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Abstract: Magnetic nanoparticles and magnetic nano-species of complex topology (e.g., nanorods,
nanowires, nanotubes, etc.) are overviewed briefly in the paper, mostly giving attention to the
synthetic details and particle composition (e.g., core-shell structures made of different materials).
Some aspects related to applications of magnetic nano-species are briefly discussed. While not being
a comprehensive review, the paper offers a large collection of references, particularly useful for
newcomers in the research area.
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1. Magnetic Nanoparticles—Motivations and Applications

Magnetic particles of different size (nano- and micro-) and various composition resulting in
different magnetization (superparamagnetic and ferromagnetic) have found numerous applications in
biotechnology [1] and medicine [2–5]. Particularly, they are used for magneto-controlled targeting
(delivering drugs [6,7], genes [8], radiopharmaceuticals [9]), in magnetic resonance imaging [10],
in various diagnostic applications [11], for biosensing [12] (e.g., immunoassays [13]), RNA and DNA
purification [14], gene cloning, cell separation and purification [15]. Magnetic nano-species with
complex topology (e.g., nanorods, nanowires and nanotubes) [16] have been used in numerous
nano-technological devices, including tunable micro-fluidic channels with magnetic control [17],
data storage units in nano-circuits [18], and magnetized nano-tips for magnetic force microscopes [19].
Magnetic nano- and micro-particles have been modified with various organic and bioorganic molecules
(proteins [20], enzymes [21], antigens, antibodies [22], DNA [23], RNA [24], etc.) as well as with
biological cells and cellular components. These species demonstrating magnetic properties and
biocatalytic or biorecognition features are usually organized in “core-shell” structures, with the core
part made of inorganic magnetic material and the shell composed of biomolecular/biological species
chemically bound to the core with organic linkers [25,26]. The chemical (usually covalent) binding
of organic linkers to the magnetic core units has been studied and characterized using different
analytical methods (e.g., capillary electrophoresis with laser-induced fluorescence detection) [25].
Biomolecular-functionalized magnetic particles have found many applications in various biosensing
procedures [27], mostly for immunosensing and DNA analysis, as well as in environmental and
homeland security monitoring [28].

2. Core-Shell Structures

The present section is concentrated on the magnetic nanoparticles with a solid magnetic
core coated with an organic or bioorganic shell (the shell structures composed of solid materials,
e.g., metallic or silicon oxide are overviewed in the next sections). The easiest way of particle
modification, particularly with organic polymers, can be based on physical adsorption [29]. However,
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covalent binding of (bio)organic molecules to the core parts is preferable since it provides more
stable immobilization. The core parts of functionalized magnetic particles are frequently made of
Fe3O4 or γ-Fe2O3 [30] having many hydroxyl groups at their surfaces, thus allowing silanization
of particles followed by covalent binding of biomolecules to functional groups in the organosilane
film [31]. While biomolecules bound to the particles are important for biocatalytic or biorecognition
features, the core parts are responsible for magnetic properties. Magnetic nanoparticles with controlled
size, specific shape and magnetization have been synthesized according to various methods [32–37] and
then successfully used for various biotechnological [35] and biomedical applications [38]. For example,
a synthetic procedure was developed for size-controlled preparation of magnetite (Fe3O4) nanoparticles
in organic solvents [39]. One of the most important characteristics of biocompatible magnetic
nanoparticles was their size dispersion characterized by atomic force microscopy and transmission
electron microscopy (TEM) [40]. Particular attention was given to the synthesis of monodisperse
and uniform nanoparticles [41]. Superparamagnetic iron oxide nanoparticles of controllable size
(<20 nm) were prepared in the presence of reduced polysaccharides [42]. Nanoparticles synthesized
by this method have an organic shell composed of polysaccharide, which increased the particle
stability and offered functional groups for additional modification with various biomolecules and
redox species. Biocompatible superparamagnetic Fe3O4 nanoparticles were extensively studied and
their structural and magnetic features were optimized for their use as labeling units in biomedical
applications [43]. Polymer-modified magnetic nanoparticles can be used for isolation and purification
of various biomolecules. For example, poly(2-hydroxypropylene imine)-functionalized Fe3O4 magnetic
nanoparticles were used for high-efficiency DNA isolation, higher than other studied materials at
same conditions, and had excellent specificity in presence of some proteins and metal ions [44].
Magnetic nanoparticles modified with a hydrophobic organic shell (e.g., composed of oleic acid) have
been tested for magneto-stimulated solvent extraction and demonstrated fast phase disengagement [45].

