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Abstract: We investigate maneuvering superparamagnetic microparticles, or beads, in a remotely-
controlled, automated way across arrays of few-micron-diameter permalloy disks. This technique
is potentially useful for applying tunable forces to or for sorting biological structures that can be
attached to magnetic beads, for example nucleic acids, proteins, or cells. The particle manipulation
method being investigated relies on a combination of stray fields emanating from permalloy disks as
well as time-varying externally applied magnetic fields. Unlike previous work, we closely examine
particle motion during a capture, rotate, and controlled repulsion mechanism for particle transport.
We measure particle velocities during short-range motion—the controlled repulsion of a bead from
one disk toward another—and compare this motion to a simulation based on stray fields from
disk edges. We also observe the phase-slipping and phase-locked motion of particles engaging in
long-range transport in this manipulation scheme.

Keywords: patterned magnetic thin films; magnetic microparticles; superparamagnetism

1. Introduction

Spherical superparamagnetic microscale particles, polystyrene spheres encasing sub-
100 nm iron oxide nanoparticles, are commonly used for scientific and medical applications
for the isolation of known entities from mixtures. This is useful, for example, for sorting
rare cells such as circulating tumor cells from a mixture [1,2] or for isolating and purifying
known nucleic acid fragments for downstream amplification, used in the detection of
diseases such as coronavirus [3]. Often, the manipulation is done with macroscopic, hand-
held permanent magnets. However, there has been a recent development of manipulation
schemes in conjunction with microscopic surface-patterned magnetic materials, with parti-
cle motion controlled by externally-varied magnetic fields [4–8]. These developments in
bead trapping and manipulation allow for automated and programmable particle motion,
the micro- or nanoscale precision of particle trapping locations, and remotely tunable
forces [9]. Patterned structures can be built into microfluidic devices where sorting, isola-
tion, or purification steps, usually done at a macroscopic scale, can be done in lab-on-chip
environments with minimal fluid consumption.

Work has been done in measuring and modeling the behavior of particle motion on
patterned circular structures [6,9–12], showing motion that exhibits (1) a linear response to
an increasing frequency at low field frequencies, and (2) a sluggish motion at high field
frequencies, known in the literature as (1) phase-locked and (2) phase-slipping motion [4].
This behavior has been observed for motion across many magnetic structures [4] and for
looping beads [6,11,12]. Understanding this behavior may prove useful for biomedical
applications, for example for the detection of targeted analytes such as proteins or nucleic
acid fragments. Recent work has shown differences in the phase-locked and phase-slipping
motion of beads depending on the presence or absence of a specific target analyte that links
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beads into doublets or aggregates [7,13]. As such, closely monitoring bead motion serves
as a highly sensitive means of biomolecule detection. Obtaining a firm understanding of
particle dynamics and creating models to describe bead motion is essential to developing
these and similar techniques. Furthermore, investigating bead motion experimentally and
modeling bead behavior can yield measurements of physical properties associated with the
beads, for example the magnetic susceptibilities of individual beads at low field strengths.

In this paper, we investigate an under-studied method of chip-based particle transport
in which beads are captured at a magnetic disk edge, rotated around the disk periphery with
in-plane fields, and repelled in a controlled manner from the disk to an adjacent disk using
out-of-plane fields. This manipulation method is directed by small (<60 Oersted) externally
applied fields and allows not just for unidirectional long-range motion but also for flexible
trajectories that experimenters can control in real time [5]. We investigate microparticle
trapping (Figure 1) and motion (Figure 2) that include rotation around permalloy disks
and disk-to-disk hopping, a versatile manipulation scheme that allows for the application
of forces to many particles simultaneously.
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in the blue boxes. (c) High-frequency phase-slipping motion, where rightward motion still occurs, 
but the motion is not synchronous, as indicated by the particles in multicolored circles. The motion 
of the particles is no longer synchronous with other particles or with the field. All particles in this 
figure are Spherotech PMS-20-10, PMS-30-10, or PMS-40-10. Scale bar: 10 microns. 

