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Abstract: Advances in quantum computing technology have been made in recent years due to
the evolution of spin clusters. Recent studies have tended towards spin cluster subgeometries
to understand more complex structures better. These molecular magnets provide a multitude of
phenomena via exchange interactions that allow for advancements in spintronics and other magnetic
system applications due to the possibility of increasing speed, data storage, memory, and stability
of quantum computing systems. Using the Heisenberg spin–spin exchange Hamiltonian and exact
diagonalization, we examine the evolution of quantum energy levels and thermodynamic properties
for various spin configurations and exchange interactions. The XXYY quantum spin tetramer
considered in this study consists of two coupled dimers with exchange interactions α1 J and α′1 J
and a dimer–dimer exchange interaction α2 J. By varying spin values and interaction strengths, we
determine the exact energy eigenstates that are used to determine closed-form analytic solutions
for the heat capacity and magnetic susceptibility of the system and further analyze the evolution
of the properties of the system based on the parameter values chosen. Furthermore, this study
shows that the Schottky anomaly shifts towards zero as the ground-state of the system approaches
a quantum phase transition between spin states. Additionally, we investigate the development of
phase transitions produced by the convergence of the Schottky anomaly with both variable exchange
interactions and external magnetic field.

Keywords: molecular magnets; heisenberg model; thermodynamics; quantum tetramer; spin clusters

1. Introduction

In the journey towards the advancement of quantum computing, the tunability of
molecular magnets has led to a better understanding of quantum tunneling applications,
quantum dots, and anisotropic effects in materials in both theoretical and experimental
research [1–8]. Past studies involving the utilization of spin and other variable parameters
in such clusters provide evidence of improvements in quantum computation with regards
to faster computers with expansive memory and data storage due to refinement of spin
switching and spintronics through the use of molecular magnets as quantum gates [9–16].
A further look into how particular systems evolve in time when subjected to different
scenarios may allow for optimization of various technological advancements.

A characteristic trait of molecular magnets is that they have variable spin total
ground states depending on the types of interactions within the systems. As such, fer-
romagnetically dominated systems tend to have nonzero spin total ground states, while
antiferromagnetically dominated systems typically have spin zero ground states [17]. Some
of the crucial variables that allow for the exploitation of this ground state are the exchange
interactions between the constituent atoms of the system. These exchange interactions
entangle the atoms with various strengths and bring about correlations outside of the
classical realm [12,18]. Using the Heisenberg spin–spin Hamiltonian, one can determine
the properties of spin-interacting atoms based on the total spin and interaction energies.
One particular point of interest that arises from these interactions are the locations of
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quantum phase transitions (QPTs) as system shifts between spin states and how these
points manifest with variable interactions and even external magnetic fields.

At a given QPT, the system’s ground state changes the total spin and changes the
ground-state energy. Altering the system’s energy levels impacts other properties down
the line dependent on the system’s partition function [8,17–19]. At the low-temperature
limit, thermal excitations are minimal, and these effects can be deemed to be of quantum
tunneling nature [8]. The addition of an externally applied magnetic field also results in
the Zeeman splitting effect and adds a term to the Hamiltonian to separate any degenerate
energy levels and to produce a singular ground-state level. The ability to manipulate,
create, or destroy exchange interactions allows for a multitude of desired systems for
various applications. Studying how the system’s bulk properties change with variable
interaction energies allows for a functional design.

A major distinguishing feature of molecular magnets is that the combined smaller
subgeometries of a magnetic system have individual excitations that make up the larger
system as a whole [20,21]. This finding greatly simplifies the study and understanding
of larger spin systems by allowing one to break down individual components of more
complex systems to observe excitations as parameters of the system are varied and then
characterized [10]. With this at hand, closed-form expressions for thermodynamic and
magnetic properties can be determined [22]. These smaller clusters may be single molecular
magnets surrounded by non-magnetic ligands and are isolated from long-range magnetic
interactions or part of a larger lattice [7,17,23,24]. With this in mind, there have been a
number of different studies that probe specific cluster configurations for bulk properties in
thermodynamics both experimentally and theoretically to gain a better understanding of
the larger picture [10,17–22,25–29]. Continuing to theoretically and experimentally research
spin clusters of various configurations, constituents, and parameters has the potential to
lead to major improvements in device applications.

A promising realm to explore is the ability of antiferromagnetic (AFM) spin clusters to
be used in quantum computing. It has been shown that spin clusters with AFM exchange
interactions have little to no total magnetic moment and can be used to define qubits, which
allow for initialization, gate operations, and readouts using previously known techniques
for single spins [1,30]. The property of a small total magnetic moment in these AFM clusters
allows for added stability in the presence of an external magnetic field as the ground state
does not exhibit spin splitting. Furthermore, the systems can also be manipulated to speeds
in the THz range for high-density storage and ultra-fast switching due to the typically small
energy shifts between states [30]. These features offer an advantage over ferromagnetic
(FM) spin clusters since FM systems tend to have larger total magnetic moments and are
likely to be unstable in environments with external magnetic fields [1,31].

The focus of this paper is to provide a complete understanding of the quantum
spin tetramer and its bulk thermodynamic properties (ground-state energy, heat capacity,
and magnetic susceptibility). Through an examination of the evolution of these properties
in various configurations (square, uncoupled, and coupled) of the system, we are able
to assess the transitions in both the frustrated/non-frustrated cases. By exploring how
the bulk properties evolve as the system is subjected to different exchange interactions,
spin values, and an externally applied magnetic field of varying strength, we can provide
a guide for experimental characterization and assessment of different spin cluster and
molecular magnetic systems.

