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Abstract: The magnetoelectric effects in Jahn–Teller crystals are discussed on the basis of phenomenol-
ogy and microscopic theory. New magnetoelectric effects—metamagnetoelectricity—are analyzed.
Formation of multiferroic crystal states as the consequence of the cooperative Jahn–Teller effect
is discussed.
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Around 25 years ago it was recognized that the electrons are able to transfer not only
the electrical charge, but, additionally, spin. This was the beginning of spintronics [1].
In technology, the understanding of information transfer by electron spins led to the
emergence of a new field, where a variety of materials and devices for different applications
was developed. The modern state of the connection between chemistry, physics, materials
science, and engineering in this field is analyzed in detail in [2]. Especial importance for
spintronics is related to physics and chemistry of magnetic cluster compounds, where deep
quantum-mechanical analysis allows for better understanding of the system spin states
and more precise control of them at the measurements [3].

Several similar to spintronics fields of physics and technology were considered based
on quantum chemistry of materials. As the electronic states are characterized by the or-
bital momentum and its projection that also could be transferred by the electrons, the
orbitronics [4] field was suggested. In semiconducting materials, some electrons are charac-
terized by pseudospin and its projection (index of the electronic band valley). Transfer of
information by electron pseudospin led to pseudospintronics and valleytronics [5].

In this article, we would like to suggest a new field of research following the same
logic. In crystals, with the cooperative Jahn–Teller effect, the elementary energy excitations
of the crystal are dynamically coupled spins, orbital momentum (pseudospins describing
the degeneracy of the electron states) and phonons. These elementary excitations are called
vibrons (coming from vibronic interaction). It is clear that a new field of electronics could
be created—vibronics. The Jahn–Teller crystals are the smart materials for the necessary
devices. The magnetoelectric properties of these materials [6] are of especial interest as
they allow for both the traditional—electric—and magnetic channel of the information
transfer. Evidently, the physics of magnetoelectricity in Jahn–Teller elastics is of big interest
for the spintronics field.

The phenomenon of magnetoelectricity was at the center of attention a while ago, and
about 15–20 years ago, it reappeared as a property of multiferroics [7]. The interest in this
phenomenon continues nowadays. It is probably mostly connected to multiple applications
of these materials. At the same time, new fundamental results are obtained and more could
be expected in the future.

Nowadays, there are many very good reviews on magnetoelectricity of multiferroics
([8] and references therein). Nevertheless it makes sense to return to this problem once again
for the following reasons: (a) the Jahn–Teller elastics represent a new class of smart materials
with magnetoelectric effects; (b) the microscopic mechanism of the magnetoelectricity is still
under discussion; (c) the Jahn–Teller ferro- and antiferroelastics are of great interest since,
in this class of materials, magnetoelectric coefficients may be significant, and a microscopic
mechanism can be developed.
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1. Phenomenology of Magnetoelectricity in Jahn–Teller Ferroelastics

The concept of multiferroicity was introduced in 1970 [9] and defined as a state of
crystals with several simultaneously existing ferro-, antiferro-, or ferri-type orderings.
From this point of view, multiferroic magnetoelectricity is a characteristic of materials
with the ordering of magnetic and electric dipoles. In this article, we are going to discuss
magnetoelectricity in elastics—crystals with structural phase transitions.

It was mentioned for the first time in [10] that the magnetoelectric effects exist in
materials that are characterized by the simultaneous presence of magnetostriction and
electrostriction. On the other hand, the Jahn–Teller crystals are typically materials with the
giant magneto- and/or electrostriction [11]. This leads to the search of the magnetoelectric
effects among the Jahn–Teller elastics.

The thermodynamic potential of a Jahn–Teller elastic (for simplicity, the tetragonal
symmetry crystals will be considered) in the external electric and magnetic fields can be
described as:

Φ =
1
2

C0U2 +
1
4

C1U4 −UP +
L2

2χ0L
− LF + ∑

mn
λL

nmLnUm (1)

In Equation (1), the first two terms describe the elastic energy (C1 and C0 are elastic
constants, C1 > 0, C0 ~ (T − Ts), Ts—critical temperature of the structural phase transition),
the third one is the interaction of the strain U with the external pressure P, next is the energy
of the magnetized (L = M, where M is magnetization of the system) and/or polarized (L = P,
P is the polarization of the system) crystal, χ0L is the corresponding susceptibility, F = H
or E, and the last term is the interaction of the strain with the magnetization and/or
polarization. In the lowest order in U, for nonpolar paramagnets and/or paraelectrics, we
have n = 2 and m = 1 or 2, depending on whether or not the representation Г(U) is present
in the square of representation Г(L).