The particles used in this study are Invitrogen Dynabeads M-270 Carboxylic Acid 
(ThermoFisher, Waltham, MA, USA) and Spherotech PMS-20-10, PMS-30-10, and PMS-
40-10 (Spherotech, Lake Forest, IL, USA). Dynabeads are polystyrene beads with an even 
dispersion of maghemite and magnetite throughout, containing an iron concentration of 
12% by weight [14]. Spherotech particles are polystyrene with magnetite at a concentra-
tion of 6-8% by weight [15]. 

To better understand the motion of superparamagnetic microparticles on surfaces, 
we investigated two regimes of particle motion on surface-based disk arrays: short-range 
disk-to-disk hopping (~4 microns) and long-range transport (~100 microns). We observe 
short-range motion with responses to experimental considerations, for example hop time 
vs. external field magnitude, that can be explained by a model where fields are calculated 
as emanating from disk edges. We also observe phase-locked and phase-slipping motion, 
but note differences between our observations as compared to models and similar results 
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Figure 2. (a) Short range microparticle (dark gray) hopping from permalloy disk (white) to adjacent
disk. Particle hopping is initiated by the abrupt direction switching of an out-of-plane magnetic field.
(b,c) Particle manipulation across several disks. The mechanism by which long-range motion occurs
is detailed in the materials and methods. (b) Low-frequency phase-locked motion using a cycling
magnetic field frequency of 1.5 Hz. All particles move synchronously; an example is shown in the
blue boxes. (c) High-frequency phase-slipping motion, where rightward motion still occurs, but the
motion is not synchronous, as indicated by the particles in multicolored circles. The motion of the
particles is no longer synchronous with other particles or with the field. All particles in this figure are
Spherotech PMS-20-10, PMS-30-10, or PMS-40-10. Scale bar: 10 microns.

The particles used in this study are Invitrogen Dynabeads M-270 Carboxylic Acid
(ThermoFisher, Waltham, MA, USA) and Spherotech PMS-20-10, PMS-30-10, and PMS-
40-10 (Spherotech, Lake Forest, IL, USA). Dynabeads are polystyrene beads with an even
dispersion of maghemite and magnetite throughout, containing an iron concentration of
12% by weight [14]. Spherotech particles are polystyrene with magnetite at a concentration
of 6-8% by weight [15].

To better understand the motion of superparamagnetic microparticles on surfaces,
we investigated two regimes of particle motion on surface-based disk arrays: short-range
disk-to-disk hopping (~4 microns) and long-range transport (~100 microns). We observe
short-range motion with responses to experimental considerations, for example hop time
vs. external field magnitude, that can be explained by a model where fields are calculated
as emanating from disk edges. We also observe phase-locked and phase-slipping motion,
but note differences between our observations as compared to models and similar results
in the literature.