Over the last couple of decades, there have been a number of studies on the spin
–1/2 and spin –1 tetramers in varying configurations [17,18,22,25–29,32–36]. In 2005, Har-
aldsen et al. discussed the spin –1/2 tetramer system with respect to measurements for
inelastic neutron scattering [17]. This work was then extended to spin –3/2 to examine
neutron scattering measurements on Na3RuO4 [28]. Further studies in the magnetization,
magnetocaloric effect, and quantum entanglement of the spin –1/2 Heisenberg tetramers
were investigated by Karlova et al. [37,38]. Therefore, there is a lot of motivation to under-
stand the connections between homogeneous and heterogeneous molecular spin tetramers.
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In this study, we examine variable quantum spin tetramers of general S in both the
homogenous (XXXX) and heterogenous (XXYY) spin configurations. We provide examples
of calculations that detail the evolution of the thermodynamic properties as spin values are
varied from 1/2 to 5/2. The tetramer configurations consist of three different exchange
interactions that can be changed independently (antiferromagnetic and ferromagnetic),
symmetric and asymmetric systems (XXXX and XXYY spin configuration, respectively) are
examined for bulk properties excluding magnetic susceptibility, one mixed-valence case
(XXYY spin configuration) is covered to show how magnetic susceptibility evolves with
varying exchange interaction strengths in comparison to ground-state/quantum phase
transitions and heat capacity, and the systems are explored and compared with and without
a varying magnetic field. A low-temperature restriction (from 0 to 1 K) is used to approach
the study in the quantum regime.

2. The Quantum Spin Tetramer Representation

The tetramer system studied in this paper comprised four magnetically entangled atoms
with various exchange interactions among them. There were two possible dimer interactions
(taken between diagonal components) and four interactions around the perimeter of the sys-
tem that were assumed to have the same strength. Figure 1 shows the general representation
for the tetramer geometry with dimer exchanges and other possible configurations.

Figure 1a shows the general representation containing one dimer exchange between S1
and S3 and another dimer exchange between S2 and S4 (referred to as Sd1 and Sd2, respec-
tively). Sd1 and Sd2 has exchange interactions of α′1 J and α1 J, respectively. Dimer–dimer
interactions are also presented around the edges of the tetramer (S1 with S2, S2 with S3, S3
with S4, and S4 with S1) and have an exchange interaction denoted as α2 J. Figure 1b,c show
scenarios that are brought about by the extremes of completely turning off/on different
exchange interactions within the system. Figure 1b is the result of completely turning off
the α2 J exchange to produce two uncoupled dimers. Alternatively, Figure 1c shows the
result of switching off the α1 J and α′1 J exchanges to produce the square configuration. It is
important to note that while we show this structure as a square, the spatial configuration is
not relevant as only the magnetic spin interactions are considered in the energy levels.

The values of Si explored throughout this study are mixtures of 1/2, 1, 3/2, 2, and 5/2,
where the atoms that Sd1 consisted of had an identical spin state, as does the atoms that
make up Sd2, but both dimers were not necessarily in the same spin state as one another.
The total spin value is the sum of all spins and is denoted as ST .
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Figure 1. The general representation of the tetramer. Each constituent atom has a spin value that
couples to two other atoms via an exchange interaction αi J, where αi is the scaling parameter
of interaction strength. (a) The coupled tetramer that contains dimer pairs Sd1 and Sd2. Sd1 is
formed between S1 and S3, whereas Sd2 is formed between S2 and S4. It also contains dimer–dimer
interactions along the outside edges of the tetramer; (b) The uncoupled dimer configuration is formed
when α2 = 0; (c) The square configuration is formed when α1 = α′1 = 0. It is important to note
that, while we show this structure as a square, the spatial configuration is not relevant as only the
magnetic spin interactions are considered in the energy levels.

3. General Quantum Spin Tetramer

Using a Heisenberg spin–spin exchange Hamiltonian for a magnetic system, the energy
levels of multiple quantum spin tetramer configurations were derived and used to explore
ground-state levels’ evolution and to form the partition function for a given configuration.
The partition function allows for the determination of heat capacity, magnetic susceptibility,
and quantum phase transitions for various parameter conditions (temperature, magnetic
field, spin, and interaction strengths). The isotropic spin–spin exchange Hamiltonian for a
magnetic system is defined as:

H = ∑i,j JijSi · Sj −mzµBgB, (1)

where Jij is the exchange interaction between spins Si and Sj , mz is the z-component of the
spin state, µB is the Bohr magneton, g is the Landé factor, and B is an externally applied
magnetic field. Applying this Hamiltonian for the general tetramer shown in Figure 1 with
applied field produces

H = J[α′1(S1 · S3) + α1(S2 · S4)
+α2(S1 · S2 + S1 · S4 + S2 · S3 + S3 · S4)]
−mzµBgB,

(2)
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where α1, α′1, and α2 are the exchange parameters and Si is the value of spin. For this
study, J = 1 and the exchange parameters determine the antiferromagnetic (αi > 0) or
ferromagnetic (αi < 0) interactions.

With the Sz basis, the Hamiltonian allows for determination of the general energy, E,
as a function of ST , Sd1, Sd2, Si, mz, and B:

E = J
2 [ST(ST + 1)α2 + Sd1(Sd1 + 1)(α′1 − α2)
+Sd2(Sd2 + 1)(α1 − α2)− [S1(S1 + 1)
+S3(S3 + 1)]α′1 − [S2(S2 + 1) + S4(S4 + 1)]α1]
−mzµBgB.

