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Abstract: The green, cost-effective and sustainable synthesis of nanomaterials has been a key concern
of scientists and researchers. In this view, MNPs were prepared using a sapota plant leaf extract and
the surface of the magnetite nanoparticles was engineered with unsaturated fatty acids. The first
report on the effect of unsaturation on the size and magnetic properties of magnetite nanoparticles
(MNPs), prepared by the co-precipitation method, has been studied by coating surfactants on MNPs
based on their unsaturation from zero to three (lauric acid, oleic acid, linoleic acid, linolenic acid). The
size effect and magnetic properties of MNPs coated with a surfactant have been studied in comparison
with uncoated magnetite nanoparticles. After the surface modification of the magnetite particle,
it is necessary to check whether the magnetic property has been restored or not. Therefore, the
magnetic property was studied. The presence of a surfactant on the surface of MNPs was confirmed
by Fourier-transform infrared spectroscopy (FTIR), which was later confirmed by scanning electron
microscope (SEM) and thermogravimetric analysis (TGA). The atomic structure was studied by
X-ray diffraction (XRD) and the size of uncoated and surfactant-coated MNPs was determined by
transmission electron microscopy (TEM) and the Scherrer equation by following XRD data. The
magnetization property was analyzed by a vibrating sample magnetometer (VSM) at 10, 100 and
300 K and both bared and surfactant-coated MNPs exhibited a superparamagnetic nature at room
temperature. The saturation magnetization (Ms) study shows that MNPs coated with a surfactant
have a lower saturation magnetization value in comparison to uncoated NPs, confirming surface
layering. Because the magnetic fluid has been stabilized in the aqueous medium, the double-layer
model is expected to prevail.

Keywords: green synthesis; unsaturated fatty acids; surface engineering; bilayer structure; structural
and magnetic properties

1. Introduction

The synthesis of nanomaterials via different methods and their utilization in various
fields of science and technology has yielded a revolution in the industrial and manufactur-
ing sectors. Due to their unique properties, such as electrical, magnetic [1,2], and optical
properties, these metal oxide NPs are tremendously used in material science, engineering,
and even in medical sciences [3].
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MNPs (Fe3O4) show unique properties, such as being eco-friendly, stable, and biodegrad-
able, having a high surface area, and being cost-effective and biocompatible in nature. These
are used as a catalyst for the degradation of organic toxic pollutants from the environment
and the separation of biomaterials [4–6].

Due to their higher hydrophilicity, MNPs have some limitations, such as being co-
agulated in an aqueous medium and oxidized in the air, as well as having instability in
the acidic medium and less extraction capacity. In this view, to overcome the weaknesses
of MNPs, their surface can be saturated and modified by monocarboxylic fatty acids,
which are byproducts of the different vegetable oils and hydrocarbons available from the
purifications of the oils [7].

Surfactants have unique properties to prevent MNPs from aggregating and they can
be used to stabilize the magnetism of MNPs in aqueous and non-aqueous mediums by
surface modification from the surfactants.

Coating with surfactants reduces NPs’ agglomeration by forming a covering layer
on the surface of MNPs. In that layer, a hydrophilic head will stick to the hydrophilic
magnetite nanoparticles through covalently bonded chemical adsorption, leaving the tail
to the aqueous medium, which eventually stabilizes by double-layer formation through
physical adsorption, leaving the hydrophilic head of the carboxylate anion to face the
aqueous medium. This results in the bilayered structure of the surfactant–magnetite
nanoparticle hybrid [8].

In this research paper, four fatty acids (lauric acid or dodecanoic acid, oleic acid,
linoleic acid and linolenic acid) have been used for the saturation of the MNPs surface.
Figure 1 shows the MNPs coated with fatty acids.
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2. Materials and Methods

All the chemicals, including FeCl3·6H2O, FeSO4·4H2O, ethanol, ammonia and fatty
acids for the synthesis of coated MNPs were purchased from Sigma Aldrich Chemical
Pvt. Ltd. and Merck chemicals. (Sigma Aldrich Chemical Pvt. Ltd. and Merck chemicals.,
Bangalore, Karnataka, India). The standard solution was prepared with double-distilled
water.
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Synthesis of MNPs

