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Abstract: Crystal-to-crystal transformation is a path to obtain crystals with different crystal struc-
tures and physical properties. K2[Co(C2O4)2(H2O)2]·4H2O (1) is obtained from K2C2O4·2H2O,
CoCl2·6H2O in H2O with a yield of 60%. It is crystallized in the triclinic with space group P1 and cell
parameters: a = 7.684(1) Å, b = 9.011(1) Å, c = 10.874(1) Å, α = 72.151(2)◦, β = 70.278(2)◦, γ = 80.430(2)◦,
V = 670.0(1) Å3, Z = 2 at 100 K. 1 is composed of K+, mononuclear anion [Co(C2O4)2(H2O)2

2−]
and H2O. Co2+ is coordinated by two bidentated oxalate anion and two H2O in an octahedron
environment. There is a hydrogen bond between mononuclear anion [Co(C2O4)2(H2O)2

2−] and
H2O. K2[Co(µ-C2O4)(C2O4)] (2) is obtained from 1 by dehydration. The cell parameters of 2 are
a = 8.460(5) Å, b = 6.906 (4) Å, c = 14.657(8) Å, β = 93.11(1)◦, V = 855.0(8) Å3 at 100 K, with space group
in P2/c. It is composed of K+ and zigzag [Co(µ-C2O4)(C2O4

2−]n chain. Co2+ is coordinated by two
bisbendentate oxalate and one bidentated oxalate anion in trigonal-prism. 1 is an antiferromagnetic
molecular crystal. The antiferromagnetic ordering at 8.2 K is observed in 2.

Keywords: oxalate; cobalt; crystal structure; magnetic property

1. Introduction

The change of the weak interaction of guest molecules, coordination geometry dis-
tortion, and coordination number in coordination compounds can effectively modulate
the physical properties as magnetism, absorption, and chirality, so the dynamic molec-
ular crystals have received great attention for their potential applications in molecular
devices, as molecular sensors and switches become a powerful method for obtaining a
specific compound with the yield of 100% by crystal-to-crystal transformation in crystal
engineering [1–7]. The crystal-to-crystal transformations were observed between different
dimensional coordination units as zero-dimensional (0D), one-dimensional chain (1D),
two-dimensional (2D) layer, and three-dimensional (3D) coordination frameworks [8–10].
We are interested in dynamic crystals of MX2–(1,4-dioxane)–H2O system, and 0D to 2D, 1D
to 2D, 1D to 3D crystal-to-crystal transformations were found [11–13]. Oxalate (C2O4

2−) is
one of most popular used three-atoms ligands in the study of molecular-based magnet, its
versatile abilities and intermediating efficient magnetic coupling among transition atoms
have constructed 1D, 2D, and 3D magnetic materials [14–21]. However, the research on
oxalate-based dynamic crystal is limited. Herein, we present a crystal-to-crystal transfor-
mation from 0D mononuclear compound K2[Co(C2O4)2(H2O)2]·4H2O (1) into a reported
1D coordination compound K2[Co(µ-C2O4)(C2O4)] (2) accompanied by changes in crys-
tal color, cell parameters, space group, coordination environment, crystal structure, and
magnetic property.
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2. Experiment and Discussion

1 was obtained from K2C2O4·2H2O, Co(NO3)2·6H2O in H2O with yield of 60%.
When 1 was heated at an elevated temperature (at 120 ◦C for three minutes), it

transferred to 2 after dehydration with a mass loss of 25.7%, crystal structure changed from
mononuclear to one-dimensional chain (Scheme 1) and the crystal color changed from
orange to pink. 2 remained stable until 300 ◦C (Figure 1). This is the second method to
obtain 2 except the solvothermal method. The IR bands (Figure S1) between 1 and 2 is the
strong broad band above 3000 cm−1 υ(O-H) as from H2O in 1. The existence weak broad
band above 3000 cm−1 means 2 is unstable to air as reported [17].
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Figure 1. TGA plot of 1 (black) and 2 (red).

1 crystallizes in triclinic with space group of P1: a = 7.684(1) Å, b = 9.011(1) Å,
c = 10.874(1) Å, α = 72.151(2)◦, β = 70.278(2)◦, γ = 80.430(2)◦, V = 670.0(1) Å3, Z = 2. 1 is com-
posed of K+, mononuclear coordination anion Co(C2O4)2(H2O)2