Highly crystalline iron oxide (Fe3O4) nanoparticles with a continuous size-spectrum of 6–13 nm
were prepared from monodispersed Fe nanoparticles used as precursors by their oxidation under
carefully controlled conditions [46]. Chemical stability of magnetic nanoparticles is an important
issue. In order to increase it, the organic shell components can be cross-linked, for example, in iron
oxide/polystyrene (core/shell) particles [47]. Cross-linking of polymeric chains in the organic shell
resulted in additionally stabilization of the shell structure, also protecting the magnetic core from
physical and chemical decomposition. Magnetic properties of nanoparticles can be tuned by varying
chemical composition and thickness of the coating materials, as it was reported for the composite
FePt-MFe2O4 (M = Fe, Co) core-shell nanoparticles [48]. While iron oxide-based magnetic nanoparticles
are the most frequently used, some alternative magnetized materials have been suggested for various
biomedical and bioanalytical applications [49]. For example, ferromagnetic FeCo nanoparticles
demonstrated superior properties that make them promising candidates for magnetically assisted
bioseparation methods and analysis, as well as for various electrochemical and bioelectrochemical
applications. Magnetic and dielectric properties of magnetic nanoparticles functionalized with organic
polymers (a core-shell structure) have been modelled and then the parameters obtained theoretically
were compared with the experimental data showing good predictability of the nanoparticle properties
using the theoretical model [50].

3. Magnetic Nanoparticles Coated with Noble Metal Shells

Formation of a thin shell-film of noble metals (e.g., Au or Ag) around magnetic cores (e.g., Fe3O4 or
CoFe2O4) results in the enhanced chemical stability of the magnetic core [51–56] (Figure 1) also providing
high electrical conductivity in particle assemblies, which is an important feature for electrochemical
and electronic applications. The enhanced stability of magnetic nanoparticles coated with a Au shell
allowed their operation under conditions when non-protected particles degrade rapidly.
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Figure 1. Various magnetic nanoparticles coated with gold shells: (a–d) TEM images of Fe3O4-
core/Au-shell magnetic nanoparticles synthesized according to different experimental procedures: (a) 
[57], (b) [58], (c) [57,58], (d) [59]; see more details in [54]. (e,f) TEM and STEM (scanning transmission 
electron microscopy) images, respectively, of the γ-Fe2O3-core/Au-shell magnetic nanoparticles [60] 
(parts of this figure were adapted from [54] with permission). 

For example, Au-coated iron nanoparticles with a specific magnetic moment of 145 emu g−1 and 
a coercivity of 1664 Oe were synthesized for biomedical applications [61]. Also, Au-coated 
nanoparticles with magnetic Co cores were synthesized for biomedical applications with the 
controlled size (5–25 nm; ±1 nm) and morphologies (spheres, discs with specific aspect ratio of 5 × 20 
nm) tailored for specific applications [62]. Formation of a Au-shell around a magnetic core results in 
additional options for modification of nanoparticles with (bio)organic molecules. Indeed, Au surfaces 
are well known for self-assembling of thiolated molecules resulting in a monolayer formation. Au-
coated magnetic nanoparticles of different sizes (50 nm, 70 nm and 100 nm) were prepared by the 
reduction of AuCl4− ions with hydroxylamine in the presence of Fe3O4 nanoparticles used as seeds 
[63]. Then, the gold-shell surface was modified with antibodies (rabbit anti-HIVp24 IgG or goat anti-
human IgG) through a simple self-assembling of thiolated molecules. The synthesized antibody-
functionalized Au-coated magnetic nanoparticles were used in an enzyme-linked immunosorbent 
assay (ELISA) providing easy separation and purification steps. Importantly for electrochemical and 
electronic applications, Au-shell-magnetic nanoparticles can be cross-linked with dithiol molecular 
linkers to yield thin-films with conducting properties [64]. 

4. Magnetic Nanoparticles Associated with Silicon Oxide Nanoparticles and Nanotubes 

Magnetic nanoparticles can be encapsulated in porous silica particles, which were functionalized 
at their external surfaces with proteins and used for biocatalysis [65,66]. The opposite way of 
modification resulted in the particles with a magnetic core and a mesoporous silica shell where the 
pores were filled with biomolecules or drugs [67]. These species allowed magneto-controlled 
transportation of the molecules included in the porous material of the shells. This approach was 
successfully used for modifying iron oxide magnetic nanoparticles (γ-Fe2O3 20 nm or Fe3O4 6–7 nm) 
with a SiO2 shell (thickness of 2–5 nm) using wet chemical synthesis [68,69] (Figure 2). 

Different approach was used to load magnetic nanoparticles on one-dimensional nano-objects 
(nanotubes), thus allowing deposition of many particles with a large total magnetization on one 
nanotube. SiO2 nanotubes were prepared in an alumina template and then their inner surfaces were 

Figure 1. Various magnetic nanoparticles coated with gold shells: (a–d) TEM images of Fe3O4-core/Au-shell
magnetic nanoparticles synthesized according to different experimental procedures: (a) [57], (b) [58],
(c) [57,58], (d) [59]; see more details in [54]. (e,f) TEM and STEM (scanning transmission electron
microscopy) images, respectively, of the γ-Fe2O3-core/Au-shell magnetic nanoparticles [60] (parts of
this figure were adapted from [54] with permission).

