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Abstract: Two carboxylate-bridged one-dimensional chain complexes, {[MnII(MeOH)2][FeIII(L)2]2}n

(1) and {[MnII(DMF)2][MnIII(L)2]2·DMF}n (2) [H2L = ((2-carboxyphenyl)azo)-benzaldoxime], con-
taining a low-spin [FeIII(L)2]− or [MnIII(L)2]− unit were synthesized. Magnetic measurements show
that the adjacent high-spin MnII and low-spin MIII ions display weak antiferromagnetic coupling
via the syn–anti carboxyl bridges, with J = −0.066(2) cm−1 for complex 1 and J = −0.274(2) cm−1 for
complex 2.

Keywords: one-dimensional complex; low spin; antiferromagnetic coupling; Mn(III); Fe(III)

1. Introduction

Low-spin (LS) MIII (M = Fe or Mn) ions have been widely used for assembling low-
dimensional molecular magnets [1–6], owing to the magnetic anisotropy and spin-orbit
coupling for LS MIII (M = Fe or Mn) ions, as well as zero-field splitting (ZFS) for LS MnIII [6].
Moreover, LS MIII-based hetero-bimetallic complexes would exhibit a high-spin ground
state due to ferromagnetic coupling between LS MIII and M’II (e.g., Ni, Cu) according
to the rule of strict orbital orthogonality (t2g vs. eg) [7]. According to the crystal-field
theory for coordination compounds, LS MIII should be surrounded by strong-field ligands.
Nevertheless, stable LS MIII-containing building blocks are still limited, most of which
are cyanide complexes [2–5,8–13]. The search for suitable strong-field ligands can help to
obtain new LS MIII-containing complexes.

Carboxylate ligands possessing a variety of bridging modes, such as syn–syn, syn–
anti, and anti–anti, play an important role in magnetic coupling propagation [14,15].
Azo carboxylate oxime ligands have emerged and contributed to the formation of stable
LS MIII(L)2 building units [16–18]. However, the valence of metal ions is also strongly
related to the self-assembly processes of the complexes. According to our previous re-
port, under one-pot reaction, MnIV(L)2 was formed in which aromatic azo oxime ligand
H2L acts as an (L·)3– radical to stabilize MnIV [19]. In this paper, a complex-as-ligand
method is used to obtain carboxylate-bridged MIIIMnII complexes. The precursor LS M(III)
complexes are Et4N[MIII(L)2] (M = Fe or Mn) [16,17]. The reaction of Et4N[MIII(L)2] with
Mn(OAc)2 gives rise to two novel one-dimensional complexes {[MnII(MeOH)2][FeIII(L)2]2}n
(1) and {[MnII(DMF)2][MnIII(L)2]2·DMF}n (2) based on the azo carboxylate oxime ligand
((2-carboxyphenyl)azo)-benzaldoxime (H2L, Scheme 1). Magnetic susceptibility measure-
ments show that the intrachain antiferromagnetic coupling exists between adjacent the MIII

and MnII via the syn–anti carboxylate bridges.
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Scheme 1. Molecular structure of H2L and [M(L)2]− (M = Fe or Mn). 

2. Results 
Complexes 1 and 2 were obtained by a two-step method. Firstly, the complex 

Et4N[M(L)2] (M = Fe or Mn) was synthesized by the coordination of H2L and metal ion; 
Secondly, the obtained complex is acted as a ligand to further coordinate with the second 
metal ion through the carboxyl group to form the target complexes 
{[MnII(MeOH)2][FeIII(L)2]2}n (1) and {[MnII(DMF)2][MnIII(L)2]2·DMF}n (2). Powder X-ray dif-
fraction (PXRD) patterns of complexes 1 and 2 are in good agreement with those simulated 
by Mercury software (Figure S1), indicating that the obtained crystals have high phase 
purity. 

