
magnetochemistry

Article

Low-Coordinate Dinuclear Dysprosium(III) Single Molecule
Magnets Utilizing LiCl as Bridging Moieties and
Tris(amido)amine as Blocking Ligands

Maria Brzozowska, Gabriela Handzlik , Mikolaj Zychowicz and Dawid Pinkowicz *

����������
�������

Citation: Brzozowska, M.; Handzlik,

G.; Zychowicz, M.; Pinkowicz, D.

Low-Coordinate Dinuclear

Dysprosium(III) Single Molecule

Magnets Utilizing LiCl as Bridging

Moieties and Tris(amido)amine as

Blocking Ligands. Magnetochemistry

2021, 7, 125. https://doi.org/

10.3390/magnetochemistry7090125

Academic Editor: Fabrice Pointillart

Received: 29 July 2021

Accepted: 7 September 2021

Published: 11 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
maria.brzozowska@student.uj.edu.pl (M.B.); gabriela.handzlik@uj.edu.pl (G.H.);
mikolaj.zychowicz@doctoral.uj.edu.pl (M.Z.)
* Correspondence: dawid.pinkowicz@uj.edu.pl

Abstract: A low-coordinate dinuclear dysprosium complex {[Dy(N3N)(THF)][LiCl(THF)]}2 (Dy2)
with a double bridging ‘LiCl’ moiety and tris(amido)amine (N3N)3− anions as a blocking ligand
is synthesized and characterized structurally and magnetically. Thanks to the use of the chelating
blocking ligand (N3N)3− equipped with large steric –SiMe3 groups, the coordination sphere of both
DyIII ions is restricted to only six donor atoms. The three amido nitrogen atoms determine the
orientation of the easy magnetization axes of both DyIII centers. Consequently, Dy2 shows slow
magnetic relaxation typical for single molecule magnets (SMMs). However, the effective energy
barrier for magnetization reversal determined from the AC magnetic susceptibility measurements
is much lower than the separation between the ground and the first excited Kramers doublet
based on the CASSCF ab initio calculations. In order to better understand the possible influence
of the anticipated intramolecular magnetic interactions in this dinuclear molecule, its GdIII-analog
{[Gd(N3N)(THF)][LiCl(THF)]}2 (Gd2) is also synthesized and studied magnetically. Detailed magnetic
measurements reveal very weak antiferromagnetic interactions in Gd2. This in turn suggests similar
antiferromagnetic interactions in Dy2, which might be responsible for its peculiar SMM behavior
and the absence of the magnetic hysteresis loop.

Keywords: nanomagnetism; single molecule magnet; dysprosium; gadolinium; molecular mag-
netism; lanthanides; slow relaxation of the magnetization

1. Introduction

Polynuclear lanthanide (Ln) complexes often exhibit slow magnetic relaxation and
related single molecule magnet (SMM) behavior similar to their more famous mononuclear
relatives [1–3] but show also the influence of the superexchange interactions. Similarly
to mononuclear Ln-SMMs, the field of the polynuclear congeners is also dominated by
DyIII [4–8]. Due to very weak intermolecular magnetic interactions between the lanthanide
ions in such polynuclear compounds, the slow relaxation of the magnetization is usually
dominated by single-ion effects which can be determined by performing experiments
involving the diamagnetic dilution of the investigated compounds with Y or La [9]. Ob-
viously, the employment of longer bridging ligands leads to a good separation of the
magnetic centers and therefore the possible slow magnetic relaxation becomes a single-ion
effect [10]. Due to the weakness of the magnetic interactions in lanthanide-based com-
pounds, only short molecular bridges could provide sufficient communication between the
magnetic centers that could influence the slow magnetic relaxation of the compound [3].
Still, the exchange coupling constants between the lanthanide ions in Ln-SMMs, even with
very short bridges, are one or two orders of magnitude smaller than the typical values
of the energy barrier for the magnetization reversal (J-values are typically in the range
0.1–3 cm−1 for diamagnetic bridging ligands). The highest exchange coupling constant for
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a polymetallic Ln-SMMs was determined by studying the GdIII congener of the famous
[N2]3− bridged dinuclear Tb-SMM {[(Me3Si)2N]2(THF)TbIII}2(µ-η2:η2-N2)− [11]. The mag-
netic interaction between the GdIII and the paramagnetic [N2]3− molecular bridge was
reported to be −27 cm−1 (Ĥ = −2JŜ1Ŝ2 Hamiltonian type) [12]. It is noteworthy that in a
complex bridged by a radical bipyrimidyl ligand the exchange interaction (J = −10 cm−1;
Ĥ = −2JŜ1Ŝ2 Hamiltonian type) [13] was a bit weaker than in the complex bridged by a
significantly smaller [N2]3−.