2. Results
2.1. Short Range

An example of a disk-to-disk hop is shown in Figure 2a and Video S1. An example
of disk position and disk velocities vs. time for a single hop is shown in Figure 3. During
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disk-to-disk hops, particles exhibited instantaneous velocities of 20 to 200 microns per
second depending on the experimental conditions, but the particle velocity varied over
the duration of the hop. The highest particle speeds were generally seen at the beginning
and end of each hop (immediately after leaving one disk and immediately before capture
by the adjacent disk), consistent with the highest field gradients being located at the disk
edges. The particle speed increases and the jump time decreases with an increasing external
out-of-plane field Hz.
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Figure 3. Short-range hopping position vs. time and velocity vs. time graphs for Dynabeads M-270
particles for switching out-of-plane fields Hz of 30 Oe (a,b), 40 Oe (c,d), 50 Oe (e,f), and 60 Oe (g,h).
Three-frame average velocities are shown in blue. For all graphs, the in-plane field Hx = 35 Oe.
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To illustrate how particle hopping characteristics vary with external fields, the time
needed for a hop (distance = 3.8–4.0 microns) is compared to the out-of-plane field Hz,
while the in-plane field Hx is held at a constant 35 Oe. For an increased Hz, the repulsive
force pushing the bead from the disk and pulling the bead to the subsequent disk increases,
so the hop time is lower, as seen in Figure 4a. The data were fit with the model described
in the Materials and Methods section (blue line). For graphs showing Dynabead M-270
particles, the magnetic susceptibility χ used for the simulation was 0.9, and for the graphs
showing Spherotech particles, χ was 0.34. The strength of the source of the magnetic fields
λ0, as defined in Materials and Methods, was 3.5 mA for the simulations for both types of
bead, as the same magnetic disk geometry and material were used for both.
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Figure 4. Short-range hopping. (a,d) Jump time decreases with Hz. Error bars calculated from
the standard deviation of jump times for 10 s of jumps. (b,c,e,f) Position and velocity vs. time for
disk-to-disk jumps. Blue curves are from the simulation; orange/red from the experiment. Particles
are Dynabeads M-270 and Spherotech PMS-20-10.

2.2. Long Range

With a bead surface density of approximately 25 to 50 microparticles per 100 µm× 100 µm
square, particles were guided left or right across disk arrays using different external field
frequencies. Examples are shown in Videos S2 and S3 in the supplementary material. A
particle tracking routine was used to measure the average particle speed over several
(at least five) cycles of magnetic field. Particles which adhered to the surface and were
completely immobile were ignored. As seen in Figure 5a, the particle speed increased
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linearly with the frequency up to a critical frequency of approximately 3 Hz. Motion
was still observed beyond this critical frequency, but the average speed decreased. The
manipulated particles (and shown in Videos S2 and S3) varied in size, and Figure 3a only
reports motion for particles between 4 and 5 µm in diameter.
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Figure 5. (a) Average particle speed as transported on the permalloy disk array. The particles used are Spherotech PMS-40-10.
From 0 to 3 Hz, the motion is phase-locked, and beyond 3 Hz, the motion is phase-slipping, as the speed no longer increases
with the magnetic field frequency. (b) Simulation of the speed response of a single particle.

Figure 5b shows the predicted particle speed based on the simulation described in
the materials and methods. The motion of a single particle with a magnetic susceptibility
of 0.34 and diameter of 4.5 microns was modeled. An example of this model is shown in
Videos S4 and S5.

3. Discussion

Our simulation is able to describe the characteristics of disk-to-disk particle hopping,
for example the dependence of the hop time on the external field. Furthermore, the simu-
lation closely predicts a critical frequency of approximately 3–4 Hz for the experimental
conditions used in Figure 5a. However, the measured particle speeds in the phase-locked
region do not attain the predicted velocities; for example, at 2 Hz, the ideal and simu-
lated particle motion is 20 µm/s, but the measured velocity is 17 ± 2 µm/s. Similarly, a
more precipitous drop in speed past the critical frequency (in the phase-slipping region
of Figure 5a) is predicted by the simulation. This simulated drop is consistent with other
reports [7,13] and is consistent with reports of a “phase-insulated” or zero motion regime
at larger frequencies. However, the drop is not consistent with our data. We suspect that
deviations from the simulated results are due to our model only simulating one row of
disks. As seen in Video S5, a phase-slipping bead may slip off of a disk laterally to the
intended motion. This is common in experiments (see Video S3), but on a two-dimensional
array of disks this lost bead would be further captured and manipulated by an adjacent
row of disks; this is not accounted for in our model due to limitations in the computing
time. Furthermore, higher phase-slipping velocities may be due to the large surface particle
density in our long-range transport experiments, as our simulation only models the trans-
port of an individual particle. Dimers or aggregates, which are prone to phase-slipping
even at low frequencies, are likely to form at large bead densities, lowering speeds in
the phase-locked regions of Figure 5a. Furthermore, the large densities of particles that
are all magnetized by a uniform out-of-plane magnetic field lead to bead–bead magnetic
repulsion [16], and bead movement does induce bulk flow [17], suggesting reasons for the
lack of a fall-off in velocity in Figure 4a. We suspect that repeating experiments at lower
particle densities or for individual particles would more closely match the simulation in
Figure 5b. However, we suspect that a real-life application of this technique may employ
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a large bead density so as to guide many particles simultaneously, and so we choose to
report the data as presented.