Starting with the case n = 2, m = 2, from the conditions ∂Φ/∂U = ∂Φ/∂L = 0, it is
easy to find the equilibrium values of the magnetization (polarization):

L = F(
1

χ0L−1 + 2λ22U2
)
−1

(2)

and the strain U (at P = 0):

U =

√
(−C0 − 2λ22L2

)C1
−1 (3)

Accepting that the corrections proportional to λ22 are small, we can replace L by
L0 = χ0L F and replace U by U0 =

√
−C0/C1 in the corresponding terms and obtain:

U =
√
(−C0 − 2λ22χ2

0LF2)/C1 (4)

It follows from Equation (4) that the dynamic direct magneto- or electrostriction
coefficient is:

DL ≡
∂U
∂F

= −
2λ22χ2

0LF√
(−C0 − 2λ22χ2

0LF2)C1

= −
2λ22χ2

0LF
UC1

(5)

From Equation (1), we obtain the effective elastic constant:

Ceff ≡ (
∂U
∂P

)
−1

P = 0
= 2C1U2, (6)
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which means that Ceff = 0 at T = Ts. Using Equation (6), we can rewrite Expression (5) in
the form where the effective elastic constant Ceff is in the denominator. From Equation (5)
it is evident that DL→∞ near the structural phase transition temperature T = Ts.

Switching now to the case of m = 1 in the thermodynamic potential Equation (1) for
the crystals with linear in strain magneto-/electroelastic coupling, from the condition
∂Φ/∂U = ∂Φ/∂L = 0, we similarly obtain the direct dynamic magneto-/electrostriction
coefficients in the form:

DL = −2λ21χ2
0LF(C0 + 3C1U2

)
−1

(7)

Note that this formula is obtained in the first approximation in λ21. In this approx-
imation, it is easy to show that the elastic constant Ceff remains unrenormalized by the
external fields (the renormalization is proportional to λ2

21). Hence, Equation (7) can be
written similarly to Equation (5) with the elastic constant in the denominator.

It follows from Equations (5)–(7) that the dynamic magneto- and electrostriction coef-
ficients have a characteristic temperature dependence due to the temperature dependence
of the spontaneous strain U. In both cases (m = 1 and m = 2) in the elastically ordered phase
of the crystal, these coefficients increase as the temperature approaches Ts. For magneto-
or electroelastic coupling, the coefficients that are quadratic in the order parameter (m = 2)

are proportional to (T − T1
s )
−1/2 with:

T1
s = Ts − 2λ22χ2

0F2, (8)

i.e., they diverge as T→ T1
s . In the case of linear coupling, the phase transition does not

occur in an external field F, because U 6= 0 at all temperatures. It is easy to show that for
T > Ts and F 6= 0:

U =
λ21L2

C0
(9)

In this case, the maximum value of the dynamic magneto-/electrostriction coefficient
is reached at T = Ts and becomes anomalously large in weak external fields F. Note that the
difference of the DL coefficients for the cases of the linear and quadratic coupling is also
manifested in the fact that in the first case ∂U/∂F = 0 in the paraelastic phase of the crystal.

From the previous discussion, it becomes clear that in the Jahn–Teller elastics, the
magneto- and electrostriction coefficients could be large, even in the crystals that are not
ferromagnetic or ferroelectric. This is a result of large forces applied to the crystal in the
external fields F, of strong electron-lattice coupling, and of a large crystal strain under
applied forces. The last is the result of lattice softness caused by structural phase transition.