(3)

From here, the energy eigenstates and eigenvalues are found by applying spin values to all
the constituents. Setting α2 = 0 or α1 = α′1 = 0 produces the energy for the the uncoupled
dimer or square tetramer configurations in Figure 1b,c, respectively.

The individual dimer spin values and the total spin of the tetramer can be found using
the spin decomposition formula for the system:

S

∑
0

S = S1 ⊗ S3 ⊗ S2 ⊗ S4, (4)

which for a system of four identical spins, as in the XXXX case, will give a total spin
decomposition of

2S

∑
N=0

(4S− N)
(N+1)(N+2)

2 ⊕
2S−1

∑
N=0

N2S+4SN+1+ 1
2 (N−3N2), (5)

where the decomposition is summed over the integer of N. However, in the XXYY case,
this spin decomposition is less trivial and can be shown to be

S

∑
0

S = [(S1 + S3)⊕ (S1 − S3)]⊗ [(S2 + S4)⊕ (S2 − S4)]. (6)

With the restriction that the spins making up each respective dimer are the same, this
representation is simplified to

S

∑
0

S = [2S1 ⊕ ...⊕ 0]⊗ [2S2 ⊕ ...⊕ 0], (7)

where each bracket term pertains to a dimer and contains a direct sum from 2Si to 0 in
steps of 1. Equation (7) allows for total spin, ST , to be calculated from particular dimer
states, and the correlated values can be plugged into Equation (3) to find the energy of the
system. In the case of zero-field, each magnetic state has (2ST + 1) degenerate states and
(2S1 + 1)2(2S2 + 1)2 total states.

Once the possible energy levels are determined, the systems partition function is
deduced by

Z =
N

∑
i=1

e−βEi = ∑
Ei

(2ST + 1)e−βEi , (8)

where β = 1/(kBT). The second term of Equation (8) is summed through all N energy
eigenvalues when an external magnetic field is applied. The third term is summed through
all energy eigenvalues with zero-field and contains a coefficient of the number of degenerate
energy states. Bulk properties such as heat capacity and magnetic susceptibility can then be
determined by manipulating the systems partition function discussed in further sections.
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4. Ground-State Energy Levels and Heat Capacities

Once the system partition function is found, it can be used to find the system heat
capacity using the following:

C = kBβ2 d2[ln(Z)]
dβ2 . (9)

Since a change in temperature of a system leads to thermal excitations in lattice vibrations
and electronic distributions, heat capacity has an overwhelming dependence on tempera-
ture [39]. Examining the heat capacity at low temperatures gives rise to the phenomenon
known as the Schottky anomaly, which represents a dramatic shift in entropy as a disor-
dered paramagnetic system becomes more ordered. In recent years, the Schottky anomaly
in quantum Heisenberg spin clusters has been shown to indicate quantum phase transitions
as the ground-state energy (GSE) level shifts with some tuning parameter [19]. The reason
this effect is not to be expected is that the heat capacity usually increases with temperature.
However, there have been sharp peaks observed in heat capacity data at low temperatures
before dropping off again [40,41]. This can be explained by observing the entropy of the
system during this transition as governed by

S =
∫ T

0

C
T

dT =
∫ ∞

0

C
β

dβ = kBln(
N
N0

), (10)

where N is the total number of energy eigenstates and N0 is the total number of ground
states [17,19,20,42]. Using the spin–spin exchange Hamiltonian along with the spin decom-
position, a more considerable value of ST contains more possible eigenstates (with a large
portion of them being degenerated in zero-field). Nevertheless, the number of ground
states does not increase as much. Given that this occurs during a small temperature change,
entropy is seen to peak in correlation with the spike in heat capacity. Thus, knowing
where the ground state of the system changes due to varying parameters allows one to
correlate heat capacity peaks (and magnetic susceptibility steps) to particular ST values.
By exploiting the Schottky anomaly and by comparing theoretical ground-state transition
data with heat capacity maps, the correlation between the two can help determine spin
values, exchange interactions, and other parameters in experimental systems. The fol-
lowing sections delve into how ground states and heat capacities theoretically evolve as
multiple parameters vary. The first section involves the zero-field case with degenerate
states. The second section shows how an applied magnetic field produces Zeeman splitting
and separates magnetic substates to give non-degenerated ground states.

4.1. Zero-Field Ground-State Energies and Heat Capacities

Figures 2–4 cover a multitude of data for zero-field cases as spin and interaction strength
are varied for the tetramer system. The first that we discuss are Figures 2 and 3, which shows
how the ground-state energy/heat capacity maps transform as dimer constituent spin values
and exchange parameters vary. The ground-state maps were created by determining the
lowest energy state of the system over iterated parameters, and the resulting spin values
were mapped for that particular energy level.

