Supplementary Materials: Crystal Structure and Magnetic Properties of Peacock–Weakley Type Polyoxometalates Na9[Ln(W5O18)2] (Ln = Tm, Yb): Rare Example of Tm(III) SMM

Oleksandra Yu. Mariichak, Sandra Kaabel, Yevgen A. Karpichev, Georgiy M. Rozantsev, Serhii V. Radio, Céline Pichon, Hélène Bolvin and Jean-Pascal Sutter

(**d**)

Figure S1. (a) Molecular structure of Na₉[Tm(W₅O₁₈)₂]·35H₂O, **1** with mixed polyhedral and ball and stick representation with thermal ellipsoids fixed at 50%. (b) Perspective showing the squareantiprismatic geometry around the lanthanide. (c) Crystal packing of **1** in the (*b*,*c*) plane. The dashed cyan line indicates the shortest Ln…Ln interaction indicated in Å. Color scheme: WO₆ = blue polyhedral, W = blue, Tm = bronze and O = red. (d) Minimum bonding ellipsoid [1] showing the oblate environment defined by the axially compressed O₈ coordination core Red dots materialize the coordinated O-atoms; the center and right views have orientations like in (a) and (b), respectively. R1-R3 are the principal ellipsoid radii, the negative ellipsoid shape value, S, is indicative of an oblate (axially compressed) ellipsoid.

Figure S2. (a) Mixed polyhedral and ball and stick representation with thermal ellipsoids fixed at 50% and (b) ball and stick representation of the molecular structure of Na₉[Yb(W₅O₁₈)₂]·35H₂O, **2**. (c) Perspective showing the square-antiprismatic geometry around the lanthanide. (d) Crystal packing of **2** in the (*b*,*c*) plane. The dashed cyan line indicates the shortest Ln…Ln interaction indicated in Å. Color scheme: WO₆ = blue polyhedral, W = blue, Yb = pink and O = red.

Figure S3. Powder X-Ray diffractograms of 1 (a) and 2 (b). AC susceptibility investigations for Na₉[Tm(W_5O_{18})₂]·35H₂O, 1.

AC Susceptibility Investigations for Na₉[Tm(W₅O₁₈)₂]·35H₂O, 1:

Figure S4. Compound **1**: (a) Frequency dependence of the out-of-phase ac signal (χ_M'') at 5 K with applied fields ranging from 0 and 1 T; (b) Field dependence of the relaxation time.

T (K)	τ (s)	α	R ²
2	0.051(1)	0.254(4)	0.99968
2.5	0.040(1)	0.239(3)	0.9998
3	0.029(1)	0.208(2)	0.99989
3.5	0.023(1)	0.183(2)	0.9999
4	0.019(1)	0.164(3)	0.99967
4.5	0.016(1)	0.148(5)	0.99924
5	0.014(1)	0.139(1)	0.99869
5.5	0.012(1)	0.125(7)	0.99799
6	0.0095(1)	0.123(8)	0.99777
6.5	0.0074(1)	0.102(1)	0.99764
7	0.0057(1)	0.087(7)	0.99788
7.5	0.0043(1)	0.070(6)	0.9986
8	0.0032(1)	0.058(1)	0.99915
8.5	0.0024(1)	0.048(2)	0.99944
9	0.0018(1)	0.039(4)	0.99971
9.5	0.0014(1)	0.031(4)	0.9998
10	0.0010(1)	0.044(4)	0.99943
10.5	0.000799(1)	0.042(4)	0.99953
11	0.000640(1)	0.034(3)	0.9998
11.5	0.000519(1)	0.030(3)	0.99987
12	0.000415(1)	0.028(3)	0.99988
12.5	0.000347(1)	0.019(2)	0.99996
13	0.000289(1)	0.020(3)	0.99997
13.5	0.000248(1)	0.012(4)	0.99994

14	0.000209(1)	0.018(2)	0.99998
14.5	0.000183(1)	0.012(3)	0.99996
15	0.000155(1)	0.017(4)	0.99995

Figure S5. Frequency and temperature dependence of the in-phase (χ M') and out-of-phase (χ M'') ac signals for **1**. AC susceptibilities was recorded in 3 kOe dc field with a 3 Oe ac field with frequencies and temperatures ranging from 1 to 1500 Hz and 2 to 30 K, respectively. Solid lines are guides for the eyes. Relaxation times deduced from χ M'' = *f*(Frq) behavior for different temperatures using an extended Debye model are gathered in the table.

