be different.

Note also that in addition to the traditional nitroxide spin labels, other types of
spin-labeled molecules were found to manifest stochastic molecular librations as well:
quinone anions in photosynthetic reaction centers [67–69], triarylmethyl radicals [72],
copper complexes [73], transient triplet states appearing upon photoexcitation [74].

2.4. Stimulated ESE: Slow Motions

Stimulated ESE appears after application of three pulses in a sequence 90◦–τ–90◦–
tSE–90◦–τ–echo detection, where tSE is an additional time delay. Stimulated echo is sensitive
to motions in the microsecond time scale [20,75] that is determined by the spin-lattice
relaxation time, T1. Reorientations by the angles larger than ~2◦ can be studied by pulse
excitation near the canonical orientations of the nitroxide spin probe, at which the spectral
anisotropy is small [20]. For pulse excitation at the spectral positions between canonical
orientations [75], the anisotropy is high, ~5 × 108 rad×s−1 at X-band, which for tSE ~10−6 s
results in the acquired phase around unity for the angle of ~0.1◦. The detection of such
small-amplitude molecular reorientations is a unique property of the ESE technique.

In the case of small-scale motions, spectral diffusion develops within the pulse exci-
tation band width only, and the echo signal decay in the stimulated echo experiment is
described as [50]:

E(2τ + tSE) ∝< exp

−i

τˆ

0

dt∆ω(t)

 exp

i

2τ+tSEˆ

τ+tSE

dt∆ω(t)

 >, (21)

(cf. Equation (10)); the two-pulse echo formally corresponds to tSE = 0.
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If stochastic motions are fast (τc < τ), Equation (21) results in an exponential decay [50,51]:

E(2τ + tSE) ∝ exp(−2ττc < ∆ω2(t) >), (22)

provided that < ∆ω2(t) > exists. It is important to note that the right-hand part here is
independent on the tSE delay.

In many applications of spin-label EPR, the mechanism of unrestricted Brownian
spectral diffusion via infinitesimal steps in the frequency space is considered [37,38]. If this
diffusion is developing within the excitation bandwidth, the echo decays as [51]

E(2τ + tSE) ∝ exp(−Dω(
2
3

τ3 + τ2tSE)), (23)

where Dω is the diffusion coefficient in the EPR frequency space. For simplicity, we assume
the axial symmetry of the nitroxide g- and the hyperfine interaction tensors. For small
angles α(t) of motion around the X molecular axis, the relation (13) takes place. Then,
instead of (23), we have

E(2τ + tSE) ∝ exp(−R2
X(θ, ϕ, m)DX(

2
3

τ3 + τ2tSE)), (24)

where DX is the diffusion coefficient for motion around the X molecular axis in the angular
space (cf. with Equation (20)).

Numerical studies on stimulated ESE decays for spin probes in molecular glasses [76–80]
have shown, however, that functional dependence on the time delays τ and tSE, instead of
Equation (24), is given by the expression:

E(2τ + tSE) ∝ exp(−const1 · τ − const2 · τtSE). (25)

The inapplicability of Equation (24) here can be easily rationalized because for re-
orientations within the small angles (0.1◦–1◦) the model of infinitesimal angular steps
may hardly be appropriate. It is reasonable, therefore, to assume that within such small
reorientations the molecule freely rotates (the model of free rotational diffusion [81,82]).
Denoting the angular velocity of rotation as Ωrot and g(Ωrot) as its distribution function,
from general Equation (21) for this model one obtains [76]:

E(2τ + tSE) ∝
ˆ

cos[RX(θ, ϕ, m)Ωrot(τ
2 + τtSE)]g(Ωrot)dΩrot, (26)

The unique property of this formula is its dependence on the multiplication of
the two time delays, τ and tSE, which is in agreement with the experimental observation
presented by Equation (25).

For small tSE (τ is also small, typically τ << tSE), Equation (26) may be expanded
in terms of the parameter

∣∣Rm(θ, φ)
∣∣Ωrot(τ2 + τtSE) . Assuming that the distribution

g(Ωrot) is normalized,
´

g(Ωrot)dΩrot = 1, the first-order Taylor expansion can be for-
mally presented as

E(2τ + tSE) ∝ 1−|Rm(θ, φ)|Ω0τtSE ≈ exp(−|Rm(θ, φ)|Ω0τtSE) (27)

where Ω0 is a positive value determining the first-order expansion term. The term pro-
portional to τ2 is omitted here because of its smallness. Note that expansion (27) is valid
only when the g(Ωrot) second moment diverges; for the case of the Lorentzian g(Ωrot)
distribution, Equation (27) becomes an exact result.

Like in the above case of studying stochastic librations with two-pulse ESE, all isotropic
relaxation processes may be discarded by comparing echo decays for the field positions
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of different spectral anisotropy. Then, taking into account that stochastic librations also
contribute to the echo decay, and combining Equations (15) and (27), we finally write

E2(2τ + tSE)/E1(2τ + tSE) = const exp(−2τ∆W12 − τtSE∆S12), (28)

where ∆S12 =
√

R12Ω0 (cf. Equation (18), Equation (19)), which is in full agreement with
the empirical dependence (25). Then, from a linear dependence of the experimental ratio
ln(E2(2τ + tSE)/E1(2τ + tSE)) on the time delay τ, one obtains

∆W3−p(tSE) = 2∆W12 + tSE∆S12 (29)

as a tangent of this dependence.
Figure 7 presents a typical example of this type of experiment, performed for tempone

spin probe in o-terphenyl glass [77]. One can see that linear dependences indeed take place,
in full agreement with Equation (29). At temperatures below ~259 K the tangent of the
slope for these dependences is almost zero. This means that, according to Equation (22),
stochastic motions are fast, τc < τ (τ is of the order of ~10−7 ÷ 10−6 s).
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At higher temperatures, the tangent of the slope increases. According to Equations (28) and (29),
this tangent is ∆S12 =

√
R12Ω0. Then, employing the estimated above value R12 = 0.9 1017 rad−2s−2,

one can obtain the angular velocity Ω0. From data in Figure 7 it follows that near, say 260 K, Ω0 is of
the order of 103 rad/s. Then, for tSE ~10−5 s, we obtain that the reorientation angle is of the order
of 1◦.

There are two alternative possibilities how to interpret the slow rotations found in this
experiment: it may be an independent type of motion appearing at elevated temperatures,
or it may be stochastic librations found in the two-pulse experiment, for which the correla-
tion time τc becomes larger than 10−7 s. (The τc may increase with temperature because of
increase of cooperativity of the motion).

