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Abstract: Despite considerable efforts undertaken in a rapidly developing area of multiferroic research,
synthesis of phase pure BiFeO3 is still a matter of intensive research. In this work, we report the
shape-controlled synthesis of pure BiFeO3 microspheres via a facile hydrothermal route. The prepared
BiFeO3 powder has been characterized using powder X-ray Diffraction (XRD), Differential Thermal
analysis (DTA), Scanning Electron microscopy (SEM), and impedance spectroscopy. Powder XRD
analysis confirms the formation of pure rhombohedrally distorted perovskite with R3c space group.
Scanning electron micrograph revealed that the prepared BiFeO3 microspheres are nearly spherical in
shape with uniform size distribution. The BiFeO3 microspheres exhibit a dielectric constant value of
~110 at 1000 KHz, which is higher than the BiFeO3 prepared by conventional solid-state reaction and
sol–gel method. Variation of dielectric constant with temperature at different frequencies shows that
the BiFeO3 has a dielectric anomaly of ferroelectric to paraelectric type at 1093 K and this phenomenon
is well supported by TGA results.

Keywords: hydrothermal synthesis; multiferroics; dielectric behavior; hydrogen peroxide;
bismuth ferrite

1. Introduction

Nowadays, multiferroic (particularly BiFeO3) materials are being widely investigated for
spintronics, data-storage, sensors and multiple-state memory applications [1] because of their dual
ordering (i.e., both magnetic and polar) characteristics at room temperature. BiFeO3 crystallizes in
a rhombohedral structure with R3c space group, and exhibits ferroelectric and antiferromagnetic
properties at ~1100 and 630 K, respectively [2]. BiFeO3 generates spontaneous polarization, ~100µC/cm2,
from the lone pair of the Bi3+ ions, while the magnetic ordering originates from the superexchange
interaction between the 3d electrons of the Fe3+ ions [3]. In recent years, BiFeO3 has attracted significant
interest owing to its high Curie temperature (1083 K) [4] and high Neel temperature (625 K) and its
potential applications, such as water splitting, organic pollutants degradation (2.2 eV), solar cells and
visible light optoelectronic devices [5–8]. However, BiFeO3 finds limited application due to the high
electric loss via leakage, existence of impurities, high electric coercive field, and weak magnetoelectric
coupling due to the significant difference between the Curie temperature (1083 K) and the high Neel
temperature (625 K), which leads to inadequate ferroelectric and magnetic properties in bulk BiFeO3.
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Different methods have been adopted in order to overcome the above limitations [2,3], including but
not limited to different synthesis techniques, producing solid solution via rare earth ions doping at both
Bi and Fe sites [2]. These methods can improve the stability, multiferroic features and magnetoelectric
coupling effect of BiFeO3. The magnetoelectric coupling effect can be effectively altered by tuning
Curie temperature and Neel temperature. It was reported that the incorporation of rare earth ion at Bi
site resulted in the modification of the ferroelectric properties, whereas the rare earth ion at the Fe site
alters the magnetic properties [3]. The preparation of doped and un-doped BiFeO3 via sol–gel and
solid-state [1] reactions requires elevated temperature of 600–900 ◦C and complex/expensive reagents
like citric acid and urea [9].

Therefore, there is an urgent need to develop new synthesis processes for obtaining pure
BiFeO3, which is a challenging task even today due to the appearance of secondary phases in
BiFeO3. It is very difficult to obtain single phase BiFeO3 because of non-stoichiometric oxygen in the
structure, which leads to the formation of undesirable impurity phases such as BiFe4O9, Bi25FeO39 and
Bi25FeO40 [10]. The presence of BiFe4O9, Bi25FeO39 and Bi25FeO40 impurities significantly reduces the
thermal stability of BiFeO3, and they also increase the leakage current [11]. The synthesis of pure BiFeO3

is quite subtle, because it is necessary to take both kinetic and thermodynamic properties into account.
In this view, considerable effort has been made in the past for the controlled synthesis of BiFeO3 owing
to its size- and morphology-dependent magnetic, electrical, and optical properties [5,12–16]. However,
the successive modulation of size and morphology of BiFeO3 has yet to become a reality.