2.1. Crystal Structures 
The crystallographic parameters for 1–2 are listed in Table 1. Complex 1 crystallizes 

in the tetragonal space group P4(2)/n and complex 2 crystallizes in the triclinic space 
group P-1. The bond lengths for the [M(L)2]− are displayed in Table 2. Complexes 1 and 2 
have a similar alternating -MnII-[MIII(L)2]− (M = Mn or Fe) 1D chain structure with a neutral 
structural unit consisting of two [MIII(L)2]− and one MnII (Figures 1 and 2 and Figures S2 
and S3). The intrachain MnII-MIII separations are 5.454(1) Å for complex 1 and 5.990(1) Å 
for complex 2, respectively. The MnII ion occupies the center of the structure with four 
[MIII(L)2]− groups connected on opposite sides by carboxylate bridges in the syn–anti mode. 
Two coordinating MeOH or DMF oxygen atoms are situated at the axial coordination sites 
to form an octahedral MnO6 coordination sphere. The corresponding Mn1-O and Mn2-O 
bond lengths in complexes 1 and 2 are within the range of 2.151(3)−2.193(2) Å (Table 3), 
all above 2 Å, typical of the +2 oxidation state of HS Mn ions, which is further confirmed 
by the bond valence sum (BVS) calculation (Supplementary Materials, Table S1). The co-
ordination geometry of MnII ion in complexes 1 and 2 calculated by the SHAPE [20] soft-
ware approaches Oh, with the smallest deviation value of 1.459 and 0.085, respectively 
(Table S2). The presence of crystallographic disorder in the coordinating methanol mole-
cules makes the calculated deviation value for complex 1 large, and therefore the devia-
tion value of 1.459 should be treated with care. The difference between these two com-
plexes is that the two [FeIII(L)2]− units at the opposite sides of Mn(II) are orthogonal to each 
other in complex 1, while the two [MnIII(L)2]− units in complex 2 are coplanar. The coordi-
nation geometry of FeIII ions in [FeIII(L)2]− and MnIII ions in [MnIII(L)2]− is close to Oh calcu-
lated by the SHAPE software, with the smallest deviation values of 0.588 and 0.807, re-
spectively (Table S2). The calculation results (Table S2) also indicate that the distortion 
toward trigonal prism (D3h) has been found for all metal ions with the second smallest 
deviation values. 

Table 1. Crystallographic parameters of complexes 1–2. 
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Formula C58H44Fe2MnN12O14 C65H57Mn3N15O15 

Scheme 1. Molecular structure of H2L and [M(L)2]− (M = Fe or Mn).

2. Results

Complexes 1 and 2 were obtained by a two-step method. Firstly, the complex
Et4N[M(L)2] (M = Fe or Mn) was synthesized by the coordination of H2L and metal ion; Sec-
ondly, the obtained complex is acted as a ligand to further coordinate with the second metal
ion through the carboxyl group to form the target complexes {[MnII(MeOH)2][FeIII(L)2]2}n
(1) and {[MnII(DMF)2][MnIII(L)2]2·DMF}n (2). Powder X-ray diffraction (PXRD) patterns
of complexes 1 and 2 are in good agreement with those simulated by Mercury software
(Figure S1), indicating that the obtained crystals have high phase purity.

2.1. Crystal Structures

The crystallographic parameters for 1–2 are listed in Table 1. Complex 1 crystallizes
in the tetragonal space group P4(2)/n and complex 2 crystallizes in the triclinic space
group P-1. The bond lengths for the [M(L)2]− are displayed in Table 2. Complexes 1 and
2 have a similar alternating -MnII-[MIII(L)2]− (M = Mn or Fe) 1D chain structure with a
neutral structural unit consisting of two [MIII(L)2]− and one MnII (Figures 1 and 2 and
Figures S2 and S3). The intrachain MnII-MIII separations are 5.454(1) Å for complex 1 and
5.990(1) Å for complex 2, respectively. The MnII ion occupies the center of the structure with
four [MIII(L)2]− groups connected on opposite sides by carboxylate bridges in the syn–anti
mode. Two coordinating MeOH or DMF oxygen atoms are situated at the axial coordination
sites to form an octahedral MnO6 coordination sphere. The corresponding Mn1-O and
Mn2-O bond lengths in complexes 1 and 2 are within the range of 2.151(3)−2.193(2) Å
(Table 3), all above 2 Å, typical of the +2 oxidation state of HS Mn ions, which is further
confirmed by the bond valence sum (BVS) calculation (Supplementary Materials, Table
S1). The coordination geometry of MnII ion in complexes 1 and 2 calculated by the
SHAPE [20] software approaches Oh, with the smallest deviation value of 1.459 and
0.085, respectively (Table S2). The presence of crystallographic disorder in the coordinating
methanol molecules makes the calculated deviation value for complex 1 large, and therefore
the deviation value of 1.459 should be treated with care. The difference between these two
complexes is that the two [FeIII(L)2]− units at the opposite sides of Mn(II) are orthogonal
to each other in complex 1, while the two [MnIII(L)2]− units in complex 2 are coplanar.
The coordination geometry of FeIII ions in [FeIII(L)2]− and MnIII ions in [MnIII(L)2]− is
close to Oh calculated by the SHAPE software, with the smallest deviation values of 0.588
and 0.807, respectively (Table S2). The calculation results (Table S2) also indicate that the
distortion toward trigonal prism (D3h) has been found for all metal ions with the second
smallest deviation values.
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Table 1. Crystallographic parameters of complexes 1–2.