The magnetic interactions between the lanthanide ions can lead to a shift of otherwise-
degenerate mJ sublevels to different energies and reduce the probability of the QTM
(quantum tunneling of magnetization) [3]. QTM is frequently the reason for a very fast
relaxation acceleration under zero magnetic field, so its exclusion is crucial to improve
single molecule magnet performance. Even weak exchange interaction (mostly dipolar
in nature) between two lanthanide ions can be significant enough to hinder the quantum
tunneling of magnetization at HDC = 0 [14–20]. Moreover, magnetic interactions are neces-
sary to engineer universal qugates (quantum gates) as demonstrated for dinuclear LnLn′

molecules [21]. Therefore, searching for polynuclear Ln-SMMs with effective magnetic
interactions is highly desired.

The design of polynuclear Ln-SMMs is challenging because of the difficulties in
predicting how the lanthanides interact with each other and what would be the orientation
of their easy magnetization axes in a particular chemical and geometrical environment [22].
The task becomes even more difficult when very small ligands, such as NO3

−, H2O, OH−,
THF, etc., are allowed to coordinate to the metal centers leading to complexes with high
coordination numbers ≥8 and uncontrolled coordination geometries. This is why we
have focused our efforts on obtaining Ln complexes with a bulky chelating ligand tris(N-
trimethylsilyl-2-amidoethyl)amine (N3N)3− in the form of a lithium salt [23]. The (N3N)3−

ligand was successfully used to obtain transition metal complexes with a strictly controlled
coordination geometry such as (N3N)MoIVCl [24] showing extremely attractive chemical
properties such as N2 activation or a family of [MII(N3N)Li(THF)] (M=Mn, Fe, Co, Ni)
compounds with a significant magnetic anisotropy associated with their trigonal pyramidal
geometry imposed by the (N3N)3− ligand [25].

Herein, we describe a dinuclear SMM based on DyIII {[Dy(N3N)(THF)][LiCl(THF)]}2
(Dy2) and its GdIII analog (Gd2). Both compounds are obtained by reacting the afore-
mentioned lithium salt of the tris(amido)amine with the respective anhydrous LnCl3 salts
(Ln = Dy, Gd) in THF. Interestingly, the bridge between the two lanthanide ions consists of
two Cl− anions and two Li+ cations stabilized by two THF molecules. The influence of the
bridging LiCl on the magnetic properties of both Dy2 and Gd2 is discussed in light of the
CASSCF calculations.

2. Results and Discussion
2.1. Synthesis and Crystal Structure

Both dinuclear compounds {[Dy(N3N)(THF)][LiCl(THF)]}2 (Dy2) and
{[Gd(N3N)(THF)][LiCl(THF)]}2 (Gd2) (N3N = tris(N-trimethylsilyl-2-amidoethyl)amine;
[(Me3SiNCH2CH2)3N]3−; Figure 1a) were obtained by reacting the respective anhydrous
chlorides with Li3(N3N) in anhydrous THF followed by solvent removal and extraction
with pentane. Noteworthy, the Gd2 and Dy2 presented in this work are formed under very
similar reaction conditions to the monometallic ErIII complex reported by us recently [26].
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Figure 1. Structural formula of the trianionic tris(N-trimethylsilyl-2-amidoethyl)amine ligand (a) and the crystal structure 
of {[Dy(N3N)(THF)][LiCl(THF)]}2 (Dy2) (b) with atom labeling scheme (the blocking ligands (N3N)3−, THF molecules and 
hydrogen atoms are dimmed for the sake of clarity). 

Table 1. Selected crystallographic parameters for Dy2 and Gd2. 

 {[Dy(N3N)(THF)][LiCl(THF)]}2 
(Dy2) 

{[Gd(N3N)(THF)][LiCl(THF)]}2 
(Gd2) 

CCDC deposition number 2099063 2099064 
Instrument Bruker D8 Quest Eco, Photon II CPAD 
Radiation Mo Kα (λ = 0.71073 Å) 
Formula C46H110Cl2Dy2Li2N8O4Si6 C23H55ClGdLiN4O2Si3 

Mr/g mol−1 1417.73 703.62 
T/K 100.(2) 100.(2) 

Crystal system monoclinic monoclinic 
Space group P 21/c P 21/c 

a/Å 27.597(2) 27.664(2) 
b/Å 18.9742(14) 19.0319(14) 
c/Å 12.9329(10) 12.9766(10) 
α/° 90 90 

Figure 1. Structural formula of the trianionic tris(N-trimethylsilyl-2-amidoethyl)amine ligand (a) and the crystal structure
of {[Dy(N3N)(THF)][LiCl(THF)]}2 (Dy2) (b) with atom labeling scheme (the blocking ligands (N3N)3−, THF molecules and
hydrogen atoms are dimmed for the sake of clarity).