For example, Au-coated iron nanoparticles with a specific magnetic moment of 145 emu g−1 and a
coercivity of 1664 Oe were synthesized for biomedical applications [61]. Also, Au-coated nanoparticles
with magnetic Co cores were synthesized for biomedical applications with the controlled size (5–25 nm;
±1 nm) and morphologies (spheres, discs with specific aspect ratio of 5 × 20 nm) tailored for specific
applications [62]. Formation of a Au-shell around a magnetic core results in additional options for
modification of nanoparticles with (bio)organic molecules. Indeed, Au surfaces are well known
for self-assembling of thiolated molecules resulting in a monolayer formation. Au-coated magnetic
nanoparticles of different sizes (50 nm, 70 nm and 100 nm) were prepared by the reduction of AuCl4−

ions with hydroxylamine in the presence of Fe3O4 nanoparticles used as seeds [63]. Then, the gold-shell
surface was modified with antibodies (rabbit anti-HIVp24 IgG or goat anti-human IgG) through a
simple self-assembling of thiolated molecules. The synthesized antibody-functionalized Au-coated
magnetic nanoparticles were used in an enzyme-linked immunosorbent assay (ELISA) providing
easy separation and purification steps. Importantly for electrochemical and electronic applications,
Au-shell-magnetic nanoparticles can be cross-linked with dithiol molecular linkers to yield thin-films
with conducting properties [64].

4. Magnetic Nanoparticles Associated with Silicon Oxide Nanoparticles and Nanotubes

Magnetic nanoparticles can be encapsulated in porous silica particles, which were functionalized at
their external surfaces with proteins and used for biocatalysis [65,66]. The opposite way of modification
resulted in the particles with a magnetic core and a mesoporous silica shell where the pores were
filled with biomolecules or drugs [67]. These species allowed magneto-controlled transportation of
the molecules included in the porous material of the shells. This approach was successfully used
for modifying iron oxide magnetic nanoparticles (γ-Fe2O3 20 nm or Fe3O4 6–7 nm) with a SiO2 shell
(thickness of 2–5 nm) using wet chemical synthesis [68,69] (Figure 2).

Different approach was used to load magnetic nanoparticles on one-dimensional nano-objects
(nanotubes), thus allowing deposition of many particles with a large total magnetization on one
nanotube. SiO2 nanotubes were prepared in an alumina template and then their inner surfaces were
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modified with Fe3O4 magnetic nanoparticles [70]. The resulting magnetic nanotubes were applied for
the magnetic-field-assisted bioseparation, biointeraction, and drug delivery, benefiting from a large
magnetization originating from the presence of many magnetic nanoparticles and a large external SiO2

nanotube surface area.
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(NaYF4/Y/Er), which provided infrared-to-visible up-conversion with the high efficiency [72]. The 
two-component hybrid core-shell magnetic nanoparticles with fluorescent properties were 
furthercoated with a second shell made of SiO2 allowing covalent immobilization of biomolecules 
(e.g., streptavidin). The produced multi-functional nanoparticles demonstrated efficient 
magnetization, fluorescence and bioaffinity features, thus allowing magneto-controlled separation of 
biomolecules, their fluorescent analysis and formation of affinity complexes with complementary 
biotinylated molecules. Many different approaches have been studied for combining magnetic 
properties and fluorescent features in one hybrid bi-functional nano-object. For example, magnetic 
Fe3O4 nanoparticles (8.5 nm) were modified with polyelectrolyte films using layer-by-layer 
deposition of differently charged polyelectrolytes, positively charged polyallylamine and the 
negatively charged polystyrene sulfonate [73]. The thickness of the polymer-shell around the 
magnetic core and the charge of the external layer were controlled by the number of deposited layers. 
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bound to the positively charged polyallylamine exterior layer in the polyelectrolyte shell of the 
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nanoparticles was controlled by the number of the polyelectrolyte layers between them, thus 
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magnetic-fluorescent assemblies with different compositions have been reported for different 
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Figure 2. Various magnetic nanoparticles coated with silica shells: Backscattered electrons image (a)
and TEM image (b) of Fe3O4-core/SiO2-mesoporous-shell magnetic nanoparticles [67]. TEM image (c) of
Fe3O4-core/SiO2-mesoporous-shell magnetic nanoparticles [67]. TEM image (d) of Fe3O4-core/SiO2-shell
magnetic nanoparticles [71] (parts of this figure were adapted from [67,71] with permission).