Therefore, the three-pulse stimulated ESE experiment allows the detection of slow
rotations of spin labels, developing in the microsecond time scale via small angles—typically
less than ~1◦. If in this experiment the independence of echo amplitude on the time delay
tSE is observed, this supports the model of fast stochastic librations, with correlation times
τc less than 10−7 s [75].
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3. General Features of Small-Angle Motions in Solids
3.1. Dynamical Librations and Transition in Molecular Glasses

Numerous neutron scattering data show that in molecular disordered media dynami-
cal transition appears as a sharp increase of the motional amplitude at a certain temperature,
Td. [27–29,83]; a similar effect was observed in a Mössbauer absorption experiment [27,84].
Both these techniques probe mean square displacement of atoms (MSD), <x2>, where x is
the individual displacement. Neutron scattering probes the motion of hydrogen atoms. It
is sensitive to the motions developing in the picosecond-nanosecond time scale. Mössbauer
absorption is sensitive to motions of ferrous atoms naturally presenting in some proteins,
or artificially inserted into molecular glass formers. It is sensitive to motions faster than
10−7 s. For harmonic motions, <x2> is expected to linearly depend on the temperature,
which is indeed observed below Td. Above Td, a drastic enhancement of <x2> is observed,
which is attributed to the onset of anharmonic or diffusive motions. Typically, <x2> attains
a value of ~0.1 Å2.

Dynamical transition was found for simple molecular glass-formers [84–89], small
amino acids [90], proteins [27–29,83], DNA and RNA [91], biological membranes [92–95],
and also for non-biological polymers [96]. Nowadays, it is assumed to be a general property
of disordered and biological environments. In biological systems, Td lies in the interval
from 170 to 230 K. The importance of dynamical transition for proteins is determined by
the experimental fact that it can correlate with the onset of protein function [27–29,83].

The background and general atomistic picture of the dynamical transition is still
debated. It has been also pointed that the observed effects may appear due to the limited
resolution of the experiment when the relaxation time of the system merely enters the
instrumental time window [97–102].

Molecular motions result in the CW EPR spectra narrowing, as it was stated above—
see Section 2.2 and Figure 4 (top) therein—for the motions in the nanosecond time scale or
faster. This time scale is similar to that for the neutron scattering and Mössbauer absorption
experiments. Then, for a molecule of the l ~ 1 Å size, 0.1 Å2 implies that for reorientation
angle α2 ~ <x2>/l2 ~ 0.1 rad2, which is in agreement with that found from CW EPR
spectra, see the assessments in Section 2.2 and in [103]. Therefore, one may assume that
CW EPR should provide results consistent with the neutron scattering and Mössbauer
absorption spectroscopies.

This hypothesis can be proved by comparison data in glassy orthoterphenyl obtained
by neutron scattering [87,88] and by EPR for spin probe tempone [103]. Figure 8 presents
the results of this comparison, for <x2> and <α2>, respectively, as a function of temperature.
One can see a rather good agreement between the two data sets. This can be easily
understood by assuming that the tempone and orthoterphenyl molecules reorient by the
same angle α, so that the relation x = lα indeed holds, where l ≈ 1 Å.

The neutron scattering data in Figure 8 may be approximated by two linear dependences—
between 0 and 115 K and between 115 K and 243 K. It is interesting to note that the kink tem-
perature of 115 K is consistent with the analogous kink for < AXX > obtained by 15N-ENDOR
at 112 K (see Figure 4). This coincidence is in favor of the above suggestion that near 112 K
onset of anharmonicity of the motion takes place, and the deviation from the linear dependence
taking place at 243 K (that coincides with Tg) just implies the dynamical transition (see above),
i.e., Td = 243 K.

Therefore, we state that temperature dependence of CW EPR spectra of guest spin-
labeled molecules provides information on the dynamical transition in glassy materials,
which is consistent with that obtained using neutron scattering. The important difference
between the two techniques is that neutron scattering probes hydrogen atomic motions
while CW EPR data refer to motions of the molecules as wholes. The obvious advantages
of CW EPR are the much cheaper instrumentation and possibilities in the case of heteroge-
neous samples (like biological ones) to selectively explore different locations by introducing
specifically spin probes and labels.
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In [104], stochastic librations appearing in o-terphenyl glass also near 243 K were
assigned to the dynamical transition as well. It is likely that the coincidence found in [104]
of the onset temperatures for dynamical and stochastic librations may be a property of
simple molecular glass formers; as it will be shown below, stochastic librations in com-
plicated biological media may appear at temperatures much lower than Td. And it is
interesting to note that above 243 K the < α2(t) > τc motional parameter was found to
increase with temperature remarkably faster than the <x2> parameter determined from
neutron scattering.

3.2. Cooperativity of Stochastic Librations, Influence of Hydration for Biological Systems

In [105], stochastic librations were investigated for nitroxides of essentially differ-
ent size and shape, in different solvent glasses, with different deuteration degree, and
at different temperatures. There was found that the ∆W anisotropic relaxation rate (see
Equation (18)) is determined by nature of the solvent glass and by temperature, and may
only slightly depend on the size and shape of the nitroxide and on its deuteration. It was
concluded therefore that the ∆W rate is not influenced by small angle fluctuations of the ni-
troxide in the stiff cage environment or by intramolecular motion in the nitroxide molecule;
instead, it is induced only by repacking of the solvent cage. This implies that stochastic
librations possess a cooperative nature, involving motion of the molecule surrounding.
This surrounding obviously has the nanoscale size. This suggests that stochastic librations
may reflect the characteristics of nanoscale molecular packing in disordered media.

This conclusion made for molecular glasses was supported in [106] for frozen lipid
bilayers. In this work, stochastic librations were studied for spin-labeled amphiphilic
molecules of three different kinds, embedded in bilayers of fully saturated 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) lipids and mono-unsaturated 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) lipids. The spin-labeled molecules were (1) stearic
acid spin-labeled by the DOXYL (4,4-dimethyl, 2-ethyl-3-oxazolidinyloxy) nitroxide radical
at the 5-th carbon position (5-DSA); (2) the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-
3-phospho(TEMPO)choline with the tempo spin label at the lipid polar head (T-PCSL);
and (3) the peptide antibiotic trichogin GA IV carrying the TOAC (4-amino-1-oxyl-2,2,6,6-
tetramethylpiperidine-4-carboxylic acid) spin label (TriTOAC1). For all three spin-labeled
molecules investigated in [106], the similarity of the ∆W rate temperature dependences
were found when these molecules were incorporated into the bilayer of the same type,
DPPC or POPC. These data, however, differed remarkably for the bilayers of different types
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(in more detail, see below Section 3.4). The found similarity was ascribed to the cooperative
character of the ESE-detected stochastic molecular motions.

Comparison with a dry sample in [106] showed that the onset of stochastic librations is
not related to lipid internal motions. Stochastic librations were also found to be suppressed
for dry (lyophilized) proteins: haemoglobin [107], lysozyme [104], and casein [108].

From the other side, for lipid bilayers there was reported that motions of hydrating
water and lipids are coupled [106,109]. This coupling between motions of water and
biomolecules seems to be a general property of biological systems of different origins
(see [28,101,110]).

3.3. Individual Stochastic Librations on an Inorganic Surface

As it is shown in the previous Section 3.2, spin-labeled molecules and spin probes
diluted in glassy media take part in collective motions in which their surrounding is
involved. This cooperativity certainly makes the whole scenario of motions complicated
because of the appearance of motional hierarchy. From this point of view, molecules
adsorbed on a solid inorganic surface in diluted conditions present a pure situation when
the collective effects are certainly ruled out. Indeed, an inorganic surface is much stiffer
than the adsorbed organic molecule, and the mutual interactions between these molecules
for their low concentration certainly can be excluded.