So far, in this section, only monoferroic elastics have been discussed. However, there
are crystals that exhibit more than one structural phase transition, i.e., in addition to the
structural transition, the ferromagnetic and/or ferroelectric phase transitions take place.
If the critical temperatures of these transitions are significantly different, their influence
on each other is small, and the phenomenology of striction coefficients could be analyzed
similarly to the way discussed above. But if the critical temperatures are close, their mutual
influence cannot be ignored. For example, if two structural phase transitions occur (this
happens in some virtual Jahn–Teller elastics), the thermodynamic potential is still described
by Equation (1) and is different only in that:

C0~(T − Ts1)(T − Ts2), (10)

i.e., reverts to zero twice. The ordered phase is of internal type. It is not difficult to show
that, in such crystals, the strain reaches a maximum at the temperature

Tmax =
2Ts1Ts2

Ts1 + Ts2
. (11)
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In the virtual Jahn–Teller elastics with m = 1 and n = 2 the dynamic striction coeffi-
cients are described by Equation (7), but the temperature dependence is determined by
Equation (10). The temperature dependence of DL has two peaks near Ts1 and Ts2 and a
minimum at T ≈ Tmax.

Similarly to Equation (2) in the case of m = 1 the equilibrium polarization P can be
obtained from the thermodynamic potential Equation (1):

P = E(P = E(χ−1
0P + 2λ21

P U)−1 (12)

so that the magnetoelectric coefficient R = (∂P/∂H)E,H is equal to:
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indexes, 
1

mnA
 is the interaction between electrons in mα and nα1 sites caused by virtual 

phonon exchange and electron-strain interaction, 

0 0 0

0 1 0

0 0 1

z

 
 

=  
 − 

   

1 0 0

0 0 0

0 0 0



 
 

=  
 
 

   

0 1 0

1 0 0

0 0 0

x

 
 

=  
 
 
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0 0

0 0

0 0 0

i

i

− 
 
 
 
 

 (15) 

(13)

Thus, R is proportional to the dynamic magnetostriction D and therefore has a maxi-
mum in the vicinity of the structural phase transition temperature. However, it is evident
from the phenomenological theory and could be shown on the basis of microscopic calcula-
tions, that R, unlike D, does not become infinite at T ≈ Ts in the limit of E, H→0.

Equation (13) generalizes the previously suggested idea of magnetoelectric coupling
in materials with magnetostriction and electrostriction [10] for the case of crystals with
structural phase transitions. In these materials, the magnetoelectric effects are rendered
considerably larger as a result of anomalously large striction effects.

2. Microscopics of Magnetoelectricity in Crystals with Ferroelastic Ordering

Microscopics of magnetoelectricity in Jahn–Teller ferroelastics will be presented for
two different crystals: monoferroic TmAsO4 and multiferroic TbPO4.

In the TmAsO4 crystal, a structural transition from the tetragonal to the orthorhombic
phase takes place at T = Ts= 6.1 K with the spontaneous strain of B2g(D4h) symmetry.
The lowest electronic states of Tm3+ ion are the ground doublet and the excited singlet,
separated by a small gap ∆ = 14 cm−1. An electric field oriented in the base crystal plane
induces a polarization Px,y, which transforms according to the Eu(D4h) representation.
Since the spontaneous strain U transforms according to the B2g representation of the crystal
group, the case of linear strain electroelastic coupling (n = 2, m = 1) clearly occurs in this
situation (see Equation (1)). Similarly, a magnetic field H oriented in the same crystal plane,
will induce Mx,y and the spontaneous strain U according to the magnetoelastic coupling.

The Hamiltonian of the electronic subsystem can be written in the following form (the
dynamic electron-phonon interaction is neglected) [12]:
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where f is the electron-polarization interaction constant, g is the g-value factor, β is the
Bohr magneton, γ is the vibronic reduction factor, α, α1 = I,II are the crystal sublattice
indexes, Aαα1

mn is the interaction between electrons in mα and nα1 sites caused by virtual
phonon exchange and electron-strain interaction,

σz =

 0 0 0
0 1 0
0 0 −1

 τ =

 1 0 0
0 0 0
0 0 0

 τx =

 0 1 0
1 0 0
0 0 0

 Sx =

 0 −i 0
i 0 0
0 0 0

 (15)

