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Abstract: (Dy0.7Y0.25La0.05)2O3 magneto-optical transparent ceramics were successfully fabricated by
pressureless sintering in reductive H2 atmosphere (PLSH). The raw powder of (Dy0.7Y0.25La0.05)2O3

was synthesized by a modified self-propagating high-temperature synthesis (SHS) and sintered to
transparent ceramics at 1400–1600 ◦C in a flowing H2 atmosphere, showing good sinterability of the
as-synthesized raw powder. The magneto-optical Verdet constant of (Dy0.7Y0.25La0.05)2O3 transparent
ceramics was measured to be −191.57 rad/(T·m) at a wavelength of 632.8 nm. In this magneto-optical
material of (Dy0.7Y0.25La0.05)2O3, relative cheaper Dy and Y were used to replace Tb, and the low cost
and good magneto-optical property showed the advantage of application on Faraday isolators (FIs)
and Faraday rotators (FRs).
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1. Introduction

Magneto-optical (M-O) material is an essential component of Faraday isolators (FIs) and Faraday
rotators (FRs), which can be used in fiber-optic communication to effectively isolate external light from
the light sources [1–3]. With the development of science and technology, FI and FR devices are also
developing towards miniaturization, which puts forward higher requirement on the performance of
M-O materials. Tb3Ga5O12(TGG) with garnet structure is widely used as a magneto-optical material,
and its Verdet constant is −134 rad/(T·m) [4] at 632.8 nm. However, the garnet structure limits the
terbium concentration of Tb3+ and therefore limits the Verdet constant [5]. In recent years, it has been
found that rare-earth sesquioxide RE2O3 (RE = Tb, Dy) of paramagnetic RE3+ ions has a higher Verdet
constant than TGG crystal [6–8]. In 2015, Veber et al. [6] grew the firstly Tb2O3 single crystal with a
size of about 5 × 5 × 2 mm3 by flux method. The Verdet constant of single crystal Tb2O3 is at least
three times larger than that of a commercial TGG crystal. In 2018, Snetkov and Balabalnov et al. [9]
prepared Y, La-doped (DyxY0.95−xLa0.05)2O3 transparent ceramics using a vacuum sintering method
at an extremely high temperature of 1780 ◦C. Recently, Aung et al. [10] showed the possibility of
obtaining ceramics (Dy0.7Y0.25La0.05)2O3 with ZrO2 sintering aid. Despite the high achieved quality of
ceramics, the use of such a sintering additive can limit the service life of magneto-optical elements due
to a change in the oxidation state of zirconium ions under the laser radiation, the appearance of free
charge carriers and, accordingly, a sharp increase in absorption.
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In this paper, 5 at. % lanthanum oxide was used as sintering aid. (Dy0.7Y0.25La0.05)2O3 powders
were synthesized by self-propagating high-temperature synthesis (SHS) method. The transparent
ceramics of (Dy0.7Y0.25La0.05)2O3 was obtained by pressureless sintering in reductive H2 atmosphere
(PLSH) technology at relatively low temperature. The microstructure, optical quality and magneto-optical
Verdet constant of the ceramics were characterized as well.

2. Results and Discussion

Figure 1 shows the X-ray diffraction pattern of (Dy0.7Y0.25La0.05)2O3 powder synthesized by SHS
method. It can be seen from the figure that the diffraction peaks of the (Dy0.7Y0.25La0.05)2O3 powder
corresponds to the Dy2O3 and Y2O3 standard cards (PDF#22-0612, PDF#43-1036). The main diffraction
peaks of the powder are located between the peaks of two standard cards, indicating that Y2O3 have
entered the crystal lattice of Dy2O3 and they formed a substitutional solid solution. The crystal grain
size of (Dy0.7Y0.25La0.05)2O3 powder is 15.5 nm, calculated by the Sherer formula.
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Figure 1. X-ray diffraction pattern of (Dy0.7Y0.25La0.05)2O3 powder.