Motions on surfaces may occur for several reasons: (i) librations around the molecule-
surface coupling bond; (ii) re-adsorption process; (iii) internal motion in the bulky molecule.
In [111,112], stochastic molecular librations were investigated for different types of spin-
labeled molecules adsorbed on am SiO2 surface. The anisotropic relaxation rate ∆W
was found to demonstrate a saturating behavior with the temperature increase, with the
maximum ∆Wmax ~ 1 µs−1 attained near 250 K.

This saturating behavior was reproduced in simulations within a simple model of
jumps by the angles ± α between two orientations. For random jumps, ESE decays are
described by the formula [113]

E(2τ) = const[ (chRτ +
w
R

shRτ)2 − ∆ω2

4R2 sh2Rτ ]e−2wτ , (30)

where w = 1
2τc

, ∆ω is difference of the two resonance frequencies, and R2 = w2− ∆ω2

4 . One
can see that in the case of fast motion, <∆ω2>τc

2 << 1, when also τ � τc, Equation (30) is
reduced to the exponential dependence, E(2τ) = exp(−2τ∆ω2τc), that is in full agreement
with Equation (11). The advantage of this simple model is its applicability to any ∆ω2τ2

c
value, i.e., this model is not restricted by the condition of fast motion that is used in
the Redfield’s theory of spin relaxation (see above). The saturation behavior for the ∆W
temperature dependence then appears as a consequence of violation of the <∆ω2>τc

2 << 1
condition in the Redfield’s theory.

Comparison with the experiment allowed the estimation that the near temperature
of the saturation (~250 K) the motional correlation time τc attains a value of several tens
of nanoseconds, while the angle α is around 0.02 rad [111]. From comparison ∆W for
lipid bilayers, it was concluded that the saturating behavior is an exclusive feature of the
individual molecular motions. The ∆Wmax close to the value of 1 µs−1 was found in the
experiment to be close for very different molecules—a small highly polar nitroxide radical
and a large spin-labeled peptide—so the effect seems to be independent on the type of the
molecule. Then, for any molecular system, the excess of ∆W > 1 µs−1 may be ascribed to the
effects of cooperative motions, and this excess implies that motion involves independent
reorientations around several different axes.

The results of [112] showed that ∆Wmax observed in ESE decays is enhanced for highly
flexible molecules, such as stearic acid, attaining the value of 2 µs−1. This effect was
interpreted as a result of the two-axial (or planar) motion appearing instead of the uniaxial
motion for more rigid molecules.
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The results [112] also suggested that the onset of ESE-detected stochastic librational
motions takes place near 130 K for systems where only molecular bending motions are
expected, whereas if the molecules have enough length and intermolecular freedom for
torsional motion, stochastic librations appear already at ~100 K.

This conclusion may be valid also for complex biological systems. Indeed, stochastic
molecular librations for bilayers of different lipid compositions were found [106,114–117]
to start either at 100 K or at 130 K – see next Section.

3.4. Stochastic Librations and Softness/Rigidity of Molecular Packing

One may suggest that the weaker the intermolecular interactions, the more pronounced
are cage fluctuations (see Figure 1b). Referring to the two-pulse ESE experiment on spin
labels, the more effective becomes spin relaxation, the larger is the ∆W value. These
expectations were nicely supported in experiments with spin-labeled lipid bilayers in
their gel phase. These relatively simple systems provide several opportunities on how
the intermolecular interactions can be varied. First, it can be done by variation of lipid
composition in the bilayer, because fully saturated lipids are known to provide more
ordered structures as compared with unsaturated lipids, so in the latter case the structures
are looser and the interactions are weaker. Second, by variation the spin label location
across the bilayer: for spin labels near the polar surface these interactions certainly are
stronger than in the aliphatic bilayer interior, because of the electrostatic hydrogen-bond
and dipolar forces in the former case. Finally, by introducing cholesterol, which, because of
its well-known condensing and ordering effect on the bilayer microstructure, changes the
interactions in a predicable way. Comparison of stochastic molecular librations for bilayers
of different lipid compositions was performed in several works [106,114–117].

Figure 9 shows experimental results [106] for ∆W obtained in a wide temperature
range in 2-pulse experiments for peptide trichogin GA IV spin-labeled with 4-amino-1-oxyl-
2,2,6,6-tetramethylpiperidine-4-carboxylic acid (TOAC) nitroxide (TriTOAC1) in bilayers
composed of fully saturated DPPC lipids and of mono-unsaturated POPC lipids. One can
see that in the POPC bilayer the ∆W value, as compared to the DPPC bilayer, is (i) larger,
(ii) starts increasing at the lower temperature (between 90 and 100 K while for the DPPC
bilayer only above 130 K), and (iii) demonstrates a weaker temperature dependence. All
these three features may be ascribed to the looser (softer) microstructure of the gel-phase
POPC bilayer.
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Therefore, stochastic molecular motions here indeed serve as an indicator of the
looseness (softness) of molecular parking. The coincidence of the ∆W values above 190 K
in Figure 9 for both bilayers, as will be shown below, may be related to the appearance of
slow rotations, i.e., with “global” softening of the matrix.

Comparison of ∆W values for spin labels located at different depths in the bilayer
was done for 5-PCSL and 16-PCSL in POPC, DOPC and DPPC bilayers [114], in [116] for
5-PCSL and 16-PCSL in DPPC bilayers, for 5-DSA and 16-DSA in DPPC bilayer [117]. The
results obtained for unsaturated POPC and DOPC bilayers [114] clearly demonstrated that
∆W is larger in the membrane interior, where more freedom for motion exists. For fully
saturated DPPC bilayers, all the experiments showed, however, the closeness of the data for
different label positions. This result for DPPC is not surprising because the DPPC molecule
in the bilayer gel phase acquires an all-trans conformation [115,118], so that one may not
expect dependence on the label position.

The influence of cholesterol on stochastic molecular librations in lipid bilayers was
studied in [119] for POPC bilayer with T-PCSL, 5-PCSL, 10-PCSL, and 16-PCSL spin-labeled
molecules. It turned out that the presence of 50 mol % of cholesterol facilitates the motions
for the 16-th label position. The similar conclusion follows from comparison data in Figure 9
with the results obtained in [120]: cholesterol-free DPPC bilayer motions develop only
above 130 K, while for the DPPC bilayer with 50 mol % of cholesterol [120], the motions
appear already at 80 K. Motions in the membrane interior were found to be much more
pronounced compared with those near the membrane surface [120]. The acceleration of
motions in the presence of cholesterol was interpreted [119] as a result of freedom appearing
for lipid carbon positions beyond the cholesterol core (which ends in bilayers near the 10-th
carbon position of the lipid chain). This freedom unambiguously implies the weakness of
intermolecular interactions, or the softness of molecular packing.

4. Applications
4.1. Dynamical Transition in Membranes and Proteins

Biological systems are known to possess structural and dynamical properties of glassy
systems [4,121,122]. For biological membranes, glass transition temperature Tg was re-
ported to be near 200 K [121,122]. Therefore, one may expect that EPR-detected dynamical
transition, as it was found for simple molecular glass-formers (see Section 3.1), takes place
for biological media as well.

