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Abstract: The sentinel lymph node is the first lymph-node-draining cancer metastasis. The identi-
fication of the sentinel lymph node using magnetic particles and a magnetic sensor has attracted
attention in recent years, as this method is less invasive than the conventional method of radiotracer
injection. However, the development of a two-dimensional measurement method for sentinel lymph
nodes using magnetic nanoparticles remains an issue. In the present study, a method and apparatus
for the two-dimensional imaging of magnetic particle distribution were developed to detect a lymph
node with magnetic particles concentrated within lymphoid tissues. The method comprises the
reconstruction of the magnetic field measured with a high-sensitivity magnetic sensor and with
a magnetic detection ability of 2 nT/

√
Hz at 100 Hz (5 nT/

√
Hz at 1 Hz). The proposed system

measures the two-dimensional magnetic field distribution in an area of up to 25 × 25 mm2 using a
coil generating a 0.77 mT external magnetic field applied to the measurement target. The improved
spatial resolution of the images makes it possible to use two-dimensional imaging for diagnostics of
breast cancer metastases.

Keywords: cancer metastases; sentinel lymph node; imaging; magnetic nanoparticles; spatial resolution

1. Introduction

Breast cancer is a disease that includes the growth of cancerous cells and the formation
of new blood and lymphatic vessels within these cells from the existing surrounding
blood vessels and lymphatic vessels. Because new blood vessels and lymphatic vessels are
formed within the tumor, free-floating cancer cells from the breast cancer are transported
throughout the body by these vessels and develop metastases at new locations. Specifically,
lymph nodes that filter impurities in lymphatic vessels are the most susceptible tissues to
cancer cell accumulation and the formation of metastases. A lymph node where the breast
cancer first metastasizes is called the sentinel lymph node (SLN). Before breast cancer
surgery, sentinel lymph node biopsy is performed in order to confirm whether the cancer
has metastasized or not [1–5]. There are multiple lymph nodes in lymphoid tissues [1],
and the average diameter of a lymph node is approximately 1 cm [4]. At present, the SLN
is usually identified by dye-guided [2,3] and radioisotope (RI) methods [6], but the latter
method is highly invasive, as a radioactive material is injected into lymphoid tissues as
a tracer [7]. In recent years, the identification of the SLN using magnetic particle sensors
has attracted attention due to its low invasiveness compared to the conventional methods
using radiotracers [8,9]. Nanoparticles [10,11] of ferromagnets materials, such as magnetite
(Fe3O4) and ferrite (MO·Fe2O3, MO: metal oxide) possessing superparamagnetic properties
that exhibit magnetism and produce heat in response to electromagnetic waves, are already
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being used in the field of medicine [12]. With the existing dye-guided RI or magnetic
particle methods, positions of metastases are manually confirmed using a Geiger counter
and magnetic probe; thus, the results strongly depend on the subjective judgment of
technicians, and it is difficult to directly ascertain the area of tracer distribution. In addition,
identifying the SLN with the highest tracer content in all lymph nodes is challenging
to experts (Figure 1a,b). This issue can be resolved by measuring the two-dimensional
distribution of tracers in all lymph nodes (Figure 1c,d).
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Figure 1. Methods of the sentinel lymph node identification. The position of a tracer injected into a breast cancer (a) in the
conventional method is manually detected with a detector by the location of the sentinel lymph node (b). According to the
proposed method, magnetic particles are injected as a tracer to the breast cancer (c), and then the spatial distribution of the
magnetic particles is determined by a two-dimensional scan with a magnetic sensor (d).

Thus, in the present work, we developed a system and apparatus to measure the
two-dimensional distribution of magnetic particles using image reconstruction and a
high-sensitivity magnetic sensor and demonstrated the system’s performance.

2. Results

Figure 2 demonstrates the result of a verification experiment of image reconstruction
using a ferrite magnet. Figure 2a,b demonstrates a magnetic field distribution measured
at 1.5 and 1.7 mm from the ferrite magnet surface. Figure 2c is a reconstructed image
using the two magnetic field distributions in Figure 2a,b. The magnetic field distribution
images shown in Figure 2a,b detected three ferrite magnets as one object, as they could not
differentiate them. However, in the reconstructed image in Figure 2c, the spatial resolution
is improved, and the three ferrite magnets can be easily distinguished.
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images (a,b).