At T < Ts σmI
z = σmII

z = σz 6= 0 and τmα
x = 0, τx = τ I

x + τ I I
x = 0,

Smα
x = 0Sx = SI

x + SI I
x = 0, if Hx,y = Ex,y = 0; however it could be shown that in

the presence of the external electric and magnetic fields, structural transition does not take
place (it is smeared out, σz 6= 0 at all temperatures) and the polarization (magnetization) P
(M) of the crystal is not zero (τx 6= 0, P ~ τx).
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The macroscopic crystal polarization P is defined by τx
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Therbium phosphate has a zircon crystal structure (group D4h19). The unit cell con-

tains two formula units, and the local symmetry D2d of the Tb3+ ions has no inversion cen-

ter [14]. At TN = 2.28K, the magnetic phase transition to a collinear (|| to a four-fold C axis) 

double-sublattice antiferromagnetic structure takes place. A second phase transition oc-

curs at Ts = 2.15K, where a monoclinic homogeneous strain occurs, and the magnetic mo-

ments deviate from the C axis [15–18]. As the local surrounding of Tb3+ ions has no inver-

sion center, spontaneous monoclinic strain should produce an electric dipole—active 

(16)

where W = Aσz,
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The magnetoelectric coefficient may be calculated by direct differentiation of polar-
ization by magnetic field. The formula for this calculation (not shown here) contains two
terms. One of them does not have anomalous temperature dependence at the critical
temperature T = Ts (Hx, Ex = 0) and corresponds to the P2M2 term in phenomenology. The
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So far, we have discussed the anomalous magnetoelectric effects in paramagnetic
and paraelectric ferroelastics. On the other hand, anomalous striction is also possible
in magnetic materials near the magnetic phase transition. Taking this into account, an
especially large magnetoelectric effect could be expected in Jahn–Teller compounds with
close or coinciding critical temperatures of structural and magnetic phase transitions.
An example of such a ferroelastic is the TbPO4 crystal where a magnetoelectric effect of
unusually large magnitude has been observed [13].

Therbium phosphate has a zircon crystal structure (group D4h
19). The unit cell contains

two formula units, and the local symmetry D2d of the Tb3+ ions has no inversion center [14].
At TN = 2.28 K, the magnetic phase transition to a collinear (|| to a four-fold C axis)
double-sublattice antiferromagnetic structure takes place. A second phase transition occurs
at Ts = 2.15 K, where a monoclinic homogeneous strain occurs, and the magnetic moments
deviate from the C axis [15–18]. As the local surrounding of Tb3+ ions has no inversion
center, spontaneous monoclinic strain should produce an electric dipole—active distortion
of this surrounding. The resulting dipole moments of different sublattices of ions lie in the
base plane and are antiparallel, so that the ordered monoclinic phase is non-polar. Thus,
the TbPO4 crystal is a Jahn–Teller multiferroic with coexisting elastic, magnetic and electric
dipole orderings [19].

Using an approach typical for the theory of cooperative Jahn–Teller effect [11], the aver-
age polarization, the magnetic moment, and the magnetoelectric coefficients αij = ∂Mi/∂Ej
were calculated. The calculation results for αxy and αzy were compared with the experi-
mental data ([15,19] and Figure 1). It was shown that for all three temperature areas T < Ts,
Ts < T < TN, and T > TN, the theoretical and experimental results are in qualitative agree-
ment. However, the agreement is not fully satisfactory. There are several possible reasons
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for that. One of them may be related to an energy level structure of the Tb3+ ions that is
more complicated than the one taken into account in the calculations (there are excited
singlet levels that should be considered in addition to the lowest doublet-singlet states).
The second reason is a quite complicated polydomain structure of the crystal samples used
in the experiments.
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Thus, within the framework of the microscopic approach based on the cooperative
Jahn–Teller effect, the anomalously large magnetoelectric effect in terbium phosphate is
caused by (a) strong coupling of electrons and phonons, resulting in formation of local
dipole moments (elastic and electric); (b) closeness of the critical temperatures of struc-
tural (simultaneous ferroelastic and antiferroelectric) and antiferromagnetic transitions;
(c) softness of the crystal lattice caused by the ferroelastic transition.

3. Metamagnetoelectricity in Jahn–Teller Elastics

The well-known phenomenon of metamagnetism refers to a sharp increase in the
crystal magnetic moment with the increase of the external magnetic field, parallel to the
easy magnetic axis of the crystal. This phenomenon is typical for antiferromagnets of the
Ising type. In the framework of the cooperative Jahn–Teller effect, as the microscopic theory
of structural phase transitions, those transitions are caused by the intersite interaction of
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the Ising type between the local pseudo-spins. Since the average local pseudo-spin defines
the local elastic dipole, it is expected that in antiferroelastics, a metaelasticity phenomenon
similar to metamagnetism takes place. In other words, in antiferroelastics (this type of
ordering is typical, for example, for some crystals with zircon or sheelite structure), the
strain exhibits a strong nonlinear behavior as a function of external uniaxial pressure.