2− and H2O (Figure 2a).
There are two K+, one Co2+, two oxalate (C2O4

2−), and six H2O in an independent unit. K1
is surrounded by five O from three oxalato and four H2O, K2 is surrounded by five O from
three oxalato and four H2O. K column formed by K1 and K2 host the vacancy of H-bond
network formed by oxalate and H2O along the b axis. K1· · ·K2 distances are 3.872(2) Å
and 5.630(2) Å alternatively, and K1· · ·K1 and K2· · ·K2 distances are 9.011(1) Å. Each
Co2+ is coordinated by two oxalate anions with Co-O 2.078(2)~2.099(2) Å on the equatorial
plane, and two H2O with Co-O 2.114(4) Å~2.120(3) Å to fulfill the octahedron environment.
O-Co-O angles are among 88.4(2)~92.3(1)◦ from H2O to equatorial plane and 176(1)◦ be-
tween two H2O atoms. Viewed along the b axis, Co· · ·Co distances are of 9.011(1) Å and
7.684(2) Å alternatively along the a axis. There are hydrogen bonds between anions and
coordinated H2O: O9-H1· · ·O8(-x,1-y,1-z) 2.839(5) Å/170◦, O10-H4· · ·O1(-x,2-y,-z) 3.178(5)
Å/127◦; between anions and solvent H2O: O14-H12· · ·O1 2.795 Å/163◦, O13-H9· · ·O6(1-
x,y,z) 2.740 Å/169◦, O9-H2· · ·O14(-x,1-y,-z) 2.760 Å/179◦, O12-H8· · ·O2(1-x,1-y,z) 2.820
Å/167◦, O11-H5· · ·O8(-x,1-y,1-z) 2.826 Å/156◦, O10-H3· · ·O12(-x,1-y,z) 2.755 Å/176◦,
O11-H6· · ·O3(-x,1-y,-z) 2.709 Å/178◦, O13-H10· · ·O7 2.803 Å/164◦.

The crystal structure of 2 is the same as reported isostructural of K2[Fe(µ-C2O4)(C2O4)]
[17]. It consists of K+ and zigzag chain [Co(µ-C2O4)(C2O4)2−]n (Figure 2b). There are one
and two half K+, one Co2+, one and two half oxalato in an independent unit. Co2+ is
trigonal-prismatic coordinated by three oxalate anions with Co-O distance 2.058(3)~2.151(4)
Å. K+ is in the vacant formed by Co(C2O4)2

2− chain.
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Figure 2. Crystal structure and appearance of 1 (a) and 2 (b). Color code: K, dark green; Co, cyan; C,
light grey; O, red.; H, grey. Blue dashed lines are hydrogen bonds.

Depending on the extensive hydrogen bonds in 1 and zigzag chained structure of
2, the magnetic properties of them were investigated. The transformation from 1 to 2 is
irreversible. The sample was checked and remained the same before and after magnetic
experiments.

1: χT is 3.41 cm3 K mol−1 at 300 K. It is significantly larger than the value of
1.875 cm3 K mol−1 expected for an isolated, spin-only ion with S = 3/2 and g = 2.00. This
suggests a strong spin-orbit coupling. [20–22] The χT value decreased upon cooling and
reached 1.30 cm3 K mol−1 at 2 K. The susceptibility data above 50 K fit the Curie–Weiss law
well, giving Curie and Weiss constants of C = 3.613(6) cm3 K mol−1 and θ = −21.2(2) K,
respectively, with R = 3.74 × 10−5 (Figure 3). The negative Weiss constant means the
antiferromagnetic interaction between Co2+ ions through hydrogen bonds. At 2 K, the
isothermal magnetization is 2.24 Nβ at 65 kOe (Figure 4). No long-range magnetic ordering
was observed in 1.
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Figure 4. Isothermal magnetization of 1 (empty black square) and 2 (empty red circle) at 2 K.

2: On χ versus T plot, a broad maximum of 0.031 cm3 mol−1 was observed around
50 K, which is similar to reported oxalate-bridged one-dimensional compounds [15,17,20].
Then χ value decreased upon cooling smoothly, it is 0.0070 cm3 mol−1 at 2 K. At 300 K, χT
is 3.24 cm3 K mol−1, this means a strong spin-orbit coupling of Co2+ as 1. The χT value
decrease upon cooling and reach 0.014 cm3 K mol−1 at 2 K. The data above 120 K were
fitted with Curie–Weiss law, giving Curie and Weiss constant C = 3.66(2) cm3 K mol−1,
θ = −35(1) K, R = 4.96 × 10−5. Field-cooled magnetization (FCM) and zero-field-cooled
magnetization (ZFCM) measurements under a field of 10 Oe show a magnetic ordering at
8.2 K (Figure 3, inset). At 2 K, the isothermal magnetization increases smoothly and reaches
0.072 Nβ at 65 kOe. The Hysteresis loop (Hc) is 500 Oe.

3. Conclusions

Orange 1 transfer to pink 2 by dehydration. 1 is composed of K+, mononuclear coordi-
nation anion Co(C2O4)2(H2O)2

− and H2O with extensive hydrogen bond between anion
and H2O, H2O, and H2O. 2 is consisted of K+ and zigzag chain anion [Co(µ-C2O4)(C2O4)2−]n.
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The antiferromagnetic interaction in 1 from hydrogen bonds is weaker than oxalate-bridge
in 2 [23]. 2 shows antiferromagnetic ordering at 8.2 K.
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