Magnetite nanoparticles (Fe3O4) were synthesized by following the co-precipitation
method from the sapota plant leaf extract [9–12]. MNPs were coated with an unsaturated
fatty acid, forming a double layer and giving rise to colloidal and magnetic stability to the
magnetite nanoparticle. Sapota plant leaf was collected from the university campus, dried
and boiled with 100 mL of distilled water for 1 h. The aqueous solution was filtered, and
the extracts were used for further synthesis of the magnetite nanoparticles. The ferrous and
ferric chloride solution in a molar ratio of 1:2 was dissolved in distilled water and 15 mL of
sapota plant leaf extract under magnetic stirring for 15 min, followed by a drop-by-drop ad-
dition of the surfactant solution made by dissolving 60 mM lauric/oleic/linoleic/linolenic
acid in distilled water/ethanol. After the complete mixing of the above chemicals, pure
ammonia was added as a precipitant at 80 ◦C for 15 min, followed by magnetic stirring at
80 ◦C for 1 h. A black precipitate solution formed, which was centrifuged at 10,000 rpm for
10 min, followed by washing twice with distilled water. The obtained black precipitate was
dried in a hot air oven for 4 h at 100 ◦C.

3. Characterization of MNPs

The initial confirmation of the presence of unsaturated fatty acids on the surface of
MNPs was conducted by FTIR spectroscopy. It was used to determine the functional
group of active compounds based on the peak value in the infrared region. Another
confirmation for the presence of a surfactant and the morphology of surfactant-coated
MNPs was examined by using a scanning electron microscope (SEM). The presence of a
surfactant on the surface of MNPs was analyzed in terms of a change in the physical and
chemical properties of materials with an increasing temperature or as a function of time by a
thermogravimetric analyzer. The crystalline structure of the sample was identified by X-ray
diffraction. The X-rays were produced using a sealed tube and the wavelength of the X-ray
was 1.54 nm Cu K-alpha radiations. The diffraction patterns were carried out using a 2θ
range of 25–70. The particle size, lattice parameter and area were calculated by applying the
Scherrer equation to the obtained XRD data. The exact size of the uncoated and surfactant-
coated MNPs was determined by a transmission electron microscope. Magnetization was
measured by means of a 14 T PPMS vibrating sample magnetometer (VSM). Zero field
cooling (ZFC) and field cooling (FC) was performed by cooling the sample to 300 K, and in
the presence of the external field of 500 Oe and M/Ms, it was studied at 10, 100 and 300 K.

3.1. FTIR Analysis

FTIR spectroscopy was used to identify the functional groups of the active components
based on the bands in the region of infrared radiation. In Figure 2, the FTIR spectra showed a
band at ~3452 cm−1, which is assigned for the stretching vibration of –OH, i.e., absorbed by
Fe3O4 NPs. The bands at 2951 cm−1 and 2850 cm−1 are assigned for stretching vibrations in
the methylene (H=C=H) group of arachidonic acid. The bands at 1626 cm−1 and 1408 cm−1

are assigned for the stretching vibration of C=C, and the band at 1574 cm−1 is assigned
for the vibration in C=O of arachidonic acid, whereas the band at 577 cm−1 shows the
stretching vibration of Fe-O of the surfactant-coated MNPs [13–15]. FTIR spectra of pure
Fe3O4 show a band at 3452 cm−1 assigned for –OH and 573 cm−1, which shows stretching
vibration in Fe-O of pure MNPs [16–19]. Yadav et al. 2020 also obtained bands for Fe-O in
the range of 400–800 cm−1 [15].

3.2. TGA Analysis

TGA results in Figure 3a show that MNPs coated with one of the surfactants oleic
acids had an initial weight loss of 1.44% at around 150 ◦C, followed by a gradual loss of
3.84, 13.42 and 8.20% at around 270, 445 and 622 ◦C, respectively. At 699.5 ◦C, the residual
mass was only 70.57% but, in comparison to the coated MNPs, uncoated MNPs had a
97.10% residual mass at 699.5 ◦C shown in Figure 3b [20,21].
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3.3. SEM Analysis

A scanning electron microscope (SEM) of uncoated MNPs and all the fatty-acid-coated
MNPs are shown in Figure 4a–f. Figure 4a,b shows the SEM micrographs of uncoated
MNPs, which are highly aggregated. Figure 4c shows a SEM micrograph of lauric-acid-
coated MNPs, Figure 4d shows oleic acid-coated MNPs, Figure 4e shows a SEM micrograph
of linoleic-acid-coated MNPs, and Figure 4d shows a SEM micrograph of linolenic-acid-
coated MNPs. The size of all the particles is 10–30 nm, but due to aggregation and their very
small size, they exhibit large lumps. The particles are highly aggregated as shown in the
images. Several investigators have also reported a similar morphology of the synthesized
MNPs, such as Yadav and Fulekar (2018), [22] and Yadav et al. 2020 [15]. The authors have
obtained a range of sizes, i.e., 20 nm to 120 nm, by the chemical co-precipitation method [22].
Besides this, Pandya et al. 2018 also obtained similar results for synthesized MNPs using
the chemical co-precipitation method. The particle size distribution was around 20–100 nm.
It was polydispersed in nature, and as the unsaturation increased, particle size decreased.