Crystals of Dy2 and Gd2 are grown from pentane solutions at−40 ◦C. They crystallize
in a triclinic system, space group P21/c as determined by single crystal X-ray diffraction
(SCXRD) structural analysis. Both compounds are isostructural and therefore Dy2 will
be discussed as the representative one. Selected crystallographic details are presented in
Table 1. The asymmetric unit contains the whole molecule consisting of two metal centers
blocked by (N3N)3− ligand and connected by double LiCl bridge with THF attached to it
(Figure 1b). Both lanthanide centers within the molecule are coordinated by four nitrogen
atoms of the (N3N)3− ligands, one chloride and one oxygen atom of the THF molecule
leading to a pseudo-octahedral coordination geometry of both centers. The chelating
(N3N)3− ligands do not block all of the coordination sites, unlike in many transition metal
complexes [24,25], but leave enough space for the ‘LiCl’ bridge and coordinated THF
molecule. The distance between the two lanthanides is 7.937 Å for Dy2 and 7.961 Å for
Gd2. Such a long distance suggests that the intramolecular magnetic interactions between
the two metal centers within the dinuclear ‘units’ should be very weak. Intermolecular
Ln· · ·Ln distances are also long (the shortest ones are 7.969 Å for Dy2 and 8.122 Å for
Gd2). Figure 2 presents the packing diagram of the Dy(LiCl)2Dy cores with the shortest
intermolecular distances highlighted as a dotted line. As aforementioned, the coordination
spheres of the lanthanide ions in Dy2 and Gd2 are six-coordinate and resemble a strongly
distorted octahedron. Table 2 provides the metric parameters of the first coordination
spheres in both compounds. The distortion form the octahedral geometry is caused mainly
by significantly elongated Ln-Cl bonds: 2.733 (1) Å, 2.740(1) Å for Dy2 and 2.763(1) Å,
2.769(1) Å for Gd2 as compared to the average 2.38(11) Å for Dy2 and 2.41(11) Å for Gd2.
The angles presented in Table 2 also clearly show how strongly the coordination spheres of
the metal centers in both compounds are distorted from the ideal six-coordinate octahedral
geometry.
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Table 1. Selected crystallographic parameters for Dy2 and Gd2.

{[Dy(N3N)(THF)][LiCl(THF)]}2
(Dy2)

{[Gd(N3N)(THF)][LiCl(THF)]}2
(Gd2)

CCDC deposition number 2099063 2099064
Instrument Bruker D8 Quest Eco, Photon II CPAD
Radiation Mo Kα (λ = 0.71073 Å)
Formula C46H110Cl2Dy2Li2N8O4Si6 C23H55ClGdLiN4O2Si3

Mr/g mol−1 1417.73 703.62
T/K 100 (2) 100 (2)

Crystal system monoclinic monoclinic
Space group P 21/c P 21/c

a/Å 27.597 (2) 27.664 (2)
b/Å 18.9742 (14) 19.0319 (14)
c/Å 12.9329 (10) 12.9766 (10)
α/◦ 90 90
β/◦ 95.962 (2) 96.151 (2)
γ/◦ 90 90

V/Å3 6735.4 (9) 6792.8 (9)
Z 4 4

ρcalc/g·cm−3 1.398 1.376
µ/mm−1 2.429 2.161

F(000) 2920 2904
Crystal size/mm3 0.37 0.31 0.23 0.27 0.25 0.17

2θ range/◦ 1.91–27.88 2.31–27.92
Completeness/% 98.4 99.6

Reflections collected 70,952 77,170
Independent reflections 15,811 16,200

Rint 0.0617 0.0898
Parameters/restrains 649/18 649/18

R[Fo > 2σ(Fo)] 0.0355 0.0498
wR(F2) 0.0840 0.0822

GOF on F2 1.040 1.049
∆ρmax, ∆ρmin/e·Å−3 0.973/−0.802 1.410/−1.579
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Table 2. Selected bond lengths and angles of the coordination spheres of Dy in Dy2 and Gd in Gd2.

{[Dy(N3N)(THF)][LiCl(THF)]}2
(Dy2)

{[Gd(N3N)(THF)][LiCl(THF)]}2
(Gd2)

x = A x = B x = A x = B

M1x-O1x 2.461 (3) 2.494 (3) 2.488 (4) 2.518 (4)
M1x-N1x 2.385 (3) 2.380 (3) 2.415 (4) 2.411 (4)
M1x-N2x 2.271 (3) 2.263 (3) 2.298 (4) 2.292 (4)
M1x-N3x 2.273 (4) 2.291 (4) 2.306 (4) 2.318 (4)
M1x-N4x 2.508 (3) 2.519 (4) 2.544 (4) 2.547 (4)
M1x-Cl1x 2.733 (1) 2.740 (1) 2.763 (1) 2.769 (1)

N1x-M1x-N4x 74.06 (11) 73.41 (12) 73.31 (14) 72.83 (14)
N2x-M1x-N4x 72.69 (12) 73.14 (13) 72.20 (14) 72.41 (15)
N3x-M1x-N4x 72.40 (12) 72.56 (12) 71.10 (15) 71.66 (15)
O1x-M1x-N4x 129.35 (10) 127.14 (11) 129.65 (13) 127.28 (13)
Cl1x-M1x-N4x 149.13 (7) 150.45 (7) 148.44 (8) 149.97 (9)
N1x-M1x-Cl1x 79.02 (9) 81.92 (9) 78.96 (10) 81.93 (11)
N2x-M1x-Cl1x 127.46 (9) 127.68 (10) 128.16 (11) 128.48 (12)
N3x-M1x-Cl1x 104.87 (9) 103.83 (9) 106.31 (11) 104.88 (11)
O1x-M1x-Cl1x 79.34 (7) 79.92 (7) 79.67 (9) 80.23 (9)
N1x-M1x-N2x 99.68 (12) 98.94 (13) 99.63 (15) 98.43 (16)
N2x-M1x-O1x 85.68 (11) 83.24 (11) 86.48 (14) 84.19 (14)
O1x-M1x-N3x 83.28 (11) 82.41 (11) 83.60 (14) 82.49 (14)
N3x-M1x-N1x 111.98 (12) 113.46 (13) 111.21 (15) 112.96 (15)