On the other hand, as it was mentioned above, the external magnetic field and external
electric field can, at some orientation, create crystal (or crystal sublattice) strain with the
same symmetry as that of the spontaneous strain. That means that this nonlinear depen-
dence of the homogeneous strain (for antiferroelastics) or homogeneous polarization (for
antiferroelectrics) could be induced by external magnetic or electric field. These phenom-
ena may be called metamagnetoelasticity and metaelectroelasticity (for antiferroelastics) or
metamagnetoelectricity (for antiferroelectrics) correspondingly.

It is clear that the variety of physics phenomena related to the overturn of a crystal
sublattice dipoles is much richer for elastics than for magnets. This is connected not only
to the variety of the external fields—uniaxial pressure, magnetic, electric. It is also due to
the possibility of a sharp decrease (not only of an increase) of the average moment caused
by the change of the corresponding external field.

In order to illustrate the metamagnetoelectric phenomena, we will discuss the depen-
dence of electric polarization upon orientation of the external magnetic field in the base
crystal plane. As an example, we will analyze antiferroelastics with a zircon structure
where a Jahn–Teller ion is characterized by two Kramers doublets, separated by a small
gap. We assume that the intersite interactions support a two-sublattice antiferrodistortive
structure at T < Ts. Since the crystals under discussion are centrosymmetric at T > Ts,
the ordered phase is ferroelectric. This means that, in these crystals, the interaction of
electrons with polarization P is bigger than with the homogeneous strain U. In the real, not
hypothetical, DyVO4 crystal with the same structure that is described above, the ferroelastic
antiferroelectric ordering takes place at T < Ts. However, in the large enough external
electric field, the ferroelectric antiferroelastic phase can be induced [11].

The external magnetic field oriented perpendicularly to the C4 crystal axis (H||[100]
or [010]) creates spontaneous strain (magnetostriction), and at some critical value, overturns
the sublattice of the electric dipoles transferring crystal into the ferroelastic antiferroelectric
phase. This is what is suggested to call metamagnetoelectricity. If the angle θ is the
angle between the magnetic field H and the crystal [100] axis in the crystal base plane,
the dependence of the electric polarization (together with the induced magnetic moment
and the homogeneous strain) upon the angle θ is shown in Figure 2 for antiferroelastic
ferroelectric crystal.
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It is clear from Figure 2 that the electric polarization is linearly proportional to the
magnetic field, while the homogeneous strain is quadratic in H according to the magne-
tostriction of the nonmagnetic materials. Changing the angle θ from 90◦ to 180◦ changes the
sign of the orthorhombic strain as the stabilized and inverted sublattices exchange places.

Another example of metamagnetoelectricity is related to reorientational structural
phase transitions. It is known that in Jahn–Teller elastics, several (two or more) crystal
states with different orientation of the order parameter—homogeneous strain—are possible.
This happens in polydomain samples or in single domain crystal when uniaxial pressure
and external magnetic or electric fields stabilize states with different (e.g., of opposite
sign) order parameters. Monodomenization of Jahn–Teller crystals at T < Ts by external
magnetic field was studied in [14,22]. The overturn of the elastic domain happens due to
magnetostriction at large enough magnetic fields.

Sometimes, the reorientational phase transition occurs in single domain crystal that is
not only a ferroelastic, but also an antiferroelectric (such as the DyVO4 crystal discussed
above) or a ferroelectric. Accordingly, unique dielectric anomalies should be experimentally
observed at a reorientational transition induced by external magnetic field.