Temperature dependence of CW EPR spectra for spin-labeled biomolecules in biologi-
cal media has been studied for systems. The results are summarized in Table 1, with the dy-
namical transition temperatures Td indicated. (In the cases when Td was not explicitly indi-
cated by authors, it was assessed here from the presented <α2> temperature dependences).

Data in Table 1 show, first, that Td for all of the investigated membranes and proteins
lies between 190 and 240 K. Second, the dynamical transition is a property of only hydrated
biosystems, for lyophilized samples it disappears. And finally, for membranes it is possible
to indicate the relationship between the quantitative Td value and the obvious qualitative
stiffness/cohesion characteristic of the molecular packing: both characteristics are larger
for the label positioned closer to the membrane surface (5-PCSL as compared to 16-PCSL,
e.g.), for the membranes with more ordered lipid conformation (DPPC as compared to
POPC), for the case of interdigitated lipid chains (DHPC as compared in [128] with DPPC).

The dynamical transition temperatures Td in Table 1 are in general agreement with those
found by neutron scattering in purple membranes (Td = 230 K [130] and Td = 260 K [131]), in
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer (Td = 250 K) [132], in DPPC bilayer
(Td = 230 K) [133], in model membranes by Raman spectroscopy [118] and by differential scanning
calorimetry [122].

One may then suggest that Td derived from the temperature dependence of CW EPR
spectra may serve as a quantitative measure of the stiffness/cohesion of the molecular
packing. The comparison of Td data for proteins lysozyme and casein [108] show that for
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the latter protein, this characteristic is larger. (This is discussed below in Section 4.8 in
more detail).

Table 1. Dynamical transition temperatures Td found from CW EPR spectra.

System Spin-Labeled Molecule Td Reference

DPPC/Cholesterol
(50:50 mol/mol) membrane 14-PCSL 210 K [120]

Human serum albumin 5-DSA, 16-DSA 210 K [123]

Alamethicin (Ala) in membrane Ala/TOAC, with different
label position

160 or 220 K, depending on
the position [124]

Human haemoglobin (Hb) in water Hb/6-MSL 200 K
[107]Hb in 60% v/v glycerol–water Hb/6-MSL 210 K

Hb lyophilized Hb/6-MSL non-detectable

Human haemoglobin (Hb) Hb/6-MSL 210 K

[125]Human serum albumin (HSA) HAS/5-MSL 210 K

β-Lactoglobulin (β-LG) β-LG/5-MSL 210 K

β-LG in 60% v/v glycerol–water β-LG/5-MSL 240 K

Na,K-ATPase 5-DSA (14-DSA) 240 K (200 K)
[126]

Na,K-ATPase Na,K-ATPase/5-MSL 220 K

DPPC membrane 5-PCSL (16-PCSL) 240 K (230 K) [117]

DPPC membrane 5-PCSL (16-PCSL) 220 K (210 K)
[127]

DHPC membrane (interdigitated chains) 5-PCSL (16-PCSL) 240 K (230 K)

POPC membrane 5-PCSL (16-PCSL) 240 K (210 K)
[114]

DOPC membrane 5-PCSL (16-PCSL) 240 K (190 K)

DPPC/Lyso-PPC (interdigitated chains) 5-PCSL, 16-PCSL 220 K [128]

DPPC membrane 14-PCSL 225 K
[129]DPPC membrane (hydrated) 4-PCSL 240 K

DPPC membrane (low hydration) 4-PCSL non-detectable

Lysozyme Lysozyme/IASL 195 K
[108]

Casein Casein/IASL 235 K

Abbreviations: n-PCSL, 1-acyl-2-(n-doxyl)stearoyl-sn-glycero-3-phosphocholine; MSL, maleimido-
tetramethylpyrrolidine-1-oxyl; n-DSA; stearic acid spin-labeled by the DOXYL (4,4-dimethyl,
2-ethyl-3-oxazolidinyloxy) nitroxide at the n-th carbon position; IASL, 4-(2-iodoacetamido)-TEMPO.

Stochastic librations detected in molecular glass formers via ESE decays also show the
onset of mobility near Td [104,134], which may be related to dynamical transition observed
in neutron scattering [106]. In biological membranes, however, this onset occurs above
130 K or even above 100 K (see Figure 9). On the other hand, one can see in Figure 9 that
above 200 K, the ∆W value becomes larger than 2 µs−1. In Section 3.3, it was indicated that
∆W ≈ 2 µs−1 corresponds to the maximal rate achievable for individual motions of flexible
biological molecules. Therefore, it would be reasonable to suggest that dynamical transition
in the membrane corresponds to appearing of cooperative lipid motions. However, the
validity of this suggestion needs further investigation.

4.2. Lipid Packing in Biological Membranes

In [114,135], ESE-detected stochastic molecular librations of spin-labeled stearic acids
and lipids in phospholipid bilayers were compared for bilayers composed of doubly
unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids, mono-unsaturated
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POPC lipids and fully saturated DPPC lipids. The structures of these phospholipids (and
spin-labeled stearic acids) are given in Scheme 2.
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The data in Figure 10 show that for DOPC bilayers, the ΔW values fall between those 
for the POPC and DPPC bilayers. Below 130 K, it is closer to the POPC case, while above 
170 K, it is closer to the DPPC case. In [135], the reversibility of the observed temperature 
dependences was also investigated and confirmed. The analogous results were obtained 

Scheme 2. Chemical structures of phospholipids and spin-labeled stearic acids.

For the label positions in stearic acid at the 5th and 16th carbon atoms of the acyl chain
(5-DSA and 16-DSA), ESE probes motions near the membrane surface and in the membrane
interior, correspondingly. As it is shown above (Section 3.4), the anisotropic contribution to
the spin relaxation rate, ∆W, may be used for the comparative estimation of the accessible
space available for the motion. Comparison of data for the bilayers composed of lipids of a
different degree of saturation of the acyl chain performed in [135] between 80 K and 210 K
is shown in Figure 10.
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170 K, it is closer to the DPPC case. In [135], the reversibility of the observed temperature 
dependences was also investigated and confirmed. The analogous results were obtained 

Figure 10. Temperature dependence of the ∆W relaxation rate obtained in two-pulse experiments for
POPC/5-DSA bilayers (squares), DOPC/5-DSA bilayers (up triangles: temperature increases, down
triangles: temperature decreases), for DPPC/5-DSA bilayers (circles). The experimental uncertainty
is about the symbol size. From [135] under permission, Elsevier.

The data in Figure 10 show that for DOPC bilayers, the ∆W values fall between those
for the POPC and DPPC bilayers. Below 130 K, it is closer to the POPC case, while above
170 K, it is closer to the DPPC case. In [135], the reversibility of the observed temperature
dependences was also investigated and confirmed. The analogous results were obtained
by Aloi et al. [114] in DOPC, POPC and DPPC bilayers for spin-labeled lipids 5-PCSL
and 16-PCSL.