2.2. DC Magnetic Properties

The direct-current (DC) magnetic properties of Dy2 and Gd2 in the form of χT(T)
(χ—molar magnetic susceptibility) and M(H) (M—molar magnetization, H—magnetic
field strength) are presented in Figure 3. Gd2 shows magnetic properties typical for a
completely isotropic magnetic system composed of two GdIII ions with a constant χT value
of 16.0 cm3·K·mol−1 down to the lowest temperatures where only a slight decrease occurs
due to the Zeeman effect and the antiferromagnetic Gd· · ·Gd interactions. M(H) curve
reaches the saturation value of 13.9 µB already at ca. 55 kOe and remains constant up to
70 kOe. Both experimental curves (black points and blue circles in Figure 3) match well
the best fit with gGd = 2.00 (1) and JGdGd = −0.004 (1) cm−1 (PHI software [27]). Dy2, on
the other hand, shows a gradual decrease of the χT(T) related to the thermal depopulation
of the mJ states. The room temperature χT value of 27.7 cm3·K·mol−1 corresponds well
with the expected 28.34 cm3·K·mol−1 for two isolated DyIII ions (6H15/2, gJ = 4/3) [28].
Both experimental dependences χT(T) and M(H) for Dy2 (black points and red circles,
respectively, in Figure 3) are well reproduced by the CASSCF calculations (red solid lines
in Figure 3; for details see section Ab initio calculations) which confirm the significant
magnetic anisotropy of Dy2. A very steep decrease of the χT at around 1.8 K, which is not
reproduced by the CASSCF calculations (red line in Figure 3a), suggests non-negligible
antiferromagnetic superexchange coupling between DyIII ions in Dy2, most probably of
intramolecular character rather than intermolecular. Intermolecular magnetic coupling in
the case of Dy2 should have a through-space dipole–dipole character due to the absence
of other intermolecular contacts between the neighboring Dy2 molecules—except the van
der Waals contacts. Such contacts usually yield much weaker magnetic coupling than the
superexchange even through several atoms as in the case of the double LiCl bridge within
the Dy2 dimer.
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Figure 3. χT(T) recorded at 1000 Oe (a) and M(H) recorded at 2.0 K (b) for Dy2 (red) and Gd2 (blue). Black overlapping
points in (a) represent the experimental data and the colored solid lines correspond to the CASSCF ab initio calculations (for
details see below) in the case of Dy2 and the best fit (PHI software) in the case of Gd2 with g = 2.00 and JGdGd = −0.004 (1).

2.3. AC Magnetic Properties

Alternating-current (AC) magnetic susceptibility (χ) measurements revealed slow
magnetic relaxation for Dy2 under an applied DC field. The frequency (ν) dependence
in the 1–1000 Hz range under varied magnetic fields 100–7000 Oe recorded at 3.5 K is
presented in Figure 4. In the 200–3000 Oe DC field, only one major maximum can be
observed in the out-of-phase magnetic susceptibility (χ′′). Only under DC fields larger
than 3000 Oe a second maximum reveals itself at lower frequency range, which was not
analyzed. The main maximum shifts from around 15 Hz at HDC = 200 Oe to around 7 Hz
at the magnetic field in the 800–1400 Oe range and then shifts towards higher frequencies
under HDC > 2000 Oe.
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The AC magnetic susceptibility was then studied under the optimal magnetic field of
1000 Oe at various temperatures in the 2.8–8.3 K range (Figure 5). The maxima in the χ′′(ν)
plots show a clear shift towards higher frequencies when the temperature is increased.
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The AC data presented in Figures 4 and 5 were fitted using a modified Debye
model [29] and the resulting best fits are shown in the respective Figures as colored solid
lines. The extracted relaxation times of the magnetization were then plotted vs. the mag-
netic field τ−1(H) (Figure 6a) and vs. the temperature lnτ(T−1) (Figure 6b). Equation (1)
was used to fit the magnetic field dependence of the relaxation times τ extracted from the
χ′,χ′′(ν) under various magnetic fields [30]:

τ −1(H) = A1/(1 + A2H2) + A3H4 + A4 (1)

where the first part is the quantum tunneling of magnetization (QTM), the second one is
related to the direct relaxation process and the constant value A4 stands for the contribution
of the field-independent processes (Orbach and Raman) (Figure 6). The best fit parameters
are gathered in Table 3 (top part).
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Table 3. Best fit parameters obtained by fitting τ−1(H) (Figure 6a) and lnτ(T−1) (Figure 6b) to
Equations (1) and (2), respectively.