T (IZ)	<i>χ</i> ⊤ (cm³·mol⁻	<i>χ</i> s (cm³⋅mol⁻		ים
1 (K)	1)	1)	α	K ²
2	2.482(1)	0.120(1)	0.281(3)	0.99972
2.5	2.051(4)	0.099(1)	0.272(2)	0.99964
3	1.738(3)	0.088(1)	0.253(2)	0.99958
3.5	1.516(2)	0.073(1)	0.251(2)	0.99933
4	1.335(2)	0.066(1)	0.243(3)	0.99884
4.5	1.199(3)	0.056(1)	0.241(4)	0.99765
5	1.081(2)	0.053(2)	0.228(5)	0.99609
5.5	0.985(2)	0.052(2)	0.214(6)	0.99502
6	0.903(2)	0.055(3)	0.190(1)	0.99401
6.5	0.832(2)	0.059(3)	0.158(9)	0.99321
7	0.782(2)	0.050(3)	0.160(1)	0.99680
7.5	0.748(3)	0.040(2)	0.174(7)	0.99235
8	0.688(2)	0.040(2)	0.137(1)	0.99495
8.5	0.647(1)	0.039(2)	0.120(9)	0.99487
9	0.606(1)	0.039(2)	0.095(1)	0.99770
9.5	0.543(4)	0.045(2)	0.045(6)	0.99669
10	0.542(3)	0.043(2)	0.046(6)	0.99825
10.5	0.516(1)	0.047(2)	0.030(5)	0.99796
11	0.493(1)	0.050(3)	0.014(6)	0.99848
11.5	0.472(1)	0.040(2)	0.025(5)	0.99923
12	0.454(1)	0.034(2)	0.039(5)	0.99967
12.5	0.436(1)	0.032(1)	0.033(4)	0.99756
13	0.418(1)	0.032(1)	0.027(8)	0.99970
13.5	0.404(3)	0.032(2)	0.025(4)	0.99964
14	0.389(4)	0.030(2)	0.017(5)	0.99746
14.5	0.376(1)	0.013(6)	0.042(7)	0.99588
15	0.364(1)	0.013(1)	0.038(1)	0.99643
15.5	0.352(1)	0.010(1)	0.040(1)	0.99578
16	0.341(1)	0.016(1)	0.028(1)	0.99987
16.5	0.334(5)	0.010(5)	0.038(7)	0.99967

Figure S6. Cole-Cole ($\chi_M'' = f(\chi_M')$) plots for 1 between 2.5 and 17 K with the best fits to the generalized Debye model (Equation 1) [2] best fit parameters are gathered in the table.

Figure S7. Temperature dependence of τ^{-1} of **1** with the best fit considering (**a**) direct and Raman processes (**b**) direct and Orbach processes, (**c**) Raman, Orbach, and direct processes.

Figure S8. Temperature dependence of the out-of-phase ac signal (χ M") at 2 K for different DC fields. The best compromise between slow relaxation and signal intensity is found for H_{DC} = 1.2 kOe.

Figure S9. Temperature and frequency dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibilities recorded at 1.2 kOe dc field with a 3 Oe ac field.