3.4. XRD Analysis

The black precipitate was formed by the chemical co-precipitation method, and it
was identified as magnetite by the X-ray diffraction pattern. The diffraction pattern for
bared and surfactant-coated magnetite is shown in Figure 5. All the peaks were indexed as
magnetite (reference code: JCPDS 01-088-0315), indicating the presence of a single-phase
cubic spinel structure and the diffraction peaks were fairly broad. The maximum intensity
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peak was found at 35.3–35.58 (311) [23], which indicates the formation of the magnetite
phase of iron oxide nanoparticles.
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The size, shape, lattice parameter and area of bared MNPs and surfactant-coated
MNPs were analyzed using XRD data by following the Scherrer equation [24].

τ = Kλ/ω cosθ
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where τ is the mean size of the ordered domain, K is the dimensionless shape factor, which
is 0.9, λ is the X-ray wavelength, ω is the width on the 2θ scale and θ is the Bragg angle.
The obtained results are shown in Table 1.
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Table 1. Results obtained from XRD analysis.

Sr. No. MNPs Coated by Shape Area Lattice Parameter
Particle Size (nm)

By XRD By TEM

1. Uncoated Cubic 263.72 8.36577 × 10−10 15 ~16

2. Lauric acid Cubic 193.32 8.35144 × 10−10 12 ~14

3. Oleic acid Cubic 307.80 8.37072 × 10−10 10 ~12

4. Linoleic acid Cubic 221.86 8.3763 × 10−10 8 ~10

5. Linolenic acid Cubic 207.76 8.3763 × 10−10 6 ~8

The obtained result is in agreement with previous results obtained for MNPs. Yadav
and Fulekar (2018) and Yadav et al. 2020 also obtained peaks at 33 and 35◦, which was
attributed to the hematite and magnetite phase of the IONPs [22,25–28].

3.5. TEM Analysis

The effect of coating with unsaturated fatty acids will give magnetite nanoparticles
colloidal stability and superparamagnetic stability by forming a double layer around the
magnetite nanoparticle. Figure 6a,d shows TEM images of uncoated MNPs. The particle is
of a cuboidal to spherical shape, whose size varies from 7–10 nm. This small size of the
MNPs indicates the formation of the superparamagnetic nanoparticle. Figure 6e,f shows
TEM images of lauric-acid-coated MNPs. The size of the particle is 4–8 nm as revealed
by TEM, whereas the particle is spherical to cuboidal in shape. Figure 6g,h shows TEM
images of oleic-acid-coated MNPs whose size is 4–8 nm and whose shape is also spherical
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to cuboidal. Figure 6i,j shows TEM images at 20 nm where the size of linoleic-acid-coated
MNPs varies from 5–15 nm and the shape is cuboidal to spherical. The linolenic-acid-coated
MNPs are shown in Figure 6k,l, whose size varies from 5–14 nm. Here, the morphology
is also mainly spherical to cuboidal in shape. So, in all the types of MNPs, the size varies
from ~16 nm to ~8 nm as shown in Figure 6a–k. All the particles showed aggregation,
and this could be due to their very small size. In all cases, the average particle size of
the synthesized magnetite nanoparticle hybrid was calculated using the Debye–Scherrer
formula ranging from 12 nm to 6 nm, which is much less than what was obtained from
TEM measurements for the same surfactant hybrid samples and confirms the presence
of the non-crystalline surfactant layer on the surface of the magnetite nanoparticles [29].
Yadav and Fulekar (2018) [22], and Yadav et al. 2020 [15] reported the synthesis of the
cuboidal to spherical shape of the MNPs by the chemical co-precipitation method. The size
of uncapped MNPs varied from 8–20 nm.
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4. Result and Discussion
Magnetic Study