T/K 3.5 K

field dependence
(Figure 6a)

range/Hz 1–1000
field range/Oe 100–7000

A1/s−1 110 (7)
A2/Oe−2 1.2 (2)·10−5

A3/Oe−4 2.63 (5)·10−12

A4/s−1 22.9 (9)
R2 0.995

HDC/Oe 1000

temperature dependence
(Figure 6b)

range/Hz 1–1000
temp. range/K 2.8–8.3

C0/s−1 0 (fixed)
C1/s−1K−1 0.75 (fixed)
C2/s−1K−n 0.015 (7)

n 5.81 (33)
τ0/s 4.9 (1.9)·10−6

(Ueff/kB)/K 34 (2)
R2 0.99956

The values of the relaxation time τ extracted from the temperature dependence of the
χ′,χ′′(ν) were fitted using Equation (2) [30]:

lnτ(T−1) = ln[(C0 + C1T + C2T n + τ0
−1exp(-Ueff/kBT))−1] (2)

where the constant value C0 stands for the temperature-independent QTM, the second
part is related to the direct process, C2 and n describe the Raman process and the last
part characterizes the contribution of the Orbach relaxation. The best fit parameters are
gathered in Table 3 (bottom part). The QTM contribution under the applied magnetic field
of 1000 Oe was fixed to zero in this equation, as the analysis of the field dependence of
τ did not show significant contribution of QTM process under this optimal applied DC
magnetic field. The contribution of the direct process was calculated from Equation (1) and
then inserted into Equation (2) as a fixed value (C1 = 0.75 s−1·K−1) (Figure 6b).

The fit of the temperature dependence of lnτ shows a significant contribution of the
Raman relaxation process (C2 = 0.015 (7) s−1·K−n, n = 5.81 (33)) and a small contribution
of the Orbach process, especially visible at lower temperatures (τ0 = 4.9 (1.9)·10−6 s and
Ueff/kB = 34 (2) K or 23.6 cm−1 which might be significantly underestimated).

2.4. Ab Initio Calculations

Theoretical calculations CASSCF were performed separately for both DyIII centers
based on the SCXRD structural models using the OpenMolcas software [31] (for details,
see Table S1 in the Supplementary Materials; SM). The ground state Kramers doublet
(KD) for both centers is composed mainly of the |±15/2 > mJ state with a significantly
axial character (Tables S2 and S3 in the SM) and nearly parallel easy magnetization axes
(Figure 7a). The first excited KD doublet is located ca. 130 cm−1 above the ground KD,
which is significantly larger than the experimentally estimated energy barrier for the
magnetization reversal Ueff = 23.6 cm−1 (Figure 7b) This suggests that the relaxation of the
magnetization in Dy2 is controlled by the Raman relaxation mechanism (not Orbach), as
already pointed out in the section discussing the AC magnetic data.
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Figure 7. Structural diagram of Dy2 with the red sticks indicating the orientation of the easy magnetization axes of the
ground state Kramers doublet (KD) for both DyIII centers obtained from the CASSCF calculations (the direction indicated
by the arrows is hypothetical, assuming intramolecular antiferromagnetic interactions between the DyIII centers within
the dimer based on the analysis of the DC magnetic properties of Dy2 and its Gd2 analogue) (a). Energy diagram of the
calculated Kramers doublets within the 6H15/2 multiplet of one of the DyIII centers in Dy2 (b). Arrows correspond to the
most important magnetization relaxation pathways.

3. Materials and Methods
3.1. General Considerations

The syntheses of the reported compounds as well as their preparation for measure-
ments were performed inside the Inert PureLab HE glovebox filled with argon gas due
to their sensitivity to air (predominantly moisture). Solvents (HPLC grade) were passed
through the Inert PureSolv EN7 solvent purification system under inert atmosphere. An-
hydrous DyCl3 (99.99%) was purchased from Sigma Aldrich and GdCl3 (99.9%) was pur-
chased from Alfa Aesar. Both chemicals were used without further purification. Li3(N3N)
was prepared according to the previously published method [23].

3.2. Preparation of Dy2

Solid DyCl3 (0.68 mmol, 183 mg) was added in portions into the solution of Li3(N3N)
(0.71 mmol, 272 mg) in 5.90 g of anhydrous THF. The reaction mixture was stirred for
4 days and then the solvent was removed under vacuum and replaced with pentane. The
off-white suspension was stirred for 20 min and then filtered using a P4 fritted funnel
(gravitational filtering). The solid was extracted with three more portions of pentane. The
yellow filtrates were combined and left at −40 ◦C for crystallization. After 3 days colorless
crystals were collected. Yield: 70 mg (15%). The identity and purity of the compound was
confirmed by powder X-ray diffraction (PXRD) measurements (Figure 8).