In the presence of a pressure P of B1g(D4h) symmetry, a magnetic field H, and an
electric field E||0Z, the free energy of the DyVO4 crystal can be written as:

F =
1
2

A(σI
z

2
+ σI I

z
2
) + BσI

z σI I
z − kT ln(ZI ZI I), (22)

where A and B are the molecular field constants of the intersite electron interactions inside
the crystal sublattices I and II and between them:

Zα = 2[exp(− h
2kT

f1) cosh
E−α
kT

+ exp(
h

2kT
) cosh

E+
α

kT
], (23)

E±α = 2[(Hα
mol ±

h
2

f2)
2 + ∆2γ2]1/2, h ≡ gβH, (24)
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In the ordered state of the DyVO4 crystal, each unit cell has two antiparallel electric
dipole moments dI∼ σI

z and dII∼ −σI I
z oriented along the crystal c-axis. Clearly, if the

magnetic field changes the sign of the crystal strain, the field-induced inversion of the
elastic dipoles is, at the same time, the inversion of the electric dipole moments of both
sublattices. Thus, a phase transition of the antiferroelectric-type takes place [23]. The
influence of the magnetic field on the dielectric susceptibility at such a transition is shown
in Figure 3. The variation of χ corresponds to curve abcd in an increasing magnetic field
and to curve dbea in a decreasing field. If the field varies sufficiently slowly, hysteresis does
not occur, and the behavior of χ(H) is described by curve abcd. It should be noted that,
in this case, the magnitude of the anomaly is smaller than in transitions from metastable
states, but still noticeable (≈8%).

Figure 3 also shows a similar magnetoelectric effect in the presence of the external
electric field (dashed lines). In this case, the anomaly magnitude is much larger, which
could be expected. In the presence of the external electric field E(A2u(D4h)), the ferroelastic
antiferroelectric DyVO4 crystal transfers to antiferroelastic ferroelectric state. Naturally,
the magnetoelectric anomalies in ferroelectrics are much more significant than in the
antiferroelectric crystals.
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4. Formation of Jahn–Teller Multiferroics

The Jahn–Teller crystals are compounds that contain at least one sublattice of ions,
molecules, or structural units with orbitally degenerate or pseudodegenerate electronic
states. The interaction of electrons with local vibrations of their surrounding leads to the
formation of local elastic dipoles. These elastic dipoles become ordered at some temperature
T below critical temperature Ts. In other words, due to the virtual phonon exchange, a
structural phase transition takes place—cooperative Jahn–Teller effect. In structural units
with a center of inversion, the odd vibrations could create an elastic dipole that is, at the
same time, an electric dipole, if the electron pseudo-degeneracy takes place [24]. If the
center of inversion is absent in the local symmetry of the crystal, the vibrations could still
form an electric dipole moment, even in the case of degenerate electronic state due to
piezoelectric effect [25]. This means that in Jahn–Teller crystals, the state with the ordered
elastic dipoles could be, at the same time, a state with the ordered electric dipoles. Examples
of such a system were discussed above. On the other hand, as it was shown in [26], if the
local crystal site is characterized by the absence of time inversion symmetry and center of
inversion, local distortion could create a vibronic magnetic moment due to piezomagnetic
effect. (More accurately speaking, the vibronic interaction forms a new component of the
magnetic moment [26]).

In connection with that, other local moments that could be ordered at a phase transi-
tion, should be mentioned—these are toroidal moments. One of the possible definitions of

a toroidal moment through the electrical dipole
→
d and magnetic dipole

→
M is:

→
T =

→
d ×

→
M. (27)

As it was shown earlier, the coexistence of elastic and electric dipole orderings in
Jahn–Teller crystals with the center of space inversion requires the presence of at least two
sublattices. In the ferroelastic crystal state, the two sublattices differ by the orientation of the
electric dipole moments so that the total crystal polarization is zero. For the antiferroelastics,
the same two sublattices are characterized by different orientation of the elastic dipole
moments (Utot = 0) and not-zero total crystal polarization P. If, in addition to the elastic
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and electric dipoles, the magnetic moments are ordered, the crystal lattice could be divided
in two or four sublattices.

Correspondingly, the toroidal moments in each of the sublattices could be oriented
differently [6].

In Figure 4a, each of the electric dipole sublattices is divided in two others with
antiparallel toroidal moments. At the same time, in Figure 4b, a ferrotoroidal ordering with
antiparallel dipole moments ordering is shown.
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As a rule, the toroidality of crystals is connected with their chirality—a property
extremely important for many applications in physics, chemistry, and biology.

In conclusion, the Jahn–Teller elastics represent a class of materials promising for
research of multiferroics. In Jahn–Teller multiferroics, the magnetoelectric effects are large
because of strong electron-phonon interaction and soft crystal lattice. The microscopic the-
ory of magnetoelecricity in these materials is described in the framework of the cooperative
Jahn–Teller effect theory.
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