Figure 2a contains the ground-state maps as functions of α1 and α2, where the dimer
exchange interactions, α1 and α′1, were assumed equal, and J = 1. The colors of the
maps depict the system ST values for that particular ground state as the spin values of
the individual atoms in dimer one and dimer two (S1 from top to bottom and S2 from
left to right, respectively) varied from Si = 1/2 to Si = 5/2 in the steps of 1/2. At the
same time, α1 and α2 varied from −2 to 2. The dark gray color is not indicated in the ST
scale bar but is noted to be the |0, 0, 0, 0 > state (|ST , Sd1, Sd2, mz >), which is present in
all of the ground-state maps. Due to the restriction that α1 = α′1, there is symmetry in
the ground-state maps about the diagonal S1 = S2, meaning that the energy maps for
the XXYY spin configuration are the same for the YYXX spin configuration. Maintaining
S1 = 1/2 and scanning S2 from lower to higher spin values introduces more accessible
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ground states that “fan” out from the symmetric spin-XXXX QPT boundaries. Restricting
α2 > 0 (AFM) and varying α1 from −2 to 2 results in the ground-state ST value initially at
|2(S1 − S2)|, which then continuously decreases by one across transitions to the |0, 0, 0, 0 >
state. This transition indicates that the interactions between the constituent spins of Sd1
and Sd2 are initially FM but have an AFM dimer–dimer interaction due to α2. Overall, this
configuration produces the non-frustrated tetramer, with the spins of one dimer being up
and the other dimer’s spins being down.

As α1 and thus α′1 are shifted to be AFM exchanges, the data show that the spins in the
respective dimers do not flip immediately upon the exchanges being greater than zero. This
result suggests that α2 plays a stronger role with regards to spin-flipping in the tetramer
system as, for example, it is required for α1 = α′1 = α2 in order for the ST transition to occur
along with the S1 = S2 diagonal. Once this flip takes place, the tetramer is in a frustrated
configuration where the dimer–dimer interaction varies from AFM to FM. Furthermore,
an increased number of transitions occur as |2(S1 − S2)| increases in value, and α2 appears
to lose relative strength to the individual dimer interactions. Once the transitions occur
in the ground-state map along a row, the energy states’ existing boundaries do not shift,
but instead, new boundaries are removed/added.

Alternatively, restricting α2 < 0 (FM) and varying α1 from −2 to 2 results in a slightly
different trend. Initially, the ground state has an ST value of 2(S1 + S2). At this point,
all spins are in a single direction for an non-frustrated FM system. However, new QPTs
do not appear until |S1 − S2| is equal to or greater than one. Once this requirement is
reached, the data show |2(S1 − S2)| transitions where the initial state has ST = 2(S1 + S2)
and the final transition is to the |0, 0, 0, 0 > state; this completely skips transitions to
certain spin total states. The transitions between occur in decreasing steps of 1 from
2(S1 + S2), i.e., for S1 = 1/2 and S2 = 5/2, there are |2(1/2− 5/2)| = 4 transitions from
ST = 6→ 5→ 4→ 3→ 0. In contrast to when α2 is an AFM interaction, when it is an FM
interaction, the transition boundaries appear to shift along rows when scanning through
S2 values. Overall, α2 appears slightly weaker in the tetramer system when it is an FM
interaction regarding transitions.

The ground-state energy map in Figure 2a can be used in unison with Figure 3a,b to
correlate ground-state transitions and heat capacities. The scale bar on the right side of
Figure 3 denotes heat capacity (with kb factored out). The top right of the diagram in
Figure 3a pertains to α1 = α′1 = 1 and the bottom left of the diagram pertains to
α1 = α′1 = −1. As with Figure 2, the spins of the constituent atoms making up dimers Sd1
and Sd2 are represented by S1 and S2. Due to the symmetry of the ground-state map under
identical restrictions, the heat capacities are also symmetrical about the S1 = S2 diagonal,
which is why only half of each data set is represented.
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Figure 2. The ground state energy levels as functions of alpha parameters zero-field and J = 1. S1

and S2 denote the spins of the atoms making up Sd1 and Sd2, respectively. The scale on the right
side of the figure denotes the total spin of the system, ST , and relates a particular value to a color
in the ground-state energy diagrams. Energy increases from a low value of ST to a higher value.
(a) The ground-state energy map for energy as a function of α′1 = α1 and α2; (b) The ground-state
energy map for energy as a function of α1 and α′1, where α2 = 1. The restriction of α2’s value limits
the attainable ST,max state through transitions. The gray areas in (a,b) denote the |0, 0, 0, 0 > state
(|ST , Sd1, Sd2, mz >).
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Figure 3. The heat capacity as a function of temperature and αi in the case of zero-field and J = 1. S1

and S2 denote the spins of the atoms making up Sd1 and Sd2, respectively. The scale on the right side
of the figure denotes the value of heat capacity (in arbitrary units) factored out. (a) The associated
heat capacities for the ground-state energy diagrams in Figure 2a as a function of α2 and kBT/|J|.
The top right of the diagram is for α1 = α′1 = 1, whereas the bottom left of the diagram is for
α1 = α′1 = −1; (b) The associated heat capacities for the ground-state energy diagrams in Figure 2a
as a function of α1 and kBT/|J|. The top right of the diagram is for α1 = α′1 and α2 = 1, whereas the
bottom left of the diagram is for α1 = α′1 and α2 = −1. Given the restriction that α2 = 1 in the top
right of (a), these heat capacity plots correlate with Figure 2c.