Magnetochemistry 2022, 8, 19 21 of 38

The found temperature dependence for DOPC bilayer was explained [135] by specific
packing of the DOPC tails, with their terminal segments above 170 K packing cooperatively
(see schematic presentation in Figure 11). At the left side here, DOPC lipids form a
disordered bilayer, so the ∆W values in Figure 10 are close to those for the highly disordered
POPC bilayer. On the right side, DOPC lipids form an ordered bilayer and the ∆W values
are closed to that for the highly ordered DPPC bilayer.
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Figure 11. Schematic presentation of the less ordered (left) and more ordered (right) DOPC packing
in the bilayer and the transition between them occurring above 120 K, which explains the results in
Figure 10.

Aloi et al. [127] noticed that low-temperature librational motions found in lipid bilayers
impact on the common features of glass-like behavior of biosystems, in the sense that the
motion becomes pronounced at around 200 K, where the dynamical or glass transition
takes place in macromolecules and supramolecular aggregates.

4.3. Stochastic Librations and Slow Rotations near Td in Membranes

It is interesting to compare for biological membranes the stochastic librations and slow
rotations obtained in three-pulse stimulated ESE experiment (see Section 2.4). The data
plotted in a way similar to that presented in Figure 7 are shown in Figure 12 for the POPC
bilayer with incorporated spin-labeled peptide Trichogin GA IV (see next Section for its
detailed description). The data obey linear dependences as is predicted by Equation (29).
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Then, one can see in Figure 12 that below 190 K these dependences are approximately
parallel to the horizontal axis. According to the analysis presented in Section 2.4, this means
that τc < τ, which in turn implies that τc is smaller than 10−7 s. This result supports validity
of the librational model of molecular motion for this system.

Above 190 K, however, the slope of the linear dependences in Figure 12 starts to
increase. This increase certainly implies the appearance of slow rotations. It occurs close to
the dynamical transition in this system (210 K for 16-PCSL—see Table 1). Moreover, the
rate of stochastic librations detected in two-pulse ESE experiment becomes high (this rate
is presented by the intercept on the vertical coordinate axis).

As it was pointed out above, slow rotations seen in three-pulse stimulated ESE experi-
ment may be either an independent type of motion appearing at elevated temperatures or
stochastic librations found in in two-pulse experiment, for which the correlation time τc at
elevated temperatures becomes larger than 10−7 s.

4.4. Proteins and Antimicrobial Peptides in Membranes

In [123], ESE was employed for investigation of interaction of human serum albumin
(HAS) with the DPPC membrane. In this work, also deuterium electron spin echo envelope
modulation (ESEEM) of spin-labeled stearic acids and phospholipids was used to investi-
gate the binding of stearic acid to HSA and the adsorption of the protein on the membranes.
Both the motion and the accessibility of the chains to water were found to be very different
in the hydrophobic fatty acid binding sites of HSA from those in membranes.

Antimicrobial peptides (AMP) belonging to the peptaibiotic family are known for
their ability to induce the permeability of biological membranes [136–140]. Peptaibiotics
are characterized by the presence in the sequence of non-proteinogenic amino acid α-
aminoisobutyric acid (Aib), an N-terminal acyl moiety, often an acetyl (Ac), and a C-
terminal 1,2-amino alcohol (Phol). For EPR studies, Aib is replaced without loss of peptide
functionality by the 4-amino-1-oxyl-2,2,6,6-tetramethylpiperidine-4-carboxylic acid (TOAC)
spin label [136,139].

Alamethicin (Ala), isolated from the fungus Trichoderma viride, is a hydrophobic 19-
amino acid peptaibiotic. In [124] spin-labeled analogs of alamethicin F50/5 [TOACn] with
n = 1, 8, or 16 in DMPC membrane were studied at a concentration of 1 mol %. The amino
acid sequences of the three TOACn-Alm derivatives were:

Ac-TOAC-Pro-Aib-Ala-Aib-Ala-Glu(OMe)-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-
Aib-Glu(OMe)-Glu(OMe)-Phol [TOAC1]
Ac-Aib-Pro-Aib-Ala-Aib-Ala-Glu(OMe)-TOAC-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib
-Glu(OMe)-Glu(OMe)-Phol [TOAC8]
Ac-Aib-Pro-Aib-Ala-Aib-Ala-Glu(OMe)-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-TOAC-Aib
-Glu(OMe)-Glu(OMe)-Phol [TOAC16].

Data obtained in [124] have shown that dynamical and stochastic molecular librations
take place for each of the three TOAC sites, with their temperature dependence obtained
in the interval between 80 and 260 K. The largest root mean squared amplitude

√
< α2 >

obtained from CW EPR data corresponded to 16◦ (for the TOAC8 sample), which confirmed
the used small-angle approximation. The Td values derived from CW EPR (see Table 1)
were 220 K for TOAC1 and TOAC8 samples, and 160 K for TOAC16. It was suggested [124]
that associated with the stochastic librations the fluctuations in polar fields from the peptide
could facilitate ion permeation through the membrane.

In [79] two synthetic analogues of AMP trichogin GA IV were investigated. In these
analogues, one of the three Aib residues is replaced by the TOAC spin label, whereas the
native C-terminal 1,2-aminoalcohol leucinol (Lol) is replaced by its synthetic precursor
leucine methyl ester (Leu-OMe), and the N-terminal n-octanoyl (nOct) group is replaced by
the fluorescent (and equally hydrophobic) fluorenyl-9-methyloxycarbonyl (Fmoc) group:

nOct-Aib1-Gly-Leu-Aib-Gly-Gly-Leu-Aib8-Gly-Ile-Lol (native trichogin GA IV)
Fmoc-TOAC1-Gly-Leu-Aib4-Gly-Gly-Leu-Aib8-Gly-Ile-Leu-OMe (FTOAC1)
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Fmoc-Aib1-Gly-Leu-Aib4-Gly-Gly-Leu-TOAC8-Gly-Ile-Leu-OMe (FTOAC8).

It was found [79] that at a low molar peptide concentration (1:200 peptide/lipid molar
ratio), the individual peptide molecules are randomly distributed at the membrane surface
and spin labels demonstrate only stochastic librations in a two-pulse ESE experiment. At
high peptide concentrations (1:20 ratio), slow rotations were found with a three-pulse
stimulated ESE experiment. At this concentration, Trichogin GA IV is known to change
its orientation from the in-plane to the transmembrane one, which is accompanied by a
change from the monomeric to the dimeric state (see Figure 13). Therefore, the observed
onset of slow rotations may be ascribed to the peptide dynamics around the axis parallel to
the axis of lipid molecules of the membrane. Because the TOAC nitroxide spin labels are
rigidly incorporated into the peptide structure, the observed mobility may be assigned to
the rotation of the peptide backbone, which, in turn, might induce the transport of small
polar molecules [79]. Schematically, this mechanism is shown in Figure 13.
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4.5. Lipid Bilayers Interacting with Cryoprotectants

The structures of living biological objects under the extreme conditions of freezing or
desiccation can be stabilized by the presence of cryoprotectants such as small sugars, sugar
alcohols and others [141,142], which are accumulated by many freeze-tolerant species. For
explaining molecular mechanisms of this stabilization effect, two main hypotheses are
normally employed. The water replacement mechanism suggests that sugars and other
cryoprotectants replace the hydration water in the biomolecules, maintaining so their polar
groups at the positions close to the native ones [143–145]. Another hypothesis assumes that
cryoprotectants are excluded from the hydration shell of the biomolecule and influence only
the phase state of the bulk extracellular liquid [146–148]. And these opposing views were
suggested to become reconciled, depending on the cryoprotectant concentration [149,150].