1 2

Formula C58H44Fe2MnN12O14 C65H57Mn3N15O15
Fw 1299.69 1453.07

T/K 293(2) 293(2)
Crystal system Tetragonal Triclinic

Space group P4(2)/n P-1
a/Å 20.651(3) 9.2247(6)
b/Å 20.651(3) 13.2300(7)
c/Å 13.641(3) 14.2577(8)
α/◦ 90 82.3377(15)
β/◦ 90 79.666(2)
γ/◦ 90 85.466(2)

V/Å3 5818(2) 1693.83(17)
Z 4 1

ρcalcd/g cm−1 1.484 1.496
Reflections collected 6637 7655

GOF on F2 1.090 1.153
R1 [I > 2σ(I)] 0.0579 0.0485

wR2 (all data) 0.1972 0.1631
CCDC 2044110 2044111

Table 2. Selected bond lengths (Å) and angles (◦) for the [M(L)2]− in complexes 1–2 and the previously
reported Et4N[M(L)2] [16,17].

Complex 1
(M = Fe)

Et4N[Fe(L)2]
[16]

(M = Fe)

Complex 2
(M = Mn)

Et4N[Mn(L)2]
[17]

(M = Mn)

M1-O1 1.935(3) 1.919(6) 1.939(3) 1.906(7)
M1-O5 1.929(2) 1.879(6) 1.929(3) 1.906(7)
M1-N1 1.895(3) 1.892(6) 1.924(3) 1.929(6)
M1-N3 1.887(3) 1.907(6) 1.950(3) 1.950(7)
M1-N4 1.904(3) 1.888(6) 1.934(3) 1.929(6)
M1-N6 1.895(3) 1.899(7) 1.953(3) 1.950(7)

M1-O5-C15 127.8(2) 129.0(3) 131.3(2) 132.7(3)
M1-O1-C1 127.6(2) 130.3(3) 131.7(2) 132.7(3)
O1-M1-N3 172.54(13) 170.7(2) 170.11(12) 168.4(3)
O5-M1-N6 172.36(13) 165.9(3) 170.33(12) 168.4(3)
N1-M1-N4 178.44(13) 178.5(3) 164.92(12) 173.4(5)Magnetochemistry 2021, 7, x FOR PEER REVIEW 4 of 10 

 

 

 
Figure 1. Molecular structure of complex 1. Top: thermal ellipsoids. Bottom: The 1D chain. Hydro-
gen atoms and solvent molecules are omitted for clarity. Fe: dark yellow; Mn: cyan; C: gray; N: blue; 
O: red. 

 

Figure 2. Molecular structure of complex 2. Top: thermal ellipsoids. Bottom: The 1D chain structure. 
Hydrogen atoms and solvent molecules are omitted for clarity. Mn: cyan; C: gray; N: blue; O: red. 

Table 3. Bond length (Å) and angles (°) of the Mn(II) ions in complexes 1–2. 

1 2 
Mn1-O2A 2.183(3) Mn2-O2 2.151(3) 
Mn1-O2B 2.183(3) Mn2-O2A 2.151(3) 

Figure 1. Molecular structure of complex 1. Top: thermal ellipsoids. Bottom: The 1D chain. Hydrogen
atoms and solvent molecules are omitted for clarity. Fe: dark yellow; Mn: cyan; C: gray; N: blue;
O: red.
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Figure 2. Molecular structure of complex 2. Top: thermal ellipsoids. Bottom: The 1D chain structure. 
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Table 3. Bond length (Å) and angles (°) of the Mn(II) ions in complexes 1–2. 

1 2 
Mn1-O2A 2.183(3) Mn2-O2 2.151(3) 
Mn1-O2B 2.183(3) Mn2-O2A 2.151(3) 

Figure 2. Molecular structure of complex 2. Top: thermal ellipsoids. Bottom: The 1D chain structure.
Hydrogen atoms and solvent molecules are omitted for clarity. Mn: cyan; C: gray; N: blue; O: red.

