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S1 Low-Spin vibrational density of states

Figure S1: Partial vDOS in the LS state for a film of thickness Lz = 2.5nm (red open circles). The vDOS

corresponding to the simulated bulk material is shown for comparison (blue stars). The arrows indicate the shift

of bulk modes between 15-25 meV towards the low-frequency range and the emergence of surface modes at ≈
5meV due to the presence of free surfaces.

S2 Internal energy and mean force constant

Figure S2: Size evolution of the vibrational internal energy u in the two spin states.
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Figure S3: Size evolution of the mean force constant C in the two spin states.

S3 Estimation of Me-L elastic force constant using the diatomic chain

problem

Based on the Newton’s equation of motion, the dynamical matrix provides the elastic force constant kMeL using

the experimental Raman frequency data ωR. For the infinite diatomic chain illustrated in Figure S4, we calculate

kMeL by resolving the eigenvalue problem of the dynamical matrix as follows:

Det(D(~q, kMeL)− ν2RI) = 0 ; (S1)

The obtained solution for optical Me-L modes can be written as a function of ω2
R:

kMeL = 4π2α
w2
R

1
MMe

+ 1
2ML

+
√

( 1
MMe

+ 1
2ML

)2 − 2
MMeML

; (S2)

where α = 2.148 ∗ 10−6 is the pre-factor for converting from (cm−1)2.g/mol to kcal/mol.Å2. Herein, we

can estimate kMeL by injecting the Raman frequencies ωR for LS state between 200-400 cm−1 (see reference

30), the obtained kMeL is between 36-145 kcal/mol.Å2, in good agreement with DFT calculations (see reference

41). We chose the median value kMeL = 90 kcal/mol.Å2, which corresponds to ωR ≈ 270 cm−1. According

to the experimental measurements, we consider a decrease of kMeL when the LS→HS transition takes place

(kLSMeL = 1.5kHSMeL), and a decrease of kLL−intra (kMeL = 1.5kLL−intra). We fix the intermolecular cohesion

energy in the LS(HS) state at εLS = 5.73(εHS = 5.55) kcal/mol, which is high enough in order to simulate the

mean energy of the interactions connecting the molecules.

Figure S4: Schematic representation of the infinite diatomic chain with harmonic interaction between the metal

and the coarse grained ligand adapted for the simulated structure.
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S4 Calculation of γ(τ), g(E) and the thermodynamic quantities

We calculate the velocity auto-correlation function γ(τ) using the following relation:

γ(τ) =

〈∑N
i vi(t)vi(t+ τ)

〉
〈∑N

i v
2
i (t)

〉 (S3)

where vi(t) is the velocity at time t of the atom i and
∑N
i is the sum over the N considered atoms. The

normalized (vDOS) is the real part of the Fourier’s transformation of γ(τ) divided by the integral of g(ω)dω :

g̃(ω) =

∫ τmax
0

γ(τ)cos(ωτ)dτ∫ ωmax
0

g(ω)dω
(S4)

The calculation of (vDOS) using the previous equation opens the possibility to extract the thermodynamical

properties, such as the vibrational entropy s per atom, the vibrational internal energy per atom u, the mean force

constant C and the Debye sound velocity vD using the following equations:

uvib =
3

2

∫ Emax

0

g̃(E)E
eβE + 1

eβE − 1
dE ; (S5)

svib = 3kB
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0

g̃(E)E2dE ; (S7)

vD = lim
E→0
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2π2ρh̄

E2

g̃D(E)

) 1
3

; (S8)

where kB is the Boltzmann constant, T the temperature, β = 1
kBT

, h̄ is the Planck constant, and m̃ corresponds

to the resonant mass, which is the mass of 57Fe, and ρ = N<m>
V is the material density.

S5 Estimation of the error due to numerical artifacts

Figure S5: The entropy versus the vacuum size of LS thin films of thickness 3 nm (in blue stars) and 8 nm (in red

circles).
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One of the numerical artifacts that can disturb the results is the vacuum size fixed by the simulation box size.

It is important therefore to quantify the error caused by this artifact. In Figure S5, we have calculated the entropy

variation with the vacuum size for two thin-films. We estimate this error by calculating first the maximal absolute

error of each thin film as follows:

εN = max (|sN− < s > |) , (S9)

where < s > is the mean value of entropy data. After that, we take the maximum error of the two thin films:

ε = max(ε3nm, ε8nm) ≈ 0.01 kB , (S10)

Figure S6: Size evolution of the cohesion energy Ec in the ”Bulk” and the system with free surface ”Total”.

This error bar is imputed to entropy results of the system with free surface, which still faraway from the bulk

entropy, rejecting the idea that the entropy increment is a vacuum effect. In any case, we fix the simulation box

at Lvacuum ≈ 10Lz , which is big enough to ensure that the numerical uncertainties by vacuum creation remain

negligible.

We have also checked the cohesion energy of the bulk system and the system with free surfaces, which is still

constant with the variation of the material size (see Figure S6), and matches perfectly the cohesion energy that

we have chosen for the Lennard-Jones potential in the LS state. We demonstrate again that there is no numerical

artifact at T=0K.
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