3.3. Preparation of Gd2

Solid GdCl3 (0.67 mmol, 178 mg) was added in portions into the solution of Li3(N3N)
(0.70 mmol, 267 mg) in 5.90 g of anhydrous THF. The reaction mixture was stirred for 3 h and
then the solvent was removed under vacuum and replaced with pentane. The suspension
was filtered (P4 fritted funnel; gravitational filtering) and the solid was extracted with
three more portions of pentane. The yellowish filtrates were combined and left in the
freezer at −40 ◦C for crystallization. After 3 days colorless crystals were collected. Yield:
70 mg (15%). The identity and purity of the compound was confirmed by powder X-ray
diffraction (PXRD) measurements (Figure 8, dark blue and light blue solid lines).
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3.4. Single Crystal X-ray Diffraction

Data collection was performed using Bruker D8 Quest Eco (Photon50) diffractometer
(Mo Kα radiation source: sealed tube with Triumph® monochromator). The crystals were
transferred from the mother liquor directly into the Paratone-N oil and mounted using
MiTeGen cryomounts. The data for each compound were collected first at 100 K (complete
data for publication) and then at room temperature (296 K; fast data collection for com-
parison with experimental PXRD patterns). Data processing was performed using Apex3
suite of programs. The structures were solved using direct methods and refined anisotropi-
cally (weighted full-matrix least-squares on F2 [32]). Hydrogen atoms were placed in the
calculated positions and refined as riding on the parent atoms. Structural diagrams were
prepared using Mercury software. CCDC 2099063 (Dy2 at 100 K), 2107188 (Dy2 at 296 K),
2099064 (Gd2 at 100 K) and 2107189 (Gd2 at 296 K) contain the supplementary crystal-
lographic data for this paper, which can be obtained free of charge from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (accessed on
2 September 2021). The cif files can also be found in the Supplementary Materials.

3.5. Powder X-ray Diffraction

PXRD measurements were performed at room temperature using Bruker D8 Advance
Eco diffractometer equipped with the CuKα radiation source (sealed tube), the Lynxeye
silicon strip detector and a capillary stage. The samples were ground using the agate
mortar inside the glovebox and loaded into 0.7 mm glass capillaries.

3.6. Magnetic Measurements

Magnetic measurements were performed using a Quantum Design MPMS-3 mag-
netometer in the −7 to 7 T magnetic field range and in the 1.8–300 K temperature range.
The samples were prepared inside the glovebox due to their sensitivity to air. We loaded
25–30 mg of each compound into a custom-made Delrin sample holder [33] and sealed
it. The experimental data were corrected for the diamagnetism of the sample and the
contribution of the sample holder.

www.ccdc.cam.ac.uk/data_request/cif
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4. Conclusions

A new dinuclear dysprosium(III) single molecule magnet comprising six-coordinate
DyIII centers shows slow relaxation of the magnetization controlled mainly by QTM at zero
applied magnetic field and by Raman relaxation process at HDC > 0. The lack of the SMM
behavior at zero field is most probably caused by the intramolecular antiferromagnetic in-
teractions transmitted through a double LiCl bridge (similar antiferromagnetic interactions
were found for the gadolinium(III) analog of Dy2). The field-induced SMM behavior, on
the other hand, is controlled mainly by the Raman relaxation. This is partly confirmed by
the CASSCF calculations, which indicate that Dy2 should be a much better-performing
SMM than it is actually observed with effective energy barrier for magnetization reversal
exceeding 130 cm−1. Further studies involving the diamagnetic dilution of the dinuclear
Dy2 with yttrium(III) that would switch off the possible antiferromagnetic interactions are
necessary for the complete understanding of the slow relaxation of the magnetization in
this compound.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7090125/s1, Table S1: Description and contractions of the basis sets
(two models: S—smaller, L—larger) employed in ab initio calculations of the DyIII crystal field,
Table S2: Summary of the energy splitting of the 6H15/2 multiplet of the Dy1A in models: L, S
with pseudo-g-tensors of each Kramers doublet and composition in the

∣∣mJ
〉

basis of ground state,
Table S3: Summary of the energy splitting of the 6H15/2 multiplet of the Dy1B in models: L, S with
pseudo-g-tensors of each Kramers doublet and composition in the

∣∣mJ
〉

basis of ground state.

Author Contributions: Conceptualization, D.P.; methodology, D.P.; investigation, M.B. and G.H.;
resources, D.P.; writing—original draft preparation, G.H. and M.B.; writing—review and editing, D.P.;
visualization, D.P., M.B. and G.H.; supervision, D.P.; project administration, D.P.; funding acquisition,
D.P.; calculations, M.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Science Center within the Sonata Bis project no.
2016/22/E/ST5/00055.

Data Availability Statement: CCDC 2099063 (Dy2 at 100 K), 2107188 (Dy2 at 296 K), 2099064 (Gd2
at 100 K) and 2107189 (Gd2 at 296 K) contain the supplementary crystallographic data for this
paper, which can be obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium.