Table 3. Bond length (Å) and angles (◦) of the Mn(II) ions in complexes 1–2.

1 2

Mn1-O2A 2.183(3) Mn2-O2 2.151(3)
Mn1-O2B 2.183(3) Mn2-O2A 2.151(3)
Mn1-O6 2.192(3) Mn2-O4 2.162(3)

Mn1-O6A 2.192(3) Mn2-O4A 2.162(3)
Mn1-O7A 2.181(7) Mn2-O7 2.167(3)
Mn1-O7B 2.193(5) Mn2-O7A 2.167(3)

C1A-O2A-Mn1 144.6(3) Mn2-O2-C1 167.8(3)
C15-O6-Mn1 139.6(3) Mn2-O4A-C15A 169.3(3

O7A-Mn1-O7B 164.58(25) O2B-Mn1-O6 172.65(11)

For the [Fe(L)2]− units in complex 1, the Fe–N bond distances are in the range of
1.887(3)−1.904(3) Å, which are similar to those in Et4N[FeIII(L)2] [17]. The Fe–O bond
distances are 1.929(2) Å and 1.935(3) Å, a little longer than that (1.919 and 1.879 Å) in
Et4N[FeIII(L)2] (Table 2). A similar situation occurs to the [Mn(L)2]− units in complex
2: the Mn–N bond distances in the range of 1.924(3)−1.953(3) Å are similar to those in
Et4N[MnIII(L)2] [18], and the Mn–O bond distances (1.929(3) and 1.939(3) Å) are slightly
longer. The M-O elongation should be due to the bridging coordination of the carboxylate
groups [19]. M-N/O bond lengths for HS Mn(III) ions are generally longer than 2.0 Å ow-
ing to the Jahn–Teller distortion. In complex 2, all the Mn-N/O bond lengths in [Mn(L)2]−

units are shorter than 2 Å, indicating that the Mn(III) ions in [M(L)2]− units are in LS state
with negligible Jahn–Teller effect. This assumption is further confirmed by the BVS calcu-
lation and the cyclic voltammetry (Supplementary Materials, Figure S4). The CV curves
show nearly reversible redox responses for complexes 1 (E1/2 = −0.016 V vs. SCE) and
2 (E1/2 = −0.048 V vs. SCE), consistent with that of previously reported Et4N[FeIII(L)2]
(−0.05 V) and Et4N[MnIII(L)2] (−0.065 V), and can be attributed to the redox processes
[FeIII(L)2]− + e−� [FeII(L)2]2− and [MnIII(L)2]− + e−� [MnII(L)2]2−, respectively. Thus,
complex 1 is a rare example of a carboxylate-bridged Mn(II)-Fe(III) chain complex, and
2 is a new mixed-valent MnIIMnIII complex. In complex 2, there is no obvious hydrogen
bonding interaction between the DMF molecules and the ligand L2− because the C-H
bonds are not a good acceptor for H-bonding. In complex 1, apparent intrachain hydrogen
bonding between the disordered methanol molecules and L2− with the O–O separations of
2.640 Å and 2.745 Å, as shown in Figure S5. No intermolecular π–π stacking is present in
complexes 1 and 2.
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2.2. Magnetic Properties

The temperature-dependent magnetic susceptibilities of complexes 1 and 2 were mea-
sured under 1000 Oe external field in the range of 2–300 K. The experimental magnetic
susceptibilities were corrected for the diamagnetism of the constituent atoms (Pascal’s
tables). As shown in Figure 3, complexes 1 and 2 have similar magnetic susceptibility
curves. The χmT values of each complex remain constant above 30 K. When the tempera-
ture was lower than 30 K, the χmT values decrease rapidly with the decrease of temperature
due to the intramolecular antiferromagnetic coupling between adjacent metal ions. The
data obey the Curie–Weiss law with the negative Weiss constant of θ = −2.71 K and
−4.05 K, respectively, which further proves that the existence of antiferromagnetic inter-
actions in complexes 1 and 2. The room temperature χmT per MnIIMIII