T (K)	χ⊤ (cm³·mol-¹)	<i>χ</i> s (cm³⋅mol⁻¹)	α	R^2
2	0.482(1)	0.033(1)	0.229(7)	0.99554
2.25	0.436(1)	0.042(1)	0.188(1)	0.99972
2.5	0.393(3)	0.034(3)	0.233(1)	0.99355
2.75	0.363(2)	0.025(1)	0.259(8)	0.99633
3	0.330(1)	0.026(1)	0.247(6)	0.99856
3.25	0.301(1)	0.034(2)	0.206(9)	0.99848
3.5	0.279(5)	0.032(2)	0.198(3)	0.99829
3.75	0.261(5)	0.032(2)	0.186(9)	0.99701
4	0.245(3)	0.026(1)	0.187(5)	0.99874
4.25	0.230(1)	0.034(2)	0.145(9)	0.99875
4.5	0.217(5)	0.030(2)	0.136(1)	0.99827
4.75	0.208(7)	0.022(2)	0.153(1)	0.99735
5	0.195(2)	0.029(2)	0.099(1)	0.99881
5.25	0.186(4)	0.023(2)	0.105(1)	0.99586
5.5	0.178(4)	0.018(1)	0.108(1)	0.99539
5.75	0.173(6)	0.004(3)	0.133(6)	0.99889
6	0.165(5)	0.004(5)	0.132(18)	0.9982
6.25	0.158(2)	0.021(2)	0.066(8)	0.99963
6.5	0.153(1)	0.011(7)	0.092(2)	0.99856

Figure S10. Cole-Cole ($\chi_{M''} = f(\chi_{M'})$) plots for **2** between 2 and 6.25 K with the best fits to the generalized Debye model (Equation (1)) [2]; best fit parameters are gathered in the table.

Figure S11. Temperature dependence of τ^{-1} of **2** with the best fit supposing direct and Raman processes.

Atomic ratio of Na, Ln, and W in different points marked on the pictures above- of triturated samples of **1** and **2**.

		Salt 1				Salt 2	
Points		at. %		Points		at. %	
	Na	Tm	W		Na	Yb	W
1	16.71	1.89	18.43	1	16.87	1.84	18.29
2	16.69	1.74	18.61	2	16.55	1.92	18.28
3	16.62	1.86	18.16	3	16.73	1.77	18.11
4	16.84	1.75	18.59	4	16.83	1.71	18.62
5	16.92	1.61	18.50	5	16.59	1.89	18.82
6	16.60	1.81	18.36	6	16.63	1.91	18.55
7	16.59	1.94	18.97	7	16.89	1.99	18.78
8	16.70	1.96	19.21	8	16.65	1.85	18.83
9	16.95	1.86	19.41				
10	16.45	1.91	18.88				
Average	16.71	1.83	18.71	Average	16.72	1.86	18.54
Atomic ratio	9.11	1.00	10.21	Atomic ratio	8.99	1.00	9.97

Figure S12. SEM images of the morphology of triturated samples of **1** (*left*) and **2** (*right*). EDX analysis was made in points indicated (see table above).

Magnetochemistry 2020, 6, x; doi:10.3390/

Figure S13. SEM images of the powder of 1 in the characteristic X-ray emission.

Figure S14. SEM images of the powder of 2 in the characteristic X-ray emission.

Magnetochemistry 2020, 6, x; doi:10.3390/

Figure S15. SEM image of the surface of triturated samples of 1 (×20,000 times) (a) and 2 (×30,000 times) (b).

Table	S1.	Results	of	Continuous	Shape	Measures	calculation	using	SHAPE	[3]	with	the	closest
geome	etry i	for the la	intha	anide highli	ghted i	n blue [4].							

	Metal center	SAPR	TDD	JBTPR	BTPR	
	Tm@1	0.066	2.458	2.757	2.246	
_	Yb@ 2	0.063	2.453	2.802	2.250	
	Geor	netry		Poiı	nt symme	etry
	SAPR: Squa	re antipr	ism		$D_{ m 4d}$	
	TDD: Triangula	r dodeca	hedron		D_{2d}	
JBT	PR: Biaugmente	d trigona	al prism	J50	C_{2v}	
В	TPR: Biaugment	ted trigor	nal prisn	n	C_{2v}	

Table S2. SF-CASSCF and SO-CASSCF energies for the $[Ln(W_5O_{18})_2]^{9}$ complexes. The Spin-Free (SF) states are given according to their spin multiplicity and the Spin-Orbit (SO) states are decomposed in terms of M_I , with the pseudo C_4 axis as quantification axis.