Nature 2017, 548, 439–442. [CrossRef] [PubMed]
2. Canaj, A.B.; Dey, S.; Wilson, C.; Céspedes, O.; Rajaraman, G.; Murrie, M. Engineering macrocyclic high performance pentagonal

bipyramidal Dy(iii) single-ion magnets. Chem. Commun. 2020, 56, 12037–12040. [CrossRef]
3. Wang, J.; Li, Q.-W.; Wu, S.-G.; Chen, Y.-C.; Wan, R.-C.; Huang, G.-Z.; Liu, Y.; Liu, J.-L.; Reta, D.; Giansiracusa, M.J.; et al. Opening

Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono-Decker to Double-Decker Metallacrown. Angew. Chem. Int.
Ed. 2021, 60, 5299–5306. [CrossRef]

4. Habib, F.; Murugesu, M. Lessons learned from dinuclear lanthanide nano-magnets. Chem. Soc. Rev. 2013, 42, 3278–3288.
[CrossRef] [PubMed]

5. Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148.
[CrossRef]

6. Xin, Y.; Wang, J.; Zychowicz, M.; Zakrzewski, J.J.; Nakabayashi, K.; Sieklucka, B.; Chorazy, S.; Ohkoshi, S.-I. Dehydration–
Hydration Switching of Single-Molecule Magnet Behavior and Visible Photoluminescence in a Cyanido-Bridged DyIIICoIII
Framework. J. Am. Chem. Soc. 2019, 141, 18211–18220. [CrossRef]

7. Li, X.-L.; Wu, J.; Tang, J.; Le Guennic, B.; Shi, W.; Cheng, P. A planar triangular Dy3 + Dy3 single-molecule magnet with a toroidal
magnetic moment. Chem. Commun. 2016, 52, 9570–9573. [CrossRef]

8. Hewitt, I.J.; Tang, J.; Madhu, N.T.; Anson, C.E.; Lan, Y.; Luzon, J.; Etienne, M.; Sessoli, R.; Powell, A.K. Coupling Dy3 Triangles
Enhances Their Slow Magnetic Relaxation. Angew. Chem. Int. Ed. 2010, 49, 6352–6356. [CrossRef]

9. Habib, F.; Lin, P.-H.; Long, J.; Korobkov, I.; Wernsdorfer, W.; Murugesu, M. The Use of Magnetic Dilution To Elucidate the Slow
Magnetic Relaxation Effects of a Dy2 Single-Molecule Magnet. J. Am. Chem. Soc. 2011, 133, 8830–8833. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/magnetochemistry7090125/s1
https://www.mdpi.com/article/10.3390/magnetochemistry7090125/s1
www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
http://doi.org/10.1038/nature23447
http://www.ncbi.nlm.nih.gov/pubmed/28836589
http://doi.org/10.1039/D0CC04559D
http://doi.org/10.1002/anie.202014993
http://doi.org/10.1039/c2cs35361j
http://www.ncbi.nlm.nih.gov/pubmed/23334210
http://doi.org/10.1021/cr400018q
http://doi.org/10.1021/jacs.9b09103
http://doi.org/10.1039/C6CC05326B
http://doi.org/10.1002/anie.201002691
http://doi.org/10.1021/ja2017009
http://www.ncbi.nlm.nih.gov/pubmed/21563820


Magnetochemistry 2021, 7, 125 12 of 12

10. Habib, F.; Long, J.; Lin, P.-H.; Korobkov, I.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L.F.; Murugesu, M. Supramolecular architectures
for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chem. Sci. 2012, 3, 2158–2164. [CrossRef]

11. Rinehart, J.D.; Fang, M.; Evans, W.J.; Long, J.R. A N2
3– Radical-Bridged Terbium Complex Exhibiting Magnetic Hysteresis at 14 K.

J. Am. Chem. Soc. 2011, 133, 14236–14239. [CrossRef]
12. Rinehart, J.D.; Fang, M.; Evans, W.J.; Long, J.R. Strong exchange and magnetic blocking in N2

3−-radical-bridged lanthanide
complexes. Nat. Chem. 2011, 3, 538–542. [CrossRef] [PubMed]

13. Demir, S.; Zadrozny, J.M.; Nippe, M.; Long, J.R. Exchange Coupling and Magnetic Blocking in Bipyrimidyl Radical-Bridged
Dilanthanide Complexes. J. Am. Chem. Soc. 2012, 134, 18546–18549. [CrossRef] [PubMed]

14. Lin, P.-H.; Sun, W.-B.; Yu, M.-F.; Li, G.-M.; Yan, P.-F.; Murugesu, M. An unsymmetrical coordination environment leading to two
slow relaxation modes in a Dy2 single-molecule magnet. Chem. Commun. 2011, 47, 10993–10995. [CrossRef] [PubMed]

15. Guo, Y.-N.; Xu, G.-F.; Wernsdorfer, W.; Ungur, L.; Guo, Y.; Tang, J.; Zhang, H.-J.; Chibotaru, L.F.; Powell, A.K. Strong Axiality and
Ising Exchange Interaction Suppress Zero-Field Tunneling of Magnetization of an Asymmetric Dy2 Single-Molecule Magnet. J.
Am. Chem. Soc. 2011, 133, 11948–11951. [CrossRef] [PubMed]