In the present paper, as the synthesis technique and reaction parameters play a crucial role
in controlling the material properties, we successfully applied the hydrothermal synthesis route
for the fabrication of single phase BiFeO3 microspheres without any additional thermal treatment.
The hydrothermal synthesis route possessed the potential to produce well-crystallized BiFeO3 with
controlled morphology and narrow distribution of particle size. The BiFeO3 microspheres prepared by
the hydrothermal method show higher dielectric constant value (~110 at 1000 KHz) than the BiFeO3

prepared by conventional solid-state reaction (~20 at 100 KHz) and sol–gel method (~68 at 1M Hz).
Additionally, BiFeO3 has shown dielectric anomaly of ferroelectric to paraelectric type at 1093 K.

2. Experimental

2.1. Materials

The chemical reagents used in the work were bismuth nitrate (Bi(NO3)3·5H2O, 99%), Ferric
nitrate (Fe(NO3)3·9H2O, 99%), Sodium hydroxide (NaOH, 90%), Potassium hydroxide (KOH, 90%),
and Hydrogen peroxide (30% H2O2). All these analytical-grade purity chemicals were purchased from
S D Fine-Chem Limited, India, and used without further purification.

2.2. Method

Amounts of 0.01 mol Bi(NO3)3·5H2O, 0.01 mol Fe(NO3)3·9H2O, 0.051 mol NaOH, 0.049 mol KOH
were mixed with 12 mL acetone and stirred for 10 min. The reason for using high concentrations
of NaOH and KOH was to sufficiently maintain the basic condition. During this, an exothermic
reaction took place, and all the acetone evaporated. After thorough mixing, 4 mL H2O2 was added to
provide an oxygen-enriched atmosphere to keep the Fe ion in Fe3+ form and convert hydroxide into
oxide. The obtained resin-like suspension was poured into the Teflon-lined stainless-steel autoclave for
hydrothermal treatment. The autoclave was sealed and maintained at 200 ◦C ± 5 for 24 h. After the
completion of the reaction, the product was removed from the autoclave and washed with water and
acetone several times and dried in a laboratory oven at 80 ◦C ± 5 for several hours.

2.3. Characterization

The structure and crystallinity of the prepared BiFeO3 microspheres were characterized by
PANalytical X′pert X-ray diffractometer (XRD) equipped with graphite monochromatized CuKa
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radiation (Malvern Panalytical, Lelyweg, The Netherlands). Differential thermal analysis of BiFeO3

microspheres was carried out from room temperature to 900 ◦C in pure oxygen atmosphere at a scan
rate of 10 ◦C/min using Q600. Scanning electron microscope (SEM) images were taken with a JEOL.
The SEM images were recorded by adding a small amount of sample onto the carbon conductive
tape, and then gold was spurred for 9 s. Then, the gold-spurred samples were examined using SEM.
The densities of the BiFeO3 pellets (made with 2% polyvinyl alcohol as a binder) were measured
using the Archimedes principle. The sintered BiFeO3 ceramic specimens were polished and then
electroded with high-quality silver paint on both sides of the disk-shaped samples. The dielectric
and electrical properties of the samples were measured using a Hewlett Packard 4194A impedance
gain phase analyzer (Commonwealth of Massachusetts, Woburn) over wide ranges of frequency 100
Hz–10 MHz and temperature room temperature to 830 ◦C.

3. Results and Discussion

The phase composition and structure of the as-prepared BiFeO3 sintered at different temperatures
were examined by powder XRD technique, and the observed XRD patterns are displayed in Figure 1.
All the diffraction peaks in the XRD pattern of as-prepared BiFeO3 (prepared at 200 ◦C/24 h by
hydrothermal method) were consistent with the standard Joint Committee on Powder Diffraction
Standards No. 86-1518 of pure BiFeO3 having a rhombohedral crystal structure and R3c (161) space
group. Additionally, the diffraction (012) peaks (2 theta = 22.34) of the as-prepared BiFeO3 are intense
and sharp, indicating the formation of well-crystallized single phase BiFeO3. To investigate the effect
of heat treatment on the BiFeO3 samples, the powders were pressed into pellets and heat-treated at
different temperatures (at 600, 700 and 800 ◦C), as shown in Figure 1. It is observed that the sintered
BiFeO3 pellets retain the rhombohedral structure with space group R3c at higher sintering temperature.
The secondary phases associated with the BiFeO3 such as Bi2Fe4O9 and Bi25FeO40 are absent in the
present study. This suggests the formation of crystalline single phase BiFeO3 with good thermal
stability. The crystallite size (D) of BiFeO3 samples was calculated by following the Scherrer Formula.