Figure 2 is a scanning electron microscope image of (Dy0.7Y0.25La0.05)2O3 powder synthesized
by SHS. The powders consist of irregular primary particles, which are combined to form loose
agglomerates with a porous structure [11]. The formation of this structure is determined by the
mechanism of the SHS, where the propagation n of the reaction front causes the precursor to foam,
followed by the start of the combustion reaction and the discharge of a large amount of gaseous
product [12–14].

To characterize the microstructure of as-sintered transparent ceramics, the fracture of
(Dy0.7Y0.25La0.05)2O3 ceramic is observed by SEM. As shown in the Figure 3a, there are many
micro-pores in the ceramics sintered at 1400 ◦C by PLSH technology. When the temperature increased
to 1450 ◦C, a small amount of pores can still be found in the ceramic matrix, marked with white
circles, as shown in Figure 3b. It is demonstrated in Figure 3c,e that the ceramics have homogeneous
microstructures without abnormal grain growth and the fracture mode of (Dy0.7Y0.25La0.05)2O3

transparent ceramics is mainly trans-granular. However, in Figure 3d, abnormal grain growth can be
observed in 1600 ◦C PLSH sintered ceramic, which leads to the degradation of optical transmittance
in the visible wavelength to a certain extent. The appearance of the (Dy0.7Y0.25La0.05)2O3 transparent
ceramics, before and after annealing at 900 ◦C for 5 h in air are shown in the Figure 3f. The transmittance
curves of (Dy0.7Y0.25La0.05)2O3 transparent ceramics before and after annealing at 900 ◦C in a muffle
furnace are given in Figure 4. Annealing in air did not affect the transmittance in the infrared range of
the spectrum, but reduced the transmission in the visible range.
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Figure 3. SEM micrographs of the fracture surface of (Dy0.7Y0.25La0.05)2O3 ceramics: (a) 1400 ◦C/6 h;
(b) 1450 ◦C/6 h; (c) 1500 ◦C/6 h; (d) 1600 ◦C/6 h; (e) 1550 ◦C/6 h; (f) the appearance of the (Dy0.7Y0.25La0.05)2O3

transparent ceramics sintered at 1550 ◦C: as-sintered and annealed at 900 ◦C for 5 h in air.

The transmittance in the IR range (1895 nm to 2000 nm) is significantly higher than that previously
published on ceramics of the same composition [9] and in Dy2O3 transparent ceramics with ZrO2

sintering aid by vacuum sintering [10]. Therefore, PLSH sintering should be recognized as an effective
method for producing transparent ceramics. However, the existing scattering in the visible range in
such ceramics indicates the presence of defects on the nanoscale-submicron scale. There is a possibility
that with a large element length required for an FI (about 25 mm at a magnetic field of 2.5 T),
scattering by these defects can become noticeable at a wavelength of 2000 nm. The Verdet constant of
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(Dy0.7Y0.25La0.05)2O3 transparent ceramics is −191.57 rad/(T·m) (λ = 632.8 nm), which is 1.43 times that
of a commercial TGG crystal.
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annealed at 900 ◦C for 5 h in air.

Figure 5 shows X-ray diffraction patterns of (Dy0.7Y0.25La0.05)2O3 ceramics before and after
annealing at 900 ◦C for 5 h in air. After annealing in air, the XRD data completely coincide with the
card (PDF#22-0612) for cubic Dy2O3; the relative intensities of the peaks also correspond to these data,
and no impurities or secondary phases are detected. In the as-sintered (Dy0.7Y0.25La0.05)2O3 ceramic,
the relative intensities of the peaks significantly deviate from the card (PDF#22-0612) for cubic Dy2O3.
However, the peak at 2θ = 26◦ is not related to Dy2O3 but coincides with the La2O3 (PDF#05-0602).
It can be associated with a significant effect of oxygen vacancies and, probably, Dy2+ ions on the phase
formation in the Dy2O3-Y2O3-La2O3 system. When the ceramic sample is annealed in the muffle
furnace at 900 ◦C for 5 h, the La2O3 phase disappeared, characterized by XRD, as shown in Figure 5.
After annealing, the Dy2+ ions are oxidized, oxygen vacancies decrease, and the solubility of La2O3 in
the solid solution increases. We attribute the decrease in the transmission of ceramics in the visible
range after annealing in air to the presence of hydrogen in residual pores and interstices.