2 (M = Fe or Mn)
values were 5.317 cm3 K mol−1 for complex 1 and 6.588 cm3 K mol−1 for complex 2, are
slightly higher than the theoretical value of 5.125 cm3 K mol−1 [two LS FeIII ions (S = 1/2)
and one HS MnII ion (S = 5/2)] for 1 and 6.375 cm3 K mol−1 [two LS MnIII ions (S = 1) and
one HS MnII ion (S = 5/2)] for 2. As shown in Figure 4, the field dependence (0–50 kOe) of
the magnetization shows that with the increase of the field, the magnetization increases
gradually and reaches the maximum values of 6.088 Nβ and 5.749 Nβ at 50 kOe for com-
plexes 1 and 2, respectively. The experimental curves for complexes 1 and 2 lie below the
Brillouin curves corresponding to non-interacting LS-SFe/SMn and SMn spins with g = 2.0,
indicating the existence of overall antiferromagnetic coupling. The Brillouin function, BS, is
[
(

S + 1
2

)
/S]coth

(
S + 1

2

)
gβH
kT −

1
2S cot h gβH

2kT and the magnetization M equals NgβSBS [21].
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3. Discussion

In complex 1, the low-spin octahedral FeIII ion has an electronic configuration of t2g
5,

and there is an unpaired electron on the degenerate π-orbital of dxy, dxz, and dyz. The high-
spin octahedral MnII ion with the t2g

3eg
2 configuration has three unpaired electrons on the

degenerate t2g π-orbitals, as well as two unpaired electrons on the degenerate σ-orbitals
dx

2−y
2 and dz

2. A similar situation occurs in the t2g
4-t2g

3eg
2 between low-spin MnIII ion

and high-spin MnII ion in complex 2. According to the theory of the strict orthogonality of
magnetic orbitals, the configuration of the above two sets of magnetic orbitals enables both
ferromagnetic and antiferromagnetic coupling in complexes 1 and 2, and usually, the latter
contribution is dominant. Thus, together with the syn–anti bridged carboxyl group that
tends to transfer antiferromagnetic coupling [22], overall antiferromagnetic interaction was
observed in the two complexes.

To study the strength of magnetic coupling between metal ions, it is necessary to fit
the temperature-dependence magnetic susceptibility. For the [MIII]2-MnII chain system
in complexes 1 and 2, the magnetic susceptibility data (5–300 K) can be fitted by the
Fisher model for uniform 1D chains with Ĥ = −J ∑n−1

i=1 SiSi+1 [23] (Equation (1)). A
rough approach similar to that previously used for 2D and quasi-2D complexes [24–26]
was used on the basis of the crystal data, i.e., the 1D chain can be treated as alternating
uniform M2Mn trimers (Figure 5) with the identical intra-trimeric and intrachain exchange
constants (Jt = J) on the basis of the Hamiltonian Ĥ = −JtŜMn1(ŜFe1 + ŜFe1A) for complex
1 and Ĥ = −JtŜMn2

(
ŜMn1 + ŜMn1A

)
for complex 2, respectively. The corresponding fit

equations for M2Mn trimers are shown in Equations (2) and (3).

χm =
Ng2β2

3kT

[
1 + u
1− u

]
× St(St + 1), (1)

where u = coth(JSt (St + 1)/kT) − kT/JSt(St + 1).
For complex 1,

χt =
Ng2β2

4kT

[
10x7+35 x2+35+84x−5

2x7+3x2+3+4x−5

]
= Ng2β2

3kT St(St + 1),

x = exp(−Jt/kT).
(2)

For complex 2,

χt =
Ng2 β2

4kT [ A
B ] =

Ng2 β2

3kT St(St + 1),

A = 330 exp(10K) + 168 exp(K) + 70 exp(−6K) + 20 exp(−11K) + 2 exp(−14K)+

168 exp(5K) + 70 exp(−2K) + 20 exp(−7K) + 70,

B = 10 exp(10K) + 8 exp(K) + 6 exp(−6K) + 4 exp(−11K) + 2 exp(−14K) + 8 exp(5K)+

6 exp(−2K) + 4 exp(−7K) + 6,

K = Jt/2kT.

(3)
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Figure 5. The M2Mn-based 1D model for the fit to the magnetic susceptibility of complexes 1 and 2
(M = Fe or Mn).