	9	SF			SO		
Tm(I	II)	Yb(III	i)		Tm(III)		Yb(III)
	ΔΕ		ΔΕ	ΔΕ	comp	ΔΕ	comp
triplet	0	doublet	0	0	1000/ 1.6	0	
	0.5		44	0	$100\% \pm 6$	0	97% ±5/2
	310		93	319	44% ±5 ; 23% ±3	65	070/17/2
	328		97	320	49% ±5;28% ±3	65	97%±772
	355		383	335	42% 5 ; 20% \pm 2	254	000/ 12/2
	362		389	335	41% 5 ; 32% ±2	254	99% ±3/2
	372		396	352	68% ±3	363	000/ 11/2
	387			363	50% ±2; 26% ±4	363	99% <u>±</u> 1/2
	389			369	42% ±4; 38% ±1	10343	
	406			380	48% ±4; 23% ±2	10343	
	408			381	42% ±4;32% ±1		
	8204			387	79% ±2		
	8215			389	65% 0		
	8243			6948			
	8314			7026			
	8325						
	8337						
	8338						
singlet	9159						
	9252						
	9260						
	9327						
	9333						
	9497						
	9502						
	9575						
	9585						

Table S3. g factors of for the [Ln(W_5O_{18}) ₂] ⁹ complexes deduced from SO-CASSCF calculations. For the
Tm(III) complex, 1, the g value is deduced from non Kramers doublet; the corresponding principal
axis has a projection ω_z on the <i>z</i> axis.

	Tm(III)		-	Yb(II	I)	
NKD	g	ωz	KD	g_x	g_y	g_z
1-2	14.0	1.0	KD1	0.2	0.4	5.9
3-4	11.8	0.72	KD2	0.1	0.1	8.0
5-6	9.1	0.67	KD3	0.1	0.8	3.4
8-9	4.9	0.56	KD4	4.1	5.0	1.1
10-11	11.2	0.53				
12-13	13.0	0.09				

Table S4. Crystal field and strength parameters (in cm^{-1}) for the $[Ln(W_5O_{18})_2]^9$ complexes deduced from SO-CASSCF calculations.

		Tm(III)	Yb(III)		Tm(III)	Yb(III)
В	3^2_0	-552	-530	S (a)	218	204
В	P_1^2	51	35	S^2 (b)	250	238
В	R_2^2	44	13	S^4	259	243
В	B_0^4	-775	-728	S^6	113	96
В	P_1^4	13	17	S_0 (c)	374	352
В	8 <mark>4</mark> 2	14	10	<i>S</i> ₁	34	24
B	343	22	10	<i>S</i> ₂	29	10
B	R_{4}^{4}	44	40	S ₃	11	6
В	8 ⁶ 0	397	337	S_4	31	29
В	P_1^6	18	13	S_5	2	3
B	2 ⁶ 2	5	3	S ₆	3	2
B	96 3	12	11			
B	$_{4}^{6}$	59	56			
B	6 5	6	8			
B	6 6	9	7			
$^{\mathrm{a})}S = \left[\frac{1}{3}\sum_{k=2,4,6}\right]$	$\frac{1}{2k+}$	$\frac{1}{1}\sum_{q=-k}^{k} \left B_{q}^{k} \right ^{2}$	$^{1/2};^{(b)}S^k =$	$\left[\frac{1}{2k+1}\sum_{q=-k}^{k}\right] L$	$\left B_{q}^{k} \right ^{2} \right]^{1/2}$; ^(c) S_{q}	$= \left[\frac{1}{3}\sum_{k=2,4,6}\right]$

References

- 1. Cumby, J.; Attfield, J.P. Ellipsoidal analysis of coordination polyhedral. Nature Comm. 2017, 8, 14235.
- 2. Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. *J. Chem. Phys.* **1941**, *9*, 341, doi:10.1063/1.1750906.
- 3. Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE: Program for the stereochemical analysis of molecular fragments by means of continuous shape measures and associated tools; University of Barcelona: Barcelona, Spain, 2013.
- 4. Casanova, D.; Alemany, P.; Bofill, J.M.; Alvarez, S. Shape and Symmetry of Heptacoordinate Transition-Metal Complexes: Structural Trends. *Chem. Eur. J.* **2003**, *9*, 1281, doi:10.1002/chem.200390145.