Figure 3a shows heat capacity as a function of α2 and kBT/|J|. It is apparent that the
heat capacity experiences spikes for a variety of spin and α2 values in the low-temperature
limit. Due to the Schottky anomaly arising with ground-state transitions, it is expected
that setting α1 = α′1 = 1 and scanning α2 across various spin values should correlate to
ground-state transitions shown in Figure 2a. Observing the heat capacity for S1 = 1 and
S2 = 2 shows that energy level crossings occur when α2 = −2,−1.5, 1, 1.5, 2. Comparing
this data with the respective ground-state diagram shows that these specific values for



Magnetochemistry 2021, 7, 29 10 of 20

αi parameters correlate to ground-state transitions from ST = 6 → 5 → 0 → 0 → 1 → 2
with respect to the α2 values above. The first of the two ST = 0 ground states contain
dimers with individual AFM exchange interactions (|0, 0, 0, 0 >), and the second ST = 0
ground state is |0, 2, 2, 0 >, as determined by the spin decomposition and data collected.
Repeating this process for the remaining top right of the diagram in Figure 3a shows the
correlation of QPTs with ground-state energy transitions and heat capacity peaks. Using
the scale bar for the values of heat capacity, one can see that, when the dimer exchange
interactions are of AFM nature, the heat capacity spikes are relatively large throughout the
diagram. The difference in heat capacity at these transitions increases with the total spin
of the system, where there is a difference of approximately 2.5 (in arbitrary units) for the
S1 = S2 = 1/2 case and a maximum difference of approximately 5.5 for the S1 = S2 = 5/2
when α2 ≈ −1.25.

Using a similar process for comparing the ground-state maps in Figure 2a to the
bottom left of the diagram in Figure 3a, it is apparent that a single energy level crossing
occurs at α2 = 0 for the case of ferromagnetic dimer exchanges for all XXYY spin values
modeled. Furthermore, the spikes in heat capacity are smaller in value compared to the
AFM cases with a difference of approximately 1.4 (in arbitrary units). Scanning α2 values
from −2 to 2 leads to a higher value of ST since all spins are in the same direction to a
lower value once α2 > 0. The system is non-frustrated in both scenarios.

The diagram in Figure 3b can also be used in unison with the ground-state maps
in Figure 2a to determine where ground-state transitions and heat capacity spikes occur
for the system. Figure 3b shows heat capacity (with kb factored out) as a function of α1
and kBT/|J|. The top right of the diagram holds that α2 = 1 and the bottom left of the
diagram holds that α2 = −1. It is also restricted that α1 = α′1. For the case of S1 = S2 = 1/2
and α2 = 1, scanning α1 from −2 to 2 in both Figures 2a and 3b leads to a correlated
ground-state transitions and heat capacity spike, as before. Holding a constant value of S1
and increasing S2 produces “fanning” of ground-state transitions of the system mentioned
previously. Based on the color map, the spikes in heat capacity vary as ST shifts, with the
greatest difference occurring for the transition to the |0, 0, 0, 0 > state.

The bottom left of the diagram in Figure 3b shifts the value of α2 to −1. Using this
alongside Figure 2a again shows transitions forming/vanishing around the symmetric
XXXX spin configuration maps. The differences in heat capacity as ST shifts is more
significant for this scenario as the system transitions from an non-frustrated state (all
αi < 0) with all spins aligning along the same direction to a frustrated state where the
dimer exchanges are AFM. However, the dimer–dimer exchange varies from AFM to FM
between nearest-neighbor spins. The sizable heat capacity difference is approximately 5.5
(in arbitrary units) for the Si = 5/2 model, which is due to the transition ST = 5→ 0.

Next, Figure 2b shows a different ground-state energy map with the restriction that
α2 = 1. This diagram shows how the ground-state energy levels transition when α1 and α′1
do not necessarily equal each other. Due to this restriction, this diagram can only be used
with the top right of the diagram in Figure 3b for heat capacity. Similar trends from the
previous correlations between ground-state transitions and heat capacity can be observed
by starting at the center of any ground-state map for particular spin values and then by
scanning up and right to find transitions. A difference to point out with this ground-state
map is the asymmetry across the XXXX spin configuration diagonal, which arises from
non-identical strengths for the dimer exchange. The exchanges have the effect that the
ground-state energy map for S1 = 3/2 and S2 = 2 can be rotated ninety degrees and
mirrored to produce the map for S1 = 2 and S2 = 3/2. Another notable difference for this
map is that it consists primarily of low spin total values with a maximum of ST = 4 in the
top right and bottom left panel of the diagram. This effect is caused by the restriction of
α2 = 1. By observing Figure 2a for the case of α2 = 1, one can see that changing the value
for α1 (and thus α′1) limits the accessible ST states to a maximum of ST = 4. Altering the
value of α2 to be less than zero unlocks the possibility of larger spin total states.
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Figure 4. The ground state energy levels and heat capacities as functions of αi and temperature
in the case of zero-field and J = 1. S1 and S2 denote the spins of the atoms making up Sd1 and
Sd2, respectively. The scale bar at the top right of the figure is for the total spin of the system, ST ,
and relates a particular value to a color in the ground-state energy diagrams. Energy increases from a
low value of ST to a higher value. The scale at the bottom right of the figure denotes the value of
heat capacity (in arbitrary units). (a) The ground-state energy map as a function of α′1 and α2 with
the restriction of α1 = 1; (b) The associated heat capacities for the ground-state energy map in a as a
function of α′1 and kBT/|J| with the restrictions of α1 = 1 and α2 = 0.5. The gray areas in a and c
denote the |0, 0, 0, 0 > state (|ST , Sd1, Sd2, mz >).

Moving onto Figure 4: the diagram in Figure 4a is the ground-state energy map as
a function of α′1 and α2 with the restriction of α1 = 1. The diagram in Figure 4b is the
respective heat capacity as a function of α′1 and kBT/|J| with the restrictions α1 = 1 and
α2 = 0.5. S1 and S2 denote the spin values of the constituent spins making up Sd1 and Sd2,
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as before. It is assumed that J = 1. The ST scale bar is the same as the one in Figure 2.
The heat capacity scale bar has a new maximum of 3.4 (in arbitrary units).