The best-fit parameters are g = 2.017(8) and J = −0.066(2) cm−1 for complex 1, and g = 2.053(4),
J = −0.274(2) for complex 2. The calculated curves based on the above parameters are well consistent
with the experimental data, and the negative J values are in accordance with the prediction that the
carboxyl group in syn–anti bridging mode tends to transmit antiferromagnetic coupling [22]. The
absolute J values are very small, precluding any possibility of a single-chain magnet for the present
two complexes. The measurements on ac magnetic susceptibility show that under zero external
dc field, the imaginary part of the magnetic susceptibility of complexes 1 and 2 has no signals and
maintains zero.

4. Materials and Methods
4.1. Materials

All reagents were purchased from commercial sources and used without further purification.
H2L, Et4N[Fe(L)2], and Et4N[Mn(L)2] were prepared according to the literature methods [16,17].

4.2. Physical Measurements
The C, H, and N elemental analyses were performed on a Cario Erballo elemental analyzer.

IR spectra were recorded on a WQF-510A Fourier transform infrared spectrometer using KBr pel-
lets. Magnetic susceptibility measurements were measured by a Quantum Design MPMS-XL5
SQUID magnetometer. Cyclic voltammetry measurements were tested on a CHI660E electrochemical
workstation, using a platinum plate as the working electrode, platinum wire as the counter elec-
trode, Ag/AgCl electrode (Sat. KCl) as the reference electrode, and n-Bu4NClO4 (0.1 M) as support
electrolyte in acetonitrile.

4.3. X-ray Crystallography
The single-crystal X-ray diffraction measurements were tested on a Rigaku R-Axis RAPID

IP diffractometer by using Mo Kα radiation (λ = 0.71073 Å). The structures were solved by direct
methods using the SHELXTL-97 program package and refined with full-matrix least squares on F2.

4.4. The Preparation of Complexes 1 and 2
{[MnII(MeOH)2][FeIII(L)2]2}n (1): A methanol solution (10 mL) of Mn(OAc)2·4H2O (0.2 mmol)

was slowly added into a methanol solution (10 mL) of Et4N[Fe(L)2] (0.2 mmol). The obtained
dark purple solution was heated and stirred for about 30 min and then cooled, filtered, and evap-
orated for about 1 week to obtain dark purple block crystals. Yield: 40%. Anal. Calcd (%) for
C58H44Fe2MnN12O14: C, 53.60; H, 3.41; N, 12.93. Found: C, 53.59; H, 3.49; N, 12.70. IR (cm−1)
ν(-COO-): 1599, 1385.

{[MnII(DMF)2][MnIII(L)2]2·DMF}n (2): A DMF solution (10 mL) of Mn(OAc)2·4H2O (0.2 mmol)
was slowly added into Et4N[Mn(L)2] (0.2 mmol) in DMF (10 mL). The resultant dark purple solution
was diffused by ether in an H-tube for about 1 week to obtain red-brown block crystals. Yield: 40%.
Anal. Calcd (%) for C65H57Mn3N15O15: C, 53.73; H, 3.95; N, 14.46. Found: C, 53.71; H, 4.07; N, 14.42.
IR (cm−1) ν(-COO-):1591, 1382.
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5. Conclusions
We used a ‘complex as ligand’ method to create two one-dimensional chain complexes 1 and

2 based on low-spin [MIII(L)2]− units (M = Mn or Fe). The syn–anti carboxyl bridges transmit
weak antiferromagnetic coupling between adjacent MnII-MIII ions. Complex 1 possesses a novel
deflecting arrangement of [Fe(L)2]− units and is a rare example of carboxylate-bridged hetero-
metallic complexes [18,27]. Further work involves the construction of carboxylate- or oxime-bridged
bimetallic low-dimensional magnets based on similar low-spin azo carboxylate oxime ligands.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/magnetochemistry7070105/s1, Figure S1: PXRD patterns for complexes 1 and 2 in the range of
5–50 degrees, Figure S2: (top) Side view of complex 1 along c axis; (bottom) View of the 1D skeleton
of complex 1, Figure S3: Side view of complex 2 along a axis; (bottom) View of the 1D skeleton of
complex 2, Figure S4: Cyclic voltammograms (scan rate 50 mV s−1) of 10–3 M acetonitrile solutions
of complexes 1 and 2 at 298 K, Figure S5: The intrachain hydrogen bonding interaction between the
disordered methanol oxygen and the carboxylate oxygen atoms of L2− in complex 1. Table S1: The
r0 values of some metal-ligand (M-L) bonds in HS metal ions, Table S2: The results calculated by
SHAPE software.
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