The studying the low-temperature motions in frozen biological systems is a promising
tool for elucidation the cryoprotective mechanisms. In [117] DPPC bilayers solvated by
aqueous solutions of sucrose, trehalose and sorbitol and containing incorporated 5-DSA
and 16-DSA spin-labeled stearic acids were studied by two-pulse ESE. In all cases, it was
found that the rate ∆W of stochastic motions increase sharply above 170–200 K. For bilayers
hydrated by the sucrose and trehalose solutions, ∆W was found to increase noticeably
also above ~120 K, which was explained by bilayer expanding due to direct bonding
of sugar molecules to the bilayer surface. This result is in agreement with the water
replacement mechanism.

The ∆W values were found to be close to those obtained for the nitroxide spin probe
tempone in aqueous sorbitol and sugar glasses, which allowed to suggest that mechanism
of cryoprotective action of sorbitol and sugars may also be determined by the similar-
ity of low-temperature motions in the membrane and in the cryoprotectant-containing
extracellular liquid.
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In [116] stochastic motions were studied for DPPC bilayer with added spin-labeled
lipids n-PCSL, n was optionally 5 or 16. Bilayers were solvated either by pure water or by
1:1 v/v water–glycerol mixture. For the both types of solvents and the both label positions,
∆W was found to be small below 200 K and to sharply increase above this temperature.
In presence of glycerol, ∆W was found, as compared with hydration by pure water, to be
larger for the 5-PCSL while for the 16-PCSL it did not change. In some experiments, a polar
spin probe 3,4-dicarboxy-PROXYL was separately added to the bilayer. This probe certainly
is located in the solvation shell. For 5-PCSL, the ∆W values were found to be nearly the
same as those for this polar spin probe. These results indicate that lipid motions near the
bilayer surface are governed by the solvating shell while motions in the bilayer interior
occur independently. This conclusion was also in favor of water replacement hypothesis.

4.6. Supercooled Ionic Liquids

Ionic liquids (ILs) are defined as salts with melting point below 100 ◦C [151–153].
Typically, ILs consist of a large asymmetric organic cation and an inorganic anion. Now ILs
are attracting huge attention because of their promising scientific and technological appli-
cations, including green chemistry [154–156], nanomaterials and energy science [156–159],
biomedicine [155,160], catalysis [160–162], and others. To develop these applications, eluci-
dation of molecular self-organization properties at the nano/micro- and macroscopic scales
are highly desirable [163–165].

Spin-probe EPR may appear to be a useful tool for study molecular packing in ILs.
Stochastic librations in imidazolium-based ILs were studied in a series of ILs by Ivanov,
Fedin and coworkers [72,166–173], using both CW and pulsed EPR. Scheme 3 presents
some examples of ILs of this type and the nitroxide spin probe used.
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Scheme 3. Chemical structures of [Bmim]PF4(6) ILs (left) and nitroxide spin probe N1 (right).

Stochastic librations studied in a large temperature range between 20 K and 240 K has
been revealed in a series of ILs in their glassy state an unusual temperature dependence
near Tg of the anisotropic relaxation rate ∆W (in [166–173] another denotation was used
which is however coincides almost quantitatively with the ∆W rate used in this review).
A typical example of the obtained temperature dependence is shown in Figure 14. The
most intriguing result seen here is the drastic suppression of molecular mobility observed
with temperature increase near Tg. This suppression implies that local density around the
nanoscale spin probe solute grows with temperature, which is highly uncommon, because
substances typically become less dense upon a temperature increase.
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Figure 14. Temperature dependence of motional parameter L (that is close to the 106 ∆W s−1 value
used in this review) for N1 dissolved in [Bmim]PF6 (see Scheme 3). Red points correspond to the
heating of the sample after shock freezing. Blue points correspond to the experiment where the
sample temperature was gradually decreased starting from the room temperature. Lines represent
the splines guiding the eye. Tg is 197 K. From [167] under permission, American Chemical Society.

Furthermore, coexistence of two types of IL environments was observed by CW
EPR [166–170] between temperatures Tg—60 K and Tg.

At first look, data in Figure 14 may reflect those mentioned above in Section 3.3 for
spin-labeled molecules adsorbed on SiO2 surface, which also demonstrates temperature
dependence with maximum. These data were explained by large reorientation angles
resulting in a violation of Redfield’s theory. However, this explanation cannot be employed
for IL in Figure 14. First, for ILs in Figure 14 the dependence starts at 60 K and attains its
maximum at 150 K while for adsorbed molecules it starts at 100 or at 130 K and attains
its maximum at 240 K, which can be easily understood as a consequence of the fact that
molecules on the surface possess much more freedom of motion, which indeed results in
large reorientation angles. Secondly, for ILs, the maximum in temperature dependence in
Figure 14 is followed by the minimum and subsequent further increase. This effect certainly
cannot be explained by large reorientation angles.

The observed unusual phenomenon in ILs was investigated by Ivanov, Fedin and
coworkers in different directions. The anomaly was found to be independent of the spin
probe employed—the bulky triarylmethyl probe also delivered similar information [72].
In studies of these anomalies, several EPR approaches were discovered (CW, ESE and
time-resolved EPR), and the results were found to complement each other [168]. In [171], it
was found that these anomalies are governed by alkyl chains of cations: for a series of ILs
[Cnmim]BF4 (n = 0–12) only the chains with n = 3–10 demonstrate an anomaly; moreover,
remarkable even-odd n dependence was found. In [172] a variety of non-IL glasses, which
also contain molecules with alkyl chains, was studied. For a series of phthalates, very
similar behavior to imidazolium-based ILs was clearly demonstrated, with the same length
of alkyl chain.

Nanoconfinement effects on structural anomalies in imidazolium ionic liquids was
studied in [170] for a series of ILs embedded into the cavities of metal–organic framework
(MOF) ZIF-8. The unusual nanostructuring near Tg was also observed here, and the
amplitude of the anomaly was found to be dependent on the structure of the IL, thus
showing the effects of molecular packing inside the MOF cavity.

In [169], binary mixtures of IL [Bmin]BF4 and water were studied; it was found that
water does not influence nanoclustering of IL-rich domains in which the spin probe is
located. In [173], deuterated imidazolium-based ILs were compared with their protonated
analogs, to assess the role of electron–nuclear spin couplings between radical probe and
alkyl chains of IL; the data obtained allowed us to exclude the relaxation-induced artifacts.