Figure 3 shows the experimental results of experiments I to III, where magnetic par-
ticles were measured. The measured magnetic field distributions are demonstrated in
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Figure 3a,b, respectively, while Figure 3c shows the reconstructed image. In the present
experiment, when the distance from the sample surface to the magnetic sensor was 2.0 mm
or more, the sample shape could not be visible in the obtained images without reconstruc-
tion. In addition, in the experiments where the distance from the magnetic particle sample
surface to the magnetic sensor was 4.0 mm or more, a cross-shaped sample could not be
distinguished on the image without reconstruction; hence, a magnetic particle distribution
could not be detected. In contrast, in the reconstructed images, even in Figure 3II,III, where
the shape of the sample cannot be distinguished in the experimental images, the spatial
resolution of the reconstructed image is improved to the rate that the sample shape can
be distinguished.
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Figure 3. Two-dimensional magnetic particle distributions (I, II, and III): (a,b) measurement image;
(c) reconstruction image based on (a,b).

3. Discussion

Figure 4 shows magnetic field profiles along the yellow dashed line in the image
reconstruction verification experiment using ferrite magnets as the target. In the profiles,
the differences between the magnetic field intensities inside and outside of the ferrite
magnet’s location (Width 1) and the difference between the intensities on ferrite magnets
and between them are shown (Width 2). Relative ratios of Width 2 compared to Width 1 in
Figure 4a,b are 0.5% and 4.3%, but in Figure 4c, it is increased up to 51%. Therefore, the
spatial resolution was improved using the image reconstruction to a rate providing easy
identification of the magnetic source shape.
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Figure 4. Two-dimensional magnetic particle distributions: I images and magnetic field intensity profiles measured at
1.7 mm (a) and 1.5 mm (b) distances from the magnetic source, and reconstruction I (c) based on Images I (a) and I (b).

Figure 5 shows the image and line profiles of the sample with embedded magnetic
particles. The half-width on the line profile is 9.5, 7.2, and 3.0 mm in Figure 5a–c, respec-
tively. As the sample width along the line was 2.5 mm, the spatial resolution was improved
using the electromagnetic field reconstruction. Figure 6c demonstrates a superposition of
reconstructed and real images of the measured target. The shape of the magnetic particle
distribution delineated in the reconstruction was equivalent to the actual sample shape.
Therefore, the two-dimensional magnetic particle distribution measurement system uti-
lizing image reconstruction and a high-sensitivity magnetic sensor enhances the image
spatial resolution and provides clear imaging of magnetic particle distribution.
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4. Materials and Methods

The scheme of a two-dimensional magnetic particle distribution measurement system
using image reconstruction and a high-sensitivity magnetic sensor is shown in Figure 7.
The developed system consists of hardware that collects the measurement data and image
reconstruction software for their analysis. The hardware consists of a high-sensitivity
magnetic sensor mounted on an X–Y–Z triaxial positioning stage with stepping motors, a
coil generating an external magnetic field, a power source for the coil, a signal amplifier, an
AD converter, and a computer to process the signals. As the magnetic sensor, we used the
STJ-220 tunneling magnetoresistance device from MicroMagnetics (TMR has a magnetic
detection ability of 2 nT/

√
Hz at 100 Hz (5 nT/

√
Hz at 1 Hz)). The external field was

generated by a Helmholtz coil with a diameter of 8 cm consisting of 2 × 38 turns of a
0.35 mm enamel wire. The 1.0 A direct current was applied to the Helmholtz coil to create
an external electric field. The measured sample was placed at the center of the coil. When
the measured surface is distant from the magnetic source, the measured magnetic field
distribution has a poor spatial resolution. However, this problem was solved using image
reconstruction. The magnetic field distribution within the sample was reconstructed from
the measurement results by an analytical solution of the governing equation of the static
magnetic field (Equation (1)). A variety of magnetic field reconstruction methods have
been developed [13–15]. Roth’s method [13] takes the magnetic sources at only one side of
the two half-spaces divided by the measurement plane. Our method takes the magnetic
sources at both sides of the two half-spaces divided by the measurement plane. This
provided us with images of magnetic particle distribution within the samples with a high
spatial resolution.