D = (0.9 λ)/(β cosθ) (1)

where D is the crystallite size, λ is the wavelength of radiation, β is the full width at half maximum
(FWHM) of the diffraction peak in radian and θ is Braggs angle. The crystallite sizes are calculated by
considering the prominent diffraction peaks peaked at 2θ = 22.34 and 45.73, corresponding to the (012)
and (024) planes, respectively. The average crystallite size of the as-prepared, 600, 700, and 800 ◦C
samples was 34 ± 1.24, 41 ± 0.47, 43 ± 1.67, and 47 ± 0.94 nm, respectively.
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The formation of BiFeO3 under the present experimental conditions can be explained as follows.
Bismuth hydroxide and iron hydroxides were formed when bismuth nitrate and iron nitrate were
mixed with sodium hydroxide and potassium hydroxide at room temperature (Equations (2) and (3)).
Then, under hydrothermal conditions, the formed Fe(OH)3 and Bi(OH)3 undergo condensation to
form BiFeO3 microspheres (Equation (4)).

Bi3+(aq) + 3OH−(aq) → Bi(OH)3 ↓ (2)

Fe3+
(aq) + 3OH−(aq) → Fe(OH)3 ↓ (3)

Bi(OH)3(s) + Fe(OH)3(s) → BiFeO3 ↓ + 3H2O(1) (4)

Figure 2 presents the DTA curve of the BiFeO3 microspheres recorded between the temperatures 25
to 850 ◦C. The endothermic peak appearing at around 1088 K is attributed to the phase transformation
ferroelectric to paraelectric, i.e., Curie temperature [17]. This observed Curie temperature is in
agreement with the reported values for BiFeO3 [18,19]. Furthermore, weak transition at 380 ◦C (653K)
corresponds to antiferromagnetic phase transition.
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Figure 2. Dependence of heat flow with temperature for as-prepared BiFeO3 microspheres.

To study the dielectric permittivity, the density of the BiFeO3 was measured. The BiFeO3 powders
were pressed into a pellet of diameter 9 mm. The pressed BiFeO3 pellets were submerged in water.
The effective mass under water was determined by subtracting actual mass from the mass of the water
displaced. Then, the volume of the BiFeO3 pellets was determined. Finally, the mass was divided by
the volume to estimate the average density [20]. The effect of temperature on the density of the pellets
can be clearly seen in Figure 3. The density of the prepared BiFeO3 pellets sintered at 500 ◦C, 600 ◦C,
750 ◦C and 800 ◦C was shown to be 81%, 85%, 83% and 94%, respectively. Therefore, with an increase
in the sintering temperature, the density of the BiFeO3 increases, with the maximum being found to
be ~94% at 800 ◦C. The observed density is h when the sample is sintered at 800 ◦C. The observed
density, ~94%, is close to the BiFeO3 density (96%) reported by spark plasma sintering technique [21].
The lower density compared to the theoretical density may be due to the presence of little porosity in
the pellets.



Magnetochemistry 2020, 6, 42 5 of 8
Magnetochemistry 2020, 6, x FOR PEER REVIEW 5 of 8 

 

500 550 600 650 700 750 800
60

65

70

75

80

85

90

95

100

 

 Sintering temperature (°C)

%
 D

en
sit

y
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A typical scanning electron micrograph of the BiFeO3 powder prepared by the present method is
shown in Figure 4. It was observed that the BiFeO3 powder exhibited a spherical structure with a rough
surface. The average size of the BiFeO3 spherical structures was found to be in the range of 20–30 µm.
Each sphere is composed of significantly smaller agglomerated particles. The spherical structures are
formed due to the high oxygen partial pressure [22]. The formation of high oxygen partial pressure is
due to the decomposition of molten nitrate during heat treatment in a closed container according to
Equation (5). Similar results were reported by Xiaobo He et al. for the synthesis of BiFeO3 in presence
of potassium and sodium nitrate [23].