MNPs at room temperature show superparamagnetic behavior, i.e., no hysteresis
loop. However, a hysteresis loop can be achieved by pinning magnetic domain walls at
grain boundaries within the material and by that material becoming ferromagnetic [30]. If
synthesized NPs are of a size below a superparamagnetic critical size. In that case, hysteresis
behavior vanishes above the blocking temperature. The magnetic behavior of MNPs was
studied using VSM, ZFC and FC curves in the presence of the external field of 500 Oe.
Increasing the temperature up to 300 K, as presented in Figure 7a–e, shows that these
uncoated MNPs and surfactant-coated MNPs exhibit a superparamagnetic nature [31–34]
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The increase in blocking temperature with an increase in the unsaturation of the
surfactant may be understood as the particle size decreasing the thickness of the double
layer and subsequently increasing, making the effective size of the surfactant–magnetite
hybrid bigger. This may indicate that the average distance between magnetite nanoparticles
does not change significantly. It seems that the double layering took place on the surface of
some already agglomerated magnetite nanoparticles and not on all the individual magnetite
nanoparticles. From Figure 7a, we can see the loss of magnetization with the increase in
temperature over 200 K is very sharp for uncoated MNPs in comparison with the bilayer-



Magnetochemistry 2022, 8, 174 12 of 15

coated MNPs, which are very smooth and slow. It can be understood that the bilayer of the
surface of the magnetite acts as a shielding layer for the heat transfer to the inner magnetite,
therefore reducing the rate of decreased magnetization.

The hysteresis magnetic loop M(H) was measured at 10, 100 and 300 K for both
uncoated and surfactant-coated MNPs, presented in Figure 8. The saturation magnetization
(MS) of surfactant-coated MNPs, in comparison to bared MNPs, was observed at 10, 100
and 300 K, and it was observed that surfactant-coated MNPs have a lower MS value than
uncoated MNPs. By comparing MS for surfactant-coated MNPs at 10, 100 and 300 K, it
is found that oleic acid with a minimum Ms value will have the maximum extent of the
adsorbed layer of a surfactant.

Magnetochemistry 2022, 8, x FOR PEER REVIEW 13 of 16 
 

 

(e) 
 

Figure 7. ZFC and FC curve for (a) uncoated MNPs, (b) lauric-acid-coated MNPs, (c) oleic-acid-
coated MNPs, (d) linoleic-acid-coated MNPs, (e) linolenic-acid-coated MNPs. 

The hysteresis magnetic loop M(H) was measured at 10, 100 and 300 K for both un-
coated and surfactant-coated MNPs, presented in Figure 8. The saturation magnetization 
(MS) of surfactant-coated MNPs, in comparison to bared MNPs, was observed at 10, 100 
and 300 K, and it was observed that surfactant-coated MNPs have a lower MS value than 
uncoated MNPs. By comparing MS for surfactant-coated MNPs at 10, 100 and 300 K, it is 
found that oleic acid with a minimum Ms value will have the maximum extent of the 
adsorbed layer of a surfactant. 

Surfactants with a higher unsaturation bring more fluidity to the double layer as the 
area per molecule adsorption increases with unsaturation because of a kink in their struc-
ture, which certainly makes the surfactant hybrid magnetite more biocompatible and less 
toxic. The extent of adsorption for higher unsaturated fatty acids is less confirmed by their 
saturation magnetization value, which is very much essential for these fatty acid magnet-
ite hybrids to be influenced efficiently under an external magnetic field for their applica-
tion in the biomedical field. Yadav et al. 2020 have also obtained similar results for the 
magnetic strength of the IONPs [35–37]. 

 
(a) 

 
(b) 

Magnetochemistry 2022, 8, x FOR PEER REVIEW 14 of 16 
 

 

 
(c) 

Figure 8. Comparison of MH curve for uncoated MNPs with surfactant-coated MNPs at (a) 10 K, (b) 
100 K, (c) 300 K. 

The variation of magnetic properties of all surfactant hybrids in comparison with 
uncoated MNPs has been tabulated below in Table 2. 

Table 2. Variation of magnetic properties of surfactant hybrids in comparison to uncoated MNP. 