The image reconstruction procedure used in the present study is introduced below [16].
As the space between the magnetic sensor and magnetic particles does not contain other
magnetic sources, the governing equation of the magnetic field in the free space is expressed
by Equation (1):

∆Hi(x, y, z) = 0 (i = x, y, z) (1)

Among magnetic field vectors in a Cartesian coordinate system (x, y, z), in the present
study, we measure the magnetic field distribution in the x–y plane along the z-direction
(see Figure 7). The solution for the Hz component in Equation (1) is as follows;

Hz(x, y, z) =
1

(2π)2

x
∞
−∞eikx x+ikyy

{
a
(
kx, ky

)
ez
√

kx2+ky2
+ b
(
kx, ky

)
e−z
√

kx2+ky2
}

dkxdky (2)

where kx and ky are wavenumbers in the x- and y-directions, respectively. By determin-
ing a

(
kx, ky

)
and b

(
kx, ky

)
from Equation (2), Hz(x, y, z) can be reconstructed. a

(
kx, ky

)
and b

(
kx, ky

)
are calculated from the two-dimensional magnetic field distribution at z = 0,

Hz(x, y, 0), and two-dimensional magnetic field gradient distribution, ∂Hz(x, y, z)/∂z|z=0
are set as the boundary conditions. Equation (3) is derived by substitution of a

(
kx, ky

)
and
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b
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kx, ky
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into Equation (2) with f

(
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)
and g
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)
, as well as the Fourier transform

of Hz(x, y, 0) and ∂Hz(x, y, z)/∂z|z=0.
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Figure 9. A magnetic-particle-containing sample used in the measurements: (a) optical image of the sample; (b) schematic 
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Figure 7. Two-dimensional magnetic particle distribution measurement system utilizing image
reconstruction and a high-sensitivity magnetic sensor. A magnetic field from the Helmholtz coil
is applied to magnetic particles, while a magnetic sensor scans magnetic field distribution along
the surface using the stepping motor. The Helmholtz coil is not used in the case of a magnet not
requiring magnetization. Image reconstruction was performed on the basis of obtained magnetic
field measurement data.

Therefore, magnetic field distribution in the free space can be reconstructed using
the measured distributions of the two-dimensional magnetic field and its gradient. In the
present system, these distributions were determined by measuring two two-dimensional
magnetic field distributions at different z positions.

In this paper, we firstly performed the image reconstruction with a ferrite magnet
used as the measurement target. This experiment was conducted for the purpose of
verifying the performance of the developed system. The ferrite magnet exhibits residual
magnetization, so the experiment was conducted with the Helmholtz coil removed from
the measurement system shown in Figure 7. First, in order to confirm the performance
of the developed system, we measured a general magnet without applying a magnetic
field. For the measurements, we used a sample comprising circular ferrite magnets with
a diameter of 6 mm placed at the top of an equilateral triangle with a side length of 2 cm
(Figure 8). Measurements were taken at distances of 1.5 and 1.7 mm from the TMR sensor
to the sample surface. The images had a 128 × 128 pixel resolution, while the scanning
area was 150 × 150 mm2.

We then registered the response from magnetic particles magnetized by the coil
and examined the two-dimensional magnetic particle distribution measurement system
utilizing image reconstruction of high-sensitivity magnetic sensor data. Figure 9 shows
the structure of the studied sample. Magnetic particles with a diameter of 10 nm were
dispersed within the organic solvent. The saturation magnetization was 44 mT, and the
initial magnetic susceptibility was 2.64. Measurements were taken at the following six
conditions. Density at 25 ◦C was 1.21 × 103 kg/m3, and magnetic particle concentration
was 7.9 vol %.
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I (a) Distance between sensor and sample: 2.0 mm, scanning area: 20 mm × 20 mm.
I (b) Distance between sensor and sample: 1.0 mm, scanning area: 20 mm × 20 mm. II
(a) Distance between sensor and sample: 3.0 mm, scanning area: 20 mm × 20 mm. II (b)
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Under these six conditions, the image resolution was 64 × 64 pixels.

5. Conclusions

The two-dimensional magnetic particle distribution measurement system utilizing
image reconstruction and a high-sensitivity magnetic sensor provides a two-dimensional
visualization of magnetic particle distribution with a high spatial resolution, even when
the magnetic source is distant from the measurement surface. Therefore, the SLN can be
detected with magnetic particles injected into the body using a magnetic sensor located
near the skin surface. In this paper, the maximum distance between the magnetic sensor
and the magnetic source was 4 mm. When the distance between the magnetic sensor and
the magnetic source is far, low-spatial-frequency components in the Fourier-transformed
data of the magnetic field distribution expand to the far side, but the high-spatial-frequency
components become weak. Therefore, to achieve high spatial resolution at a distance, it is
important to detect the weak high-spatial-frequency components [17].

Following the obtained results, the studies are in progress toward the application of a
method for the biopsy of the SLN.
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