2NO3
−
(aq) → 2NO2(g) + 1/2O2(g) + O2− (5)

Magnetochemistry 2020, 6, x FOR PEER REVIEW 5 of 8 

 

500 550 600 650 700 750 800
60

65

70

75

80

85

90

95

100

 

 Sintering temperature (°C)

%
 D

en
sit

y

 

Figure 3. The variation of the density (%) of the BiFeO3 against sintering temperature. 

A typical scanning electron micrograph of the BiFeO3 powder prepared by the present method 
is shown in Figure 4. It was observed that the BiFeO3 powder exhibited a spherical structure with a 
rough surface. The average size of the BiFeO3 spherical structures was found to be in the range of 20–
30 μm. Each sphere is composed of significantly smaller agglomerated particles. The spherical 
structures are formed due to the high oxygen partial pressure [22]. The formation of high oxygen 
partial pressure is due to the decomposition of molten nitrate during heat treatment in a closed 
container according to Equation (5). Similar results were reported by Xiaobo He et al. for the synthesis 
of BiFeO3 in presence of potassium and sodium nitrate [23]. 

2NO3−(aq) →  2NO2(g) + 1/2O2(g) + O2− (5) 

 

Figure 4. Scanning electron micrograph of the BiFeO3 powder. 

The mixture KOH and NaOH was used for precipitation in our synthesis with the aim to carry 
out the reaction similar to molten metal flux method. Generally, melts can be made more acidic (H2O-
rich) or basic (O2-rich) by controlling the water content of the melt, based on the product formation 
requirement. In our synthesis, both iron nitrate and bismuth nitrate dissolves and heating at 200 °C 
in air-tight autoclave resulted in slow loss of water as vapors, thereby making the melt more basic 
and the product insoluble [24]. In addition, the excess added NaOH and KOH maintain a basic pH. 

The effect of frequency on the dielectric constant and the dielectric loss factor of BiFeO3 are 
presented in Figure 5. The dielectric constant is found to decrease slowly when frequency increases 

Figure 4. Scanning electron micrograph of the BiFeO3 powder.

The mixture KOH and NaOH was used for precipitation in our synthesis with the aim to carry out
the reaction similar to molten metal flux method. Generally, melts can be made more acidic (H2O-rich)
or basic (O2− rich) by controlling the water content of the melt, based on the product formation
requirement. In our synthesis, both iron nitrate and bismuth nitrate dissolves and heating at 200 ◦C in
air-tight autoclave resulted in slow loss of water as vapors, thereby making the melt more basic and
the product insoluble [24]. In addition, the excess added NaOH and KOH maintain a basic pH.

The effect of frequency on the dielectric constant and the dielectric loss factor of BiFeO3 are
presented in Figure 5. The dielectric constant is found to decrease slowly when frequency increases
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from 100 Hz to 100 kHz, and then becomes almost constant, showing the usual dielectric dispersion [25].
It is observed from the figure that the prepared BiFeO3 microsphere exhibit a high dielectric constant
value of ~113 ± 4.64 at 1000 KHz, which is significantly higher than the hydrothermally derived
Cr-substituted BiFeO3 (50 at 0.2–1.2 MHz), and BiFeO3 prepared by conventional solid-state (~20
at 100 KHz) and sol–gel reaction (~68 at 1M Hz) [25–27]. Generally, the dielectric properties of the
relaxors depend on the microstructural characteristics such as grain size, grain-boundary character
and pores. Therefore, microstructural control with an appropriate choice of additive can be critical in
the applications. Better powder characteristics, such as a relatively uniform distribution of particle
size and less particle agglomeration, obtained by the present method are believed to contribute to the
resultant dielectric properties.
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The effect of temperature on the dielectric constant is shown in Figure 6. The dielectric constant
of the specimen was measured from room temperature to 850 ◦C at frequencies of 100, 500, 1000,
and 10,000 kHz. It was found that the BiFeO3 has a dielectric anomaly at 1093 K (the Curie temperature,
Tc) suggesting the occurrence of ferroelectric–paraelectric phase transition.
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4. Conclusions

BiFeO3 microspheres were synthesized by direct precipitation followed by hydrothermal route
from the mixture of iron nitrate and bismuth nitrate in the molten KOH/NaOH solution at temperature
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as low as 200 ◦C. The prepared BiFeO3 microspheres exhibit higher thermal stability up to 800 ◦C,
and show larger dielectric constant values at different frequencies. The proposed method may be
extended for the synthesis of other perovskite materials.
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