16. Sakaue, S.; Fuyuhiro, A.; Fukuda, T.; Ishikawa, N. Dinuclear single-molecule magnets with porphyrin–phthalocyanine mixed
triple-decker ligand systems giving SAP and SP coordination polyhedra. Chem. Commun. 2012, 48, 5337–5339. [CrossRef]

17. Zou, L.; Zhao, L.; Chen, P.; Guo, Y.-N.; Guo, Y.; Li, Y.-H.; Tang, J. Phenoxido and alkoxido-bridged dinuclear dysprosium
complexes showing single-molecule magnet behaviour. Dalton Trans. 2012, 41, 2966–2971. [CrossRef]

18. Long, J.; Habib, F.; Lin, P.-H.; Korobkov, I.; Enright, G.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L.F.; Murugesu, M. Single-Molecule
Magnet Behavior for an Antiferromagnetically Superexchange-Coupled Dinuclear Dysprosium (III) Complex. J. Am. Chem. Soc.
2011, 133, 5319–5328. [CrossRef]

19. Shen, F.-X.; Pramanik, K.; Brandão, P.; Zhang, Y.-Q.; Jana, N.C.; Wang, X.-Y.; Panja, A. Macrocycle supported dimetallic lanthanide
complexes with slow magnetic relaxation in Dy2 analogues. Dalton Trans. 2020, 49, 14169–14179. [CrossRef]

20. He, M.; Guo, F.-S.; Tang, J.; Mansikkamäki, A.; Layfield, R.A. Fulvalene as a platform for the synthesis of a dimetallic dysprosoce-
nium single-molecule magnet. Chem. Sci. 2020, 11, 5745–5752. [CrossRef]

21. Aguilà, D.; Barrios, L.A.; Velasco, V.; Roubeau, O.; Repollés, A.; Alonso, P.J.; Sesé, J.; Teat, S.J.; Luis, F.; Aromí, G. Heterodimetallic
[LnLn’] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates. J. Am. Chem. Soc.
2014, 136, 14215–14222. [CrossRef]

22. Guo, Y.-N.; Chen, X.-H.; Xue, S.; Tang, J. Modulating Magnetic Dynamics of Three Dy2 Complexes through Keto–Enol Tau-
tomerism of the o-Vanillin Picolinoylhydrazone Ligand. Inorg. Chem. 2011, 50, 9705–9713. [CrossRef] [PubMed]

23. Cummins, C.C.; Schrock, R.R.; Davis, W.M. Synthesis of Terminal Vanadium (V) Imido, Oxo, Sulfido, Selenido, and Tellurido Com-
plexes by Imido Group or Chalcogenide Atom Transfer to Trigonal Monopyramidal V[N3N] (N3N = [(Me3SiNCH2CH2)3N]3−).
Inorg. Chem. 1994, 33, 1448–1457. [CrossRef]

24. Schrock, R.R.; Seidel, S.W.; Mösch-Zanetti, N.C.; Shih, K.-Y.; O’Donoghue, M.B.; Davis, W.M.; Reiff, W.M. Synthesis and
Decomposition of Alkyl Complexes of Molybdenum (IV) That Contain a [(Me3SiNCH2CH2)3N]3− Ligand. Direct Detection of
α-Elimination Processes That Are More than Six Orders of Magnitude Faster than β-Elimination Processes. J. Am. Chem. Soc.
1997, 119, 11876–11893. [CrossRef]

25. Pinkowicz, D.; Birk, F.J.; Magott, M.; Schulte, K.; Dunbar, K.R. Systematic Study of Open-Shell Trigonal Pyramidal Transition-Metal
Complexes with a Rigid-Ligand Scaffold. Chem.—A Eur. J. 2017, 23, 3548–3552. [CrossRef]

26. Brzozowska, M.; Handzlik, G.; Kurpiewska, K.; Zychowicz, M.; Pinkowicz, D. Pseudo-tetrahedral vs. pseudo-octahedral ErIII

single molecule magnets and the disruptive role of coordinated TEMPO radical. Inorg. Chem. Front. 2021, 8, 2817–2828. [CrossRef]
27. Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic

monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [CrossRef]
28. Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem.

Soc. Rev. 2018, 47, 2431–2453. [CrossRef]
29. Guo, Y.-N.; Xu, G.-F.; Guo, Y.; Tang, J. Relaxation dynamics of dysprosium (iii) single molecule magnets. Dalton Trans. 2011, 40,

9953–9963. [CrossRef] [PubMed]
30. Liddle, S.T.; van Slageren, J. Improving f-element single molecule magnets. Chem. Soc. Rev. 2015, 44, 6655–6669. [CrossRef]

[PubMed]
31. Aquilante, F.; Autschbach, J.; Carlson, R.K.; Chibotaru, L.F.; Delcey, M.G.; De Vico, L.; Fdez Galván, I.; Ferré, N.; Frutos, L.M.;

Gagliardi, L.; et al. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J.
Comput. Chem. 2016, 37, 506–541. [CrossRef]

32. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [CrossRef]
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