The ground-state energy map in Figure 4a again shows competing exchanges in the
tetramer system. Beginning with Si = 1/2 and choosing α2 = 1, setting α′1 = −1 produces
an non-frustrated tetramer in the |0, 1, 1, 0 > state. For this to occur, α2 must have a stronger
interaction strength relative to α1. Since both dimer spin values are nonzero, α2 forces
the spins entangled with α1 to have a ferromagnetic exchange to produce a nonzero Sd2
value. However, the data shows that increasing α′1 allows the dimer exchanges to dominate
once α′1 > 1 for this scenario. At this point, the dimer spins flip to an AFM configuration
to produce a frustrated tetramer in the |0, 0, 0, 0 > state. For the cases of S1 = 1/2 and
the restrictions listed, the boundary for this transition occurs when α′1 ≥ 2(α2 − 0.5) for
α2 ≥ 0.5. Alternatively, the same initial restrictions with the exception of setting α2 = −1.5
produces the non-frustrated tetramer in the |2, 1, 1, 0 > state. Again, α2 dominates α1
and causes the spins in the system to be all in the same direction. Once the condition
α′1 ≥ −(α2 + 1) for α2 ≤ −1 is met, the spins of each dimer will oppose each other to form
the |0, 0, 0, 0 > state.

Navigating through the entirety of Figure 4a shows that increasing the spin values for
the dimers results in a continuous transition boundary to the |0, 0, 0, 0 > region. By scanning
across the S1 rows, the data also show that increasing the system’s spin results in new
ground-state transitions for larger values of |α2| without shifting the previous transition
boundaries. The diagram also suggests the ability to form a multitude of systems by setting
restrictions to either α2 or α′1. For example, setting Si = 5/2 and α′1 < 0 allows for all ST
states to be attained by varying α2 from −2 to 2. The ability to tune these αi exchange
parameters may help develop the tetramer system’s applications via quantum tunneling,
quantum dots, and anisotropic effects.

If the ground-state energy maps for this configuration were instead set to factors of α1
and α2 with α′1 = 1, the same ground-state maps in Figure 4a would be produced with the
exception of the individual plots being in a transposed position yet the same orientation.

Figure 4b confirms the Schottky anomaly for this case scenario as well. As the system’s
total spin is increased and the transition boundary into the |0, 0, 0, 0 > state becomes
more rounded, the spike in heat capacity slowly shifts to values greater than α′1 = 0.
Another feature of the heat capacity diagrams is how the left side of each one shifts at low
temperature when α2 = 0.5 lies along a transition boundary. The low left portion of the
respective heat capacity plot contains a less subtle transition from C/kb ≈ 0 → 1 as in
S1 = 3/2 and S2 = 2. Comparing this to a ground-state map where the value of α2 is not
along a transition boundary, the same transition in heat capacity occurs within a smaller
temperature range, as can be seen in the S1 = 1, 3/2 diagrams.

4.2. Heat Capacities in the Presence of a Magnetic Field

With the application of a magnetic field, B, Zeeman splitting occurs, and the separate
magnetic states for degenerate energy levels split into (2ST + 1) magnetic substates and
potentially create new ground states for the system [10,43,44]. The energy of the system is
reduced for the mz states that are greater than zero, as shown in Equation (3). Therefore,
states with higher total spin have the most dramatic decrease in energy for a given magnetic
field strength. For a system that does not have all ferromagnetic exchange interactions,
the applied B field aligns the spins in the system. With a sufficiently strong enough field,
the maximum decrease in energy due to the splitting term occurs when mz = ST when a
fully ferromagnetic system is created.

A shift in the ground-state energy levels from an applied field also correlates to
shifts in QPTs and heat capacity spikes. Figure 5 shows heat capacity (with kb factored
out) as a function of kBT/|J| and µBg|B|/|J| for multiple cases where µB is the Bohr
magneton, and g is the Landé g-factor for electrons. Looking down the S1 = S2 diagonal in
Figure 5a, there is a single transition when the magnetic field gµB|B|/|J| = 0.5. The only
change in these plots is the value of heat capacity near absolute zero, as indicated by the
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scale bar. The data show that the ground state is |0, 0, 0, 0 > before this transition. After the
transition, the ground state is the completely ferromagnetic configuration. For Si = 1,
the ground state is |4, 2, 2, 4 >. A larger difference in ST during this transition leads to
greater heat capacity values residing in larger areas of the heat capacity diagrams. It was
also observed that the intensity of heat capacity at low temperatures before the transition is
dependent on S1 for the parameters shown. This transition point along the diagonal for
the symmetric tetramer follows

ε0 = S1α2 +
(2S1 + 1)(α′1 + α1)

4
, (11)

where ε0 = µBg|B|/|J|.
Moving away from the diagonal in Figure 5a shows that more transitions occur as the

difference between S1 and S2 increases. It can be observed that the number of transitions
for given spin values is 1 + 2|S1 − S2| and the last transition occurs when

ε = 2(S2α2 + S1α′1). (12)

The transitions between the first and final spikes occur in decreasing steps of one from ε
until the total number of transitions for the spin values is reached. Transitions between
different total spin states do not shift as total spin increases or decreases, but transitions
are either created or removed. For the case of S1 = S2 = 1/2, the first transition is for
ST = 0→ 2. The initial transition is always between the same ST states as S1 is increased,
and the pattern is repeatedly seen throughout the diagram.