Magnetochemistry 2022, 8, 19 26 of 38

4.7. Supercooled Deep Eutectic Solvents

Deep eutectic solvents (DESs), first categorized by Abbott et al. in 2001 [174], are
eutectic mixtures of hydrogen bond acceptors and hydrogen bond donors [175–177], with
a significant freezing point depression as compared to the individual components. DESs
nowadays attract considerable interest, because of their potential applications in different
technological areas—metal extraction, catalysis, pharmaceuticals, green chemistry, and
many others [175–177]. DESs are probably present in plants and other living systems [178].

DESs may be considered a type of ionic liquid (IL), because of the ionic nature of their
components. The important difference is that ILs are synthesized and purified in relative
costly technological processes; also, they may be rather toxic. On the other hand, DESs are
cheap, easily prepared from broadly available components, and may belong to the green
chemistry products and materials.

For broadening the DESs applications, the molecular level structural organization and
structure–property relationship in DESs must be elucidated. Many DESs upon freezing
can become supercooled and become a glass [179,180]. In addition, liquid DESs possess
properties typical for supercooled liquids—stretched exponential relaxation, heterogeneous
structural relaxations and translation−rotation decoupling [181]. Therefore, features of
molecular packing found in a supercooled or glassy state may appear to be similar to those
at the temperatures of their technological application.

In [182], supercooled DES consisted of choline chloride–urea (1:2) (reline), along
with introduced nitroxide spin probe tempone, was studied with CW and pulsed EPR
spectroscopies. In [183], these studies were extended for comparison with another DES—
choline chloride–thiourea (1:2) (ChCl–thiourea). These two DESs were explored [184]
as possible solvents to prepare α-chitin nanofibers (of diameter of 20–30 nm), which are
used for the manufacturing of functional nanocomposites. It was found [184] that only
ChCl–thiourea can be used for these purposes, so reline and ChCl-thiourea DESs certainly
possess different physicochemical properties.

The data obtained [183] by CW EPR showed the coexistence of solid and liquid
microphases, with assessed microviscosity of ~10 P for the liquid droplets. CW EPR spectra
obtained for different temperatures showed isosbestic points for ChCl–thiourea, which
indicates that these two phases are sharply separated. On the other hand, for reline, these
points were found to be rather diffuse. This difference was interpreted as an indication that
boundaries between two phases in reline are not so well outlined as compared to ChCl-
thiourea. Data obtained with ESE showed a drastic difference for the onset of stochastic
molecular librations for these two DESs, which was assigned to the higher rigidity of
molecular packing for ChCl–thiourea.

It was also found that in reline the temperature dependence of stochastic molecular
librations were close to that discovered for lipid bilayers [106] and globular proteins [108].
This closeness may imply the similarity of molecular packing in reline and in biological
systems. It is likely that this similarity may be useful for the problems of drug delivering in
living organisms and searching biocompatible DESs, which are considered to be challenging
tasks nowadys [185–188].

4.8. Intrinsically Disordered Proteins

For more than a century, a well-defined three-dimensional structure of a protein was
considered as determining various protein functions and disfunctions in living organ-
isms [189]. However, it was found at the turn of the 21st century [189,190] that some pro-
teins possess significant unstructured regions, being nevertheless biologically active. These
proteins were called intrinsically disordered proteins (IDPs). During the last two decades
their structure and functions were intensively studied [191–197]. The intriguing property
found for IDPs is their ability for disorder-to-order transitions upon target binding, when
protein residues adopt specific structures upon interaction with a binding partner [191–197].

In [108], IDP bovine casein (the main proteins of milk, belonging to phosphory-
lated proteins) was studied with CW and pulsed EPR. For comparison, a globular pro-
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tein, a hen egg white lysozyme was also investigated. Both proteins were labeled by
4-(2-iodoacetamido)-TEMPO spin label (IASL). Information on the spin label location in
proteins was obtained in three-pulse stimulated electron spin echo envelope modulation
(ESEEM) experiments on D2O-hydrated biological systems [198]; it was concluded that
spin labels are located on the peptide surface, directly exposing to the water. The hydration
level h used was 0.4 g of water per gram of casein (h = 0.4); for this level, proteins are known
to be enveloped with a water monolayer [199]. For comparison purposes, dry proteins
were investigated as well.

From CW EPR, the < α2 > values for dynamical librations (see Sections 2.2 and 3.1)
were found; the results are presented in Figure 15. One can see that below 195 K for
lysozyme and below 235 K for casein, the < α2 > temperature dependencies may be
approximated with straight lines, which is in agreement with the model of harmonic
librations. At higher temperatures, however, a noticeable deviation from the linear depen-
dencies appear, at 195 ± 5 K for lysozyme and at 235 ± 5 K for casein. This deviation may
be considered an indication on the dynamical transition.
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The ∆W data, obtained from ESE study [108], are presented in Figure 16 as functions
of temperature. For convenience of discussion, data are grouped in pairs: dehydrated
and hydrated proteins (a and b), hydrated proteins (c), and dehydrated proteins (d). Data
in Figure 16a,b show that for both spin-labeled proteins in their hydrated states the ∆W
value increases faster than that for the dehydrated states. Therefore, molecular motions
in hydrated proteins are more intensive than in dehydrated ones. Figure 16d shows that
both dehydrated proteins demonstrate close temperature dependencies, which may imply
proximity of their intermolecular packings.

The main result is presented in Figure 16c in which it is seen that ∆W temperature
dependencies for the two hydrated proteins are essentially different. First, in casein/IASL
the motions appear above 100 K, while in lysozyme/IASL they only appear above 130 K.
This fact implies that in casein there is more freedom available for molecular reorientations,
which is expected for their disordered structure. Secondly, for casein/IASL, a kink in
the temperature dependence near 120 K appears, with remarkable slowing down above
this temperature.
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The explanation of this latter non-trivial effect could be as follows. As stochastic
molecular librations are governed by the surrounding of the molecule (see Section 3.4), the
kink at 120 K indicates that intermolecular packing in IDP casein is rearranged, providing
the protein structure to become more cohesive and/or more rigid, compared with the
globular protein lysozyme. The analogy could be seen here with the kink observed for the
gel-phase DOPC bilayer in Figure 10. The schematic presentation of the molecule repacking
given in Figure 11 for DOPC molecules may also be applicable here for casein.

As in the dehydrated state, two proteins show similar temperature dependences (see
Figure 16d), then the observed rearrangement at 120 K for casein may be considered as an
intrinsic property of its hydrated state—when protein possess its functionality.

4.9. Molecular Glasses and Other Systems

In Sections 2.2 and 2.3, some results obtained for spin probe-dissolved molecular glass
formers (o-terphenyl, glycerol) were discussed. In [44], the A′ZZ temperature dependences
obtained by CW EPR for different molecular glasses—glycerol, water-glycerol mixture
(15:85 w/w), trehalose, dibutyl phthalate, squalene—were obtained. The results are re-
produced here in Figure 17. One can see that at low temperatures the dependences are
linear, which is in agreement with Equations (7) and (8). Above Tg, in all the cases the
linearity is broken. As it was pointed out in Section 3.1, this departure from the linearity is
related to dynamical transition, which occurs at temperature Td. One can further see from
Figure 17 that Td in molecular glasses is close to Tg (with probably one exception for the
water–glycerol mixture).