Further progress in improving the quality of ceramics (Dy0.7Y0.25La0.05)2O3 can be associated with
a thorough study of the phase diagrams in this system, taking into account the calcination atmosphere
and finding the exact technological path to prevent the formation of secondary phases. Another or
parallel possibility is to change the sintering technological route. Moreover, the combination of PLSH
sintering at a low temperature (about 1400 ◦C) with subsequent hot isostatic pressing (HIP) and
annealing in air seems to be promising.

The magneto-optical Verdet constant, which was recorded by the magneto-optical measurement
system with a He-Ne laser, two polarizers and an electromagnet coil, was measured to be−191.57 rad/(T·m)
at a wavelength of 632.8 nm, which is 1.43 times larger than that of commercial terbium gallium garnet
(Tb3Ga5O12, TGG) crystal. Andrzej Kruk et al. [15] proposed using MO-FOM (magneto-optical figure
of merit) factor to describe the comprehensive magneto-optical property of Faraday materials. In this
paper, the FOM of the (Dy0.7Y0.25La0.05)2O3 transparent ceramic is calculation to be 0.66584 rad/T
(38.15deg/T), which shows good prospects for magneto-optical applications.
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3. Materials and Methods

The powder of (Dy0.7Y0.25La0.05)2O3 was synthesized by a technique of self-propagating
high-temperature synthesis (SHS) method, which was described in detail in previous research [16–19].
The raw material of the powder of (Dy0.7Y0.25La0.05)2O3 was dysprosium oxide 99.99% (Polirit, Moscow,
Russia), yttrium oxide 99.99% (Polirit, Moscow, Russia), lanthanum oxide 99.99% (Polirit, Moscow,
Russia), nitric acid 99.9999% (Khimreaktiv, Nizhny Novgorod, Russia), glycine NH2CH2COOH 99.9%
(Khimreaktiv, Nizhny Novgorod, Russia). The stoichiometric amount of metal cations dysprosium,
yttrium and lanthanum are prepared by dissolving the respective metal oxides in nitric acid mixed
water under heating. The concentration of the solution was determined by the gravimetric method at
1100 ◦C. Then, the nitrate solution is diluted to the desired concentration. Moreover, the solution of
glycine and the metal nitrates was prepared with the ratio of 1:1. The SHS redox reactions of precursor
in a quartz flask were initiated in the furnace preheated at 500 ◦C. Then, the highly dispersed powders
were formed. The (Dy0.7Y0.25La0.05)2O3 powder was pressed and sintered in a flowing hydrogen
atmosphere at 1400–1600 ◦C for 6 h to obtain (Dy0.7Y0.25La0.05)2O3 ceramics.

The X-ray diffractometer (Rigaku, Tokyo, Japan) as the detective method equipped with graphite
monochromatized Cu Kα radiation (λ = 1.5406 Å, 40 kV/200 mA) was used to investigate the crystal
structure of ceramic powders in the range of 2θ = 10–80◦. The microscopic morphology of the samples
was determined by the scanning electron microscope (COXEM, Daejeon, Korea). The UV-vis-NIR
spectrophotometer (Agilent, Palo Alto, CA, USA) was used to record the linear transmittance of
transparent ceramics. The device of the magneto-optical measurement system (Fudan Tianxin,
Shanghai, China) was used to measure the Verdet constant at 632.8 nm. The crystal grain size of
(Dy0.7Y0.25La0.05)2O3 powder calculated by Sherer formula [20]:

D = Kλ/Bcosθ (1)

4. Conclusions

(Dy0.7Y0.25La0.05)2O3 powder was synthesized by the self-propagating high-temperature synthesis
method. The compact green bodies of (Dy0.7Y0.25La0.05)2O3 can be sintered to be transparent ceramics by
pressureless sintering in a reductive H2 atmosphere method at 1400–1600 ◦C. The inline transmittance
of 1550 ◦C sintered ceramic at 2000 nm was measured to be 78%, which is the highest published
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inline transmittance till now. Further improvement of the optical quality in the visible range of
(Dy0.7Y0.25La0.05)2O3 ceramics shed light on the application of magneto-optical isolators.
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