Moving onto the top right of the diagram in Figure 5b, the restriction of αi = 1 is put
in place. There are more possible transitions as a magnetic field is applied to the system
since the restriction holds that all exchange interactions are AFM in nature. Each individual
heat capacity diagram contains transitions that follow

ε = α2, 2α2, 3α2, ..., STα2. (13)

The bottom left diagram in Figure 5b shifts the exchange restrictions to α′1 = α1 = −1
and α2 = 1. An easily distinguishable difference compared to the rest of the figure is
removing transitions for S1 6=S2. Individual heat capacity plots show 4S2 + 1 transitions,
and there is always a transition when ε = 0. The last transition occurs when ε = STα2,
and the following transitions occur in decreasing steps of α2. The tetramer is in the
state ST = |2(S1 − S2)| immediately after ε = 0 and increases incrementally as each
transition occurs.

Other data (not shown) were analyzed for the case of α′1 = α1 = 1 > α2. It was
found the number of transitions observed when an external magnetic field is applied was
0.5ST when α2 = 0. Under this condition, the transitions in ground-state energy and heat
capacity for the system occur when ε = nα′1, where n is an integer value from 1 to 0.5ST .
As α2 increases but is still less than α′1, the transitions occur when ε = α′1, α′1 + α2, 2α′1 +
α2, 2(α′1 + α2), 3α′1 + 2α2, 3(α′1 + α2), etc. and continues until ST transitions occur. These
data suggest that creating tetramer clusters with weaker dimer interactions relative to
dimer–dimer exchange results in a system that requires a less powerful magnetic field
to cause spin-flipping to occur. Alternatively, a tetramer system with relatively strong
dimer–dimer interactions could prove to be more stable in an environment submersed in
unavoidable various magnetic field sources.
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Figure 5. The heat capacity as a function of kBT/|J| and µBg|B|/|J|. The scale bar on the top right
side shows the value of heat capacity (in arbitrary units) for both diagrams. S1 and S2 denote the
spin values of the constituents of dimer one and dimer two, respectively. J is assumed to equal 1.
(a) The heat capacity plots for the case of α′1 = α1 = 1 and α2 = −1; (b) The heat capacity plots for
the case of α′1 = α1 = α2 = 1 (top right) and α′1 = α1 = −1 and α2 = 1 (bottom left). Due to the
symmetry of the system, only half of the plots are shown for each case.

5. Magnetic Susceptibility

The application of a variable external magnetic field at certain temperatures causes
the magnetic dipoles to align into FM or AFM configurations. Given that transition
metals exhibit metallic bonding, magnetic properties arise due to partially or completely
free electrons due to electrical conductivity [45]. Since magnetism is dependent on a
current in a system, metals with differing numbers of unpaired electrons exhibit different
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responses to an applied magnetic field (hence the restriction of Si,max = 5/2 for 3d orbitals).
This response is referred to as the magnetic susceptibility of the system. The Schottky
anomaly in the presence of ground-state transitions has also been shown to correlate to
sudden changes in the magnetization of materials composed of spin clusters in previous
studies [17,19,20,22,46]. An increase in the number of magnetic substates with increasing
ST can be linked to the increasing step of magnetic susceptibility in these quantum systems.
Additionally, the magnetic susceptibility for the tetramer is expected to tend towards zero
as the temperature approaches zero since an even-numbered cluster has the ability to have
spin-0 ground states [22].

The magnetic susceptibility of a system can be determined using

χ =
β

Z

N

∑
i=1

(M2
z)ie−βEi (14)

with Mz = mzgµB and where mz = Sz
T/h̄ is the integral or half-integral magnetic quantum

number [17,19]. Equation (14) makes it clear that the dependence of total spin of the system
is a relatively large factor in the susceptibility. Step increases in magnetic susceptibility data
are expected to match quantum phase transitions as the total spin of the system changes
about those transitions. Since the magnetic field dependence of the system is affects the
energy levels of the system by shift energy states by MzB, the field dependence on the
magnetic susceptibility can be easily determined.

Magnetic susceptibility data for particular mixed valence (S1 = 3/2 and S2 = 1)
tetramer systems can be seen in Figures 6 and 7, where heat capacity (top), ground-state
transitions (middle), and magnetic susceptibility (bottom) are shown tied with each other
for various αi restrictions in Figures 6a,c and 7a,c. Magnetic susceptibility was multiplied
by a factor of T to avoid discontinuities at T = 0. The evolution of the tetramer system
is shown as particular exchange parameters varied in Figures 6b and 7b. Heat capacity
(with kb factored out) and the product of magnetic susceptibility and temperature (with
((gµB)

2/kB) factored out) are shown as functions of kBT/|J|, µBg|B|/|J| and a particular
αi parameter. The ground-state maps shown between the heat capacity and magnetic
susceptibility data label the ground states of the system as before and after transitions.
The first four panels (left to right) contain the same ground states as labelled in the diagram,
whereas the last panel contains different states for particular cases.