We have investigated magnetic bead trapping and transport on disk arrays for a
method of particle manipulation involving bead capture, rotation, and controlled repulsion.
We have measured bead velocities during the controlled repulsion portion of the particle
transport and compared the short-range bead motion to a model based on magnetic fields
emanating from disk edges, suggesting that this model is able to predict measurable
properties of bead motion and response to external fields. Furthermore, we have observed
particle motion for long-range, multiple-disk transport, and we observe phase-locked and
phase-slipping behavior. We further note that beads are not as immobile at higher field
frequencies as is expected, suggesting a necessary experimental consideration when using
magnetic beads on disk arrays.

4. Materials and Methods
4.1. Device Preparation

Magnetic disk arrays (Figure 1a,b) were patterned using electron beam lithography
(FEI, Hillsboro, OR, USA). A silicon dioxide wafer was spin-coated at 4000 rpm with a layer
of 950 PMMA C4 e-beam resist (MicroChem Corp., Newton, MA, USA) and baked for 90 s
at 180 degrees Celsius. After pattern exposure using the electron microscope (with a surface
dose of 300 microcoulombs/cm2), the exposed e-beam resist was developed and washed
away with 1:3 methyl isobutyl ketone:isopropyl alcohol for 1 min. Following lithography,
40-nm permalloy (Ni0.8Fe0.2) was sputtered followed by acetone liftoff. After liftoff, disks
were protected by spin-coating a 200-nm layer of spin-on glass (Futurrex IC1-200, Franklin,
NJ, USA).

4.2. Experimental Methods for Particle Manipulation

Particles were suspended at a concentration of 6 × 10+7 beads/mL in deionized
water with 0.05% triton x-100 (by volume) (Triton™ X-100, Sigma Aldrich). For all exper-
iments, the patterned surface was placed on a platform under the microscope objective
lens (Figure 1c), and 5 µL of particle solution was pipetted onto the surface, using a Poly-
dimethylsiloxane (PDMS) o-ring to stabilize the fluid. For each experiment, a cover slip was
placed over the o-ring. The platform was surrounded by four electromagnets (Magnetech
OP-1212, Novi, Michigan, USA), used to generate tunable in-plane magnetic fields parallel
to the surface of the platform, denoted Hxy (or Hx and Hy, if referring to the individual com-
ponents of the field). A wire coil surrounds the platform and produces tunable out-of-plane
magnetic fields, denoted Hz (Figure 1b).

The short-range particle hopping experiments initially occurred with the fields Hx
and Hz set to magnitudes of a few tens of Oersted and with Hy set to zero. This caused
particles to align on the same side of magnetic disks (Figure 1c). Then, the Hz direction
was switched (after a 10 ms delay in which Hz = 0), which caused the particles to hop to a
neighboring disk, as seen in Figure 2a. The subsequent reversal of Hz hopped the particle
back to the initial disk, and this process was repeated (Video S1).

The long-range particle hopping experiments occurred with fields rotating 180◦ in the
xy-plane to rotate the particle around the disk’s periphery while an out-of-plane z-field
was applied. This was followed by the switching of the z-field, causing particles to hop
to adjacent disks. Subsequent transport was caused by a further 180◦ field rotation in the
opposite direction and a z-field flip. The field frequency, mentioned in Figures 2 and 5,
was defined in such a way that the oscillatory period was the time between consecutive Hz
flips. All externally applied magnetic fields in this study were 60 Oe or less.