The straight lines in Figure 17 possess different slopes for different types of glass. Data
in [44] for different nitroxides in dibutyl phthalate also showed that the slope does not
depend on the type of nitroxide, with its molecular size varying in a large interval. Note that
the slope tangents in Figure 17 seem to correlate with the strength of intermolecular bonds:
the slopes are smallest for glycerol and water–glycerol mixture, for which intermolecular
interactions are strengthened by hydrogen bonding. In other glasses (trehalose, dibuthyl
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phthalate, squalane), molecules are bonded via relatively weak van der Waals interactions,
and trehalose and dibuthyl phthalate molecules, because of the polarity, interact stronger
as compared with nonpolar squalane molecules. Then, the strength of intermolecular
bonding results in rigidity of the potential well for librations, changing so frequency Ωlibr
in Equation (8). Moreover, as mentioned above, the slopes of the straight lines in Figure 17
correlate with the “fragility” [45] of the glass: glycerol is known to be “strong” glass,
which is commonly attributed to the network of hydrogen bonds, and it possesses the
smallest slope.
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Figure 17. Temperature dependence of the A′ZZ principal value obtained from the splitting between
two outer peaks in the CW EPR spectra (see insert) for nitroxide spin probes in molecular glasses:
per-deuterated tempo in water–glycerol (15:85 w/w) mixture (filled squares), per-deuterated tempo
in glycerol (empty triangles), tempone in trehalose (empty circles), per-deuterated tempo in dibutyl
phthalate (rhombs), per-deuterated tempo in squalane (empty squares). The straight lines are the
best fits to the experimental points in the low-temperature ranges. The arrows indicate Tg s. Adapted
from [44] under permission, American Institute of Physics.

Temperature dependence of ESE-detected stochastic librations of nitroxide spin probes
were studied also in molecular glasses of o-terphenyl [104], squalane [166,167], dimethyl
phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate [172], and sucrose octaac-
etate [167]. The onset of the motions for o-terphenyl [104] was found to coincide with Tg;
however, for all other glasses, the motions were found to start well below Tg.

In [73], the dynamics of Cu(II) terpyridine complexes in ethanol glass was investi-
gated. ESE-detected stochastic molecular librations were found also in other molecular sys-
tems: frozen photosynthetic reaction centers [67–69,200,201], polymers [202], for molecules
confined in nanocapsules [71], in inclusion compounds [74], and in nanochannels [203].
In these studies, information was obtained on the orientation of the molecular axes in
their environment.

These motions were found also for spin probes in living seeds and pollen [204,205];
it was suggested that the detection of these motions may serve as a measure of possible
vitrification of the living objects.
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4.10. NMR of Small-Angle Motions, Secondary Relaxation
2H NMR solid-echo spectra in molecular glasses are anisotropically broadened, simi-

larly to the CW EPR spectra. These spectra deliver information on quadrupolar coupling
constant, which depends on temperature [206] analogously to the A′ZZ temperature de-
pendence in CW EPR (cf. Figure 17). The change of quadrupolar constant as a function of
temperature was investigated for glassy toluene-d5, etanol-d5, polybutadien-d6, and some
deuterated mixtures [206]. This dependence was attributed to dynamical librations, within
a cone model [207] of fast librations. The <α2(t)> temperature dependence was obtained
from the quadrupolar coupling constant [206] with the relation similar to Equation (7) for
CW EPR.

Stochastic molecular librations in molecular glasses were also detected with 2H
NMR solid-echo spectra, with the time delay between two pulses sequentially increas-
ing [32,33,206,208–210]. For these spectra, similar behavior, as for the echo-detected EPR
spectra, was found: for canonical orientations, the motion-induced relaxation is slowest.
The data were simulated [32] by the model of stochastic motion within a cone with a full
opening angle of 6◦. Therefore, 2H NMR is also sensitive to small-angle motions. The
spectral anisotropy in 2H NMR is ~5 105 rad/s that is ~200 times smaller than that in EPR
of nitroxide spin probes (~108 rad/s), so the typical time delays between two echo-forming
pulses, for which spectral distortions are seen [32,33,206,208–210], are also ~200 time larger
than in Figures 5 and 6 for ESE of nitroxides.

This behavior of 2H NMR solid-echo spectra was attributed [32,33,206,208–210] to
the manifestation of small-angule stochastic motions (analogous experiments can be also
performed employing 31P Hahn echo [209]). The results of these studies in molecular
glassy systems were discussed in terms of Johari–Goldstein secondary β-relaxation process
(see Introduction).

We note that ESE-detected stochastic molecular librations of spin probes and labels
may hardly be related to secondary β-relaxation. Indeed, the correlation time of these
librations definitely lie in the nanosecond time scale, while β-relaxation in glasses and
supercooled liquids belong to the microsecond time scale [23–26]. Then, a study of mag-
netization transfer (MT) in a double electron–electron resonance (DEER) experiment on
15N-substituted nitroxide spin probes in molecular glasses and supercooled liquids [54,55]
have shown that this MT-DEER experiment is most likely related to large-angle motions,
and in this connection it was shown [55] that the observed MT effect is induced by sec-
ondary β-relaxation.

In addition, data [103] obtained for o-terphenyl glass with two different nitroxides
dissolved—tempone and phenyl-imidasoline—have shown that while both of them sim-
ilarly manifest stochastic librations, the results of the MT-DEER experiment are quite
different: the MT effect is large for tempone and almost absent for phenyl-imidasoline.
The absence of the MT effect in the latter case can be understood by assuming a stacking
interaction between the guest phenyl-imidasoline and the host o-terphenyl molecules:
this interaction artificially enlarges the guest molecule size, which in line with the results
obtained in [55] would suppress secondary β-relaxation. Therefore, we may conclude that
ESE-detected stochastic small-angle motions of guest spin probe molecules and molecular
motions responsible for secondary β-relaxation most likely belong to different types of
molecular motions.

5. Concluding Remarks

The elucidation of structure and dynamics of disordered media remains a very chal-
lenging problem. Comprehensive theoretical description of these systems still does not
exist. It is obvious only that the core of the problem lies in mutual intermolecular interac-
tions and/or in a nanoscale arranging of molecules. On the other hand, direct experimental
means for studying properties of this arrangement are rather limited. Therefore, indirect
methods may become valuable. Studying the small-angle motions of spin-labeled molecules
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with EPR spectroscopy provides such an indirect tool, which allows making some definite
conclusions on features of molecular packing and molecular motions in these media.

In this review, EPR applications were considered for gel-phase lipid bilayers, for bio-
logical membranes interacting with proteins, peptides and cryoprotectants, for supercooled
ionic liquids and supercooled deep eutectic solvents, for globular proteins and intrinsi-
cally disordered proteins. CW EPR allows detection of dynamical transition, known for
biological systems from neutron scattering experiments. The obvious advantage of CW
EPR is the possibility in the case of heterogeneous samples to selectively explore different
desired locations in the matter, by introducing specifically spin probes and labels. Also it is
demonstrated here that appearance of ESE-detected stochastic librations reflects the soft-
ness/rigidity of the nearest molecular surrounding in these media and allows elucidating
some features of their nanostructural arrangements.
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