MNPs Coated by 
MS (emu/g) HC (Oe) MR(emu/g) TB 

(K) 
TP 

(K) 10 K 100 K 300 K 10 K 100 K 300 K 10 K 100 K 300 K 
Uncoated 66 65 56 145 36 0 15 7 0 43 55 

Lauric acid 57 55 47 152 100 0 16 10 0 40 58 
Oleic acid 51 49 37 152 73 0 14 3 0 48 78 

Linoleic acid 52 50 44 214 39 0 16 4 0 72 106 
Linolenic acid 51 49 41 161 0 0 13 0 0 50 71 

5. Conclusions 
The present study shows a surface modification of MNPs using a range of unsatu-

rated fatty acids. The synthesized MNPs and analysis by analytical instruments revealed 
their detailed information. The microscopic analysis, i.e., SEM and TEM, showed that par-
ticles are highly aggregated, with individual sizes varying from 14 nm to 8 nm. The band 
obtained in the region of 400–600 in FTIR confirmed the formation of MNPs due to the Fe-
O bond. Additionally, the presence of various functional groups indicated the capping by 
unsaturated acids. Magnetic study shows that surfactant-coated MNPs have an increase 
in blocking temperature and splitting temperature in comparison to uncoated MNPs. The 
increase in blocking temperature with an increase in the unsaturation of the surfactant 
may be understood as the particle size decreases, the thickness of the double layer will 
also increase, making the effective size of the surfactant–magnetite hybrid bigger. The 
surfactant-coated MNPs with a lower saturation magnetization value than the uncoated 
MNPs at 10 K, 100 K and 300 K confirm the double-layer coating on the magnetite surface. 
Surfactants with more unsaturation in their tail will bring more fluidity to the double layer 
of the surface of the magnetite, making it more biocompatible and less toxic. Because of 
the presence of a double bond in the fatty acid tail, which brings polarity to the tail, the 
double layer eventually becomes more hydrophilic and the extent of water content in-
creases; therefore, the water-soluble drug can easily be entrapped in the double layer. 

Figure 8. Comparison of MH curve for uncoated MNPs with surfactant-coated MNPs at (a) 10 K,
(b) 100 K, (c) 300 K.



Magnetochemistry 2022, 8, 174 13 of 15

Surfactants with a higher unsaturation bring more fluidity to the double layer as
the area per molecule adsorption increases with unsaturation because of a kink in their
structure, which certainly makes the surfactant hybrid magnetite more biocompatible and
less toxic. The extent of adsorption for higher unsaturated fatty acids is less confirmed
by their saturation magnetization value, which is very much essential for these fatty acid
magnetite hybrids to be influenced efficiently under an external magnetic field for their
application in the biomedical field. Yadav et al. 2020 have also obtained similar results for
the magnetic strength of the IONPs [35–37].

The variation of magnetic properties of all surfactant hybrids in comparison with
uncoated MNPs has been tabulated below in Table 2.

Table 2. Variation of magnetic properties of surfactant hybrids in comparison to uncoated MNP.

MNPs Coated by
MS (emu/g) HC (Oe) MR (emu/g) TB

(K)
TP
(K)10 K 100 K 300 K 10 K 100 K 300 K 10 K 100 K 300 K

Uncoated 66 65 56 145 36 0 15 7 0 43 55
Lauric acid 57 55 47 152 100 0 16 10 0 40 58
Oleic acid 51 49 37 152 73 0 14 3 0 48 78

Linoleic acid 52 50 44 214 39 0 16 4 0 72 106
Linolenic acid 51 49 41 161 0 0 13 0 0 50 71

5. Conclusions

The present study shows a surface modification of MNPs using a range of unsaturated
fatty acids. The synthesized MNPs and analysis by analytical instruments revealed their
detailed information. The microscopic analysis, i.e., SEM and TEM, showed that particles
are highly aggregated, with individual sizes varying from 14 nm to 8 nm. The band
obtained in the region of 400–600 in FTIR confirmed the formation of MNPs due to the
Fe-O bond. Additionally, the presence of various functional groups indicated the capping
by unsaturated acids. Magnetic study shows that surfactant-coated MNPs have an increase
in blocking temperature and splitting temperature in comparison to uncoated MNPs. The
increase in blocking temperature with an increase in the unsaturation of the surfactant
may be understood as the particle size decreases, the thickness of the double layer will
also increase, making the effective size of the surfactant–magnetite hybrid bigger. The
surfactant-coated MNPs with a lower saturation magnetization value than the uncoated
MNPs at 10 K, 100 K and 300 K confirm the double-layer coating on the magnetite surface.
Surfactants with more unsaturation in their tail will bring more fluidity to the double layer
of the surface of the magnetite, making it more biocompatible and less toxic. Because
of the presence of a double bond in the fatty acid tail, which brings polarity to the tail,
the double layer eventually becomes more hydrophilic and the extent of water content
increases; therefore, the water-soluble drug can easily be entrapped in the double layer.
Therefore, this bilayer surfactant–magnetite hybrid could be the best to be used in targeted
drug delivery.
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