All experiments were performed at 22 degrees Celsius.

4.3. Particle Tracking Methods

Experiments were imaged with a camera [ThorLabs 340M-USB, Newton, NJ, USA] at
333 frames per second. A particle tracking routine was used to measure the particle position
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and velocity. Particle tracking was done using the TrackMate [18] extension of ImageJ [19]
allowing for particle detection, frame-to-frame particle linking, and other particle property
characterizations (i.e., size measurement). Analysis of multiple videos was done by Python
script to automate the process. Care was taken during microscope experiments to keep the
background intensity consistent (both from video to video and across the field of view of a
single video), which aided the automaticity of particle tracking routines.

4.4. Description of Simulation

The magnetic fields and particle motion were simulated by approximating magnetic
fields as either emanating from or pointing toward the periphery of magnetic disks. This
was done by approximating a linear magnetic charge density that varied around disk
peripheries as λ(θ) = λ0 cos(θ − θ0) where θ is the location on the disk periphery and θ0 is

the direction of the in-plane field
→
Hxy, as the in-plane field magnetizes the disks and creates

two poles. The parameter λ0 is the strength of the source of magnetic fields (which has
units of amps) and is determined from the hop time vs. external field data (Figure 4a,d).
Because the disks are significantly thinner than they are wide, shape anisotropy restricts
the magnetization to an in-plane direction, so the out-of-plane magnetization is not con-
sidered. The stray magnetic field from a magnetic disk at point

→
r is approximated using

the equation:
→
H
(→

r
)
=

1
4π

∫
λ(θ)dl

r′2
r̂′ (1)

comparable to the equation for an electric field from a given linear (electric) charge density,

where
→
r
′

is a vector from a portion of the disk periphery to
→
r , and the integral is evaluated

around the disk periphery. Each disk has two poles at opposite edges, one acting as a
source and the other acting as a sink of magnetic fields.

To calculate the forces acting on a superparamagnetic particle, the superparamagnetic

particles are approximated as linearly magnetizable so that magnetization
→
m = χV

→
H,

where χ is the particle’s magnetic susceptibility, V is the particle’s volume, and
→
H is the

magnetic field at the center of the particle resulting from both the disks and any externally

applied field. The force acting on a paramagnetic particle
→
F = µ0

(
→
m ·
→
∇
)→

H, and for a

linearly magnetizable particle [4]:

→
F =

1
2

µ0χV
→
∇H2 (2)

For the simulations in this paper making comparisons to Dynabead M270 experi-
ments, the value used for the magnetic susceptibility χ is estimated to be 0.9 based on the
magnetization vs. field data (for fields under 100 Oe) reported in [20].

In addition to magnetic forces, viscous fluid forces were included in the simulation.
The viscous force was calculated by:

Fvis = 32πηva/3 (3)

for a spherical particle moving along a wall [21,22]. (η is the viscosity of the solution,
a is the particle’s radius, and v is the particle’s speed.) For all simulations, the viscosity
was 8.9 × 10−4 Pa·s, the room temperature viscosity of water.

The particles moving through water are a low-Reynolds number system, and as
such the inertial effects are small compared with the drag forces. At a constant force, a
1.4-µm-diameter particle reaches 99% of terminal velocity in 500 nanoseconds. However,
the simulation was run using a time-step of 1 ms, so inertial terms were ignored. A
particle’s velocity was calculated by balancing the equations for the magnetic force and
fluid drag, and a new position was calculated at each time step. Only in-plane particle
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motion is considered, so all vertical forces from gravity, buoyancy, and magnetism are
ignored. In addition, thermal fluctuations and friction are not considered in the model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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Video S5: Phase-Slipping Simulation.
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