Figure 6a is for the case of α2 = 1 while α′1 and α1 varied from 0 to 1 in steps of
0.250, which corresponds to the evolution diagram in Figure 6b. It is observed that the
transitions in heat capacity and the ground state of the system align with the steps in
magnetic susceptibility and that an increasing value of ST leads to increased susceptibility.
For the case of α1 = 0.75, the transition at ε = 0 shifts to a transition at ε = 0.25 and a
new possible ground state was created; this state was found to occur once α′1 = α1 = 0.667.
The other ground states in this panel match the ground states for α1 = 0, 0.25, 0.50 and
all share the same total dimer spin states, whereas the ST = 0 state arises from a different
dimer configuration. Once all αi = 1, then all possible dimer configurations of which gives
ST = 0, 1, 2, 3, 4 from the spin decomposition contribute to the ground-state energy level;
the energy levels are degenerated. Additionally, the maximum heat capacity (≈2.65 in
arbitrary units) shifts downward in the diagrams as the tetramer evolves from the square
to coupled configuration.
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Figure 6. The figure compares the heat capacity , ground-state energy levels, and magnetic suscepti-
bility times temperature as functions of kBT/|J| and µBg|B|/|J| for the mixed valence (S1 = 3/2 and
S2 = 1) system. (a) The data for C (top), ground-state energy (GSE) (middle), and χ ∗ T(bottom) for
the case of α′1 = α1, which varied while α2 = 1. (b) The evolution of the system evolving from the
square configuration to the coupled tetramer configuration as α′1 = α1 varied from 0 to 1. (c) The
data for C (top), GSE (middle), and χ ∗ T (bottom) for the case of α′1 = α1, which was varied while
α2 = −1. The ground states between the transitions are labelled throughout the diagrams. The first
four panels (from left to right) contain the individually labelled states for those four panels. The last
panel changes depending on the case.
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Figure 7. The figure compares the heat capacity, ground-state energy levels, and magnetic suscepti-
bility times temperature as functions of kBT/|J| and µBg|B|/|J| for the mixed valence (S1 = 3/2 and
S2 = 1) system. (a) The data for C (top), ground-state energy (GSE) (middle), and χ ∗ T (bottom) for
the case of α′1 = α1 = 1, while α2 varied. (b) The evolution of the system evolving from the uncoupled
dimer configuration to the coupled tetramer configuration as α2 varied from 0 to 1. (c) The data for
C (top), GSE (middle), and χ ∗ T (bottom) for the case of α′1 = α1 = −1 and varied α2. The ground
states between the transitions are labelled throughout the diagrams. The first four panels (from left to
right) contain the individually labelled states for those four panels. The last panel changes depending
on the case.

Figure 7a is for the case of α′1 = α1 = 1 while α2 varied from 0 to 1 in steps of 0.250,
which corresponds to the evolution diagram in Figure 7b. Once again, the transitions in
heat capacity and ground states indicate a transition in magnetic susceptibility. The ground
states identified for the case of α2 = 0 match the identical colors found throughout the
cases for α2 = 0.25, 0.50, 0.75. Once all αi = 1, the same result from Figure 6a was obtained
where all possible dimer states from the spin decomposition contribute to the respective
ground states. It can also be observed that the maximum heat capacity of the system (≈2.2
in arbitrary units) shifts gradually along ε = 0 as α2 increased. The transitions, in this case,
are in agreement with the previous statement considering that energy level crossings occur
when α2 < α′1 = α1 (assuming both exchanges are of AFM nature), which can be found at
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the end of the previous section. If the individual dimer exchanges are identical, one could
use these values along with ε to determine α2.

Figure 6c is for the case of α2 = −1 while α′1 and α1 varied from 0 to 1 in steps of 0.250,
which corresponds to the evolution diagram in Figure 6b. The transitions follow a similar
pattern as those described for Figure 5a; there are a maximum number of transitions equal
to 1 + 2|S1 − S2|. The initial transition occurs at ε0 (Equation (11)), and the next successive
transitions occur at ε (Equation (12)). Furthermore, the transitions were not found to occur
until α1 = α′1 = 0.667. The data again correlates heat capacity, ground-state transitions,
and magnetic susceptibility with each other.

Figure 7c is for the case of α′1 = α1 = −1 while α2 varied from 0 to 1 in steps of 0.250,
which corresponds to the evolution diagram in Figure 7b. For the case of α2 = 0, the data
obtained matches what is expected for two uncoupled dimers with FM interactions; the
only transition occurs at ε = 0, where the state goes from |5, 3, 2,−5 >→ |5, 3, 2, 5 >. Other
ground states begin to appear immediately after the dimer–dimer interaction increased,
and transitions match the data obtained from Figure 5b.

6. Conclusions

In conclusion, we explored several in-depth aspects of the tetramer system and how
its bulk properties change with respect to various parameters. We considered the XXYY
quantum spin tetramer system’s excitations in the coupled, uncoupled, and square config-
urations. Using the Heisenberg spin–spin exchange model, information about the systems
energy levels, spin states, and spin decompositions were established. From there, the parti-
tion function was used to determine the thermodynamic properties such as heat capacity
and magnetic susceptibility. These bulk properties were then presented in several cases as
functions of temperature, applied field, exchange interactions (AFM and FM), and spin
values (from Si =1/2 to 5/2). The data presented exploited the Schottky anomaly and its
dependence on ground-state energy levels to correlate phase transitions between ground
states, heat capacities, and magnetic susceptibility in the low-temperature range. The data
were analyzed to determine transition points based on different exchange interaction values
or the applied magnetic field’s strength. Using the data provided, one could compare
experimental results to find a best-fit match to characterize an unknown system, to gain
knowledge about the possible system configurations, or to determine what constituents to
use in a system to achieve the results sought after.

Further studies on the tetramer system (alongside other molecular magnet subgeome-
tries) could help develop future applications and quantum computing advancements via
spin switching. Some avenues for advancement pertain to increased speed, data storage,
memory, and stability of particular systems. Furthermore, understanding how the prop-
erties of these smaller subgeometries evolve with respect to various parameters can give
insight towards increasingly complex spin clusters and how to use them best to push the
current technological limits.
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