5. Magnetic Nanoparticles with Fluorescent Features

Fe3O4 magnetic nanoparticles (5–15 nm) with unique optical properties were prepared with
an inorganic fluorescent shell composed of ytterbium and erbium co-doped sodium yttrium
fluoride (NaYF4/Y/Er), which provided infrared-to-visible up-conversion with the high efficiency [72].
The two-component hybrid core-shell magnetic nanoparticles with fluorescent properties were
furthercoated with a second shell made of SiO2 allowing covalent immobilization of biomolecules
(e.g., streptavidin). The produced multi-functional nanoparticles demonstrated efficient magnetization,
fluorescence and bioaffinity features, thus allowing magneto-controlled separation of biomolecules,
their fluorescent analysis and formation of affinity complexes with complementary biotinylated
molecules. Many different approaches have been studied for combining magnetic properties and
fluorescent features in one hybrid bi-functional nano-object. For example, magnetic Fe3O4 nanoparticles
(8.5 nm) were modified with polyelectrolyte films using layer-by-layer deposition of differently
charged polyelectrolytes, positively charged polyallylamine and the negatively charged polystyrene
sulfonate [73]. The thickness of the polymer-shell around the magnetic core and the charge of the external
layer were controlled by the number of deposited layers. The electrical charge of the external layer
allowed electrostatic binding of secondary fluorescent nanoparticles. Negatively charged thioglycolic
acid-capped CdTe nanoparticles were electrostatically bound to the positively charged polyallylamine
exterior layer in the polyelectrolyte shell of the magnetic nanoparticles. The distance between the
secondary satellite fluorescent CdTe nanoparticles and the magnetic Fe3O4 core was controlled by
the number of the deposited polyelectrolyte layers. The developed method allowed further system
sophistication by depositing additional layers of polyelectrolytes above the CdTe nanoparticles followed
by deposition of another layer of the satellite CdTe nanoparticles. The distance between the primary
and secondary fluorescent CdTe nanoparticles was controlled by the number of the polyelectrolyte
layers between them, thus allowing tuning of the fluorescent properties of the multi-functional
nano-system. Many other magnetic-fluorescent assemblies with different compositions have been
reported for different applications. One more example is Co-CdSe core-shell magnetic-fluorescent
assembly prepared by deposition of fluorescent CdSe layer on the pre-formed magnetic Co core.
The deposition process was performed in a non-aqueous solution using dimethyl cadmium as an
organic precursor [74]. Many different magnetic nano-species functionalized with fluorescent labels
have been used as versatile labels for biomolecules, demonstrating advantages of both fluorescent
reporting part and magnetic separating/transporting part of the assembly. It should be noted that
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careful optimization of the distance separating the magnetic core and fluorescent species (organic dyes
or inorganic quantum dots) should be done to minimize quenching of the photo-excited species by the
core part.

6. Magnetic Nanoparticles Combined with Metallic Nano-Species or Quantum Dots

Combining two different nanoparticles (e.g., magnetic and metal or semiconductor) in one
nano-assembly where the particles are bound to each other results in unique multi-functional species.
In these species two nanoparticles composed of different materials with different properties can
be organized as Siamese twins (dumbbell-like bifunctional particles) [75–77]. There are different
procedures for binding two nanoparticles in one composite assembly, some of the procedures are
based on the controlled growth of the second particle next to the primary particle. For example,
magnetic nanoparticles, Fe3O4 or FePt, (8 nm) with a protecting/stabilizing organic shell composed of
a surfactant were dispersed in an organic solvent (e.g., dichlorobenzene) and added to an aqueous
solution of Ag+ salt [75]. The bi-phase aqueous/organic system was ultrasonicated to yield micelles with
the magnetic nanoparticles self-assembled on the liquid/liquid interface. Then, Ag+ ions penetrated
through defects in the surfactant shell being then catalytically reduced by Fe2+ sites to yield the seeding
of a Ag nanoparticle. Further reduction of Ag+ ions on the Ag seed resulted in the grows of the seed
and formation of a Ag nanoparticle at a side of the magnetic nanoparticle yielding a twin-particles
shown in the transmission electron microscopy (TEM) image (Figure 3a). Another Ag nanoparticle
was produced at a side of an FePt magnetic nanoparticle in a similar process (Figure 3b). The size of
the produced Ag nanoparticle was controlled by the time allowed for the growing process.
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Figure 3. (a,b) TEM images of Fe3O4-Ag and FePt-Ag hetero-dimers composed of the magnetic
nanoparticle and connected Ag nanoparticle [75]. (c) Directed functionalization of the Fe3O4 nanoparticle
and Ag nanoparticle with different functional units, such as dopamine-derivatized and thiol-derivatized
species, respectively. X and Y might be represented by different molecular and biomolecular species
(part of this figure was adapted with permission from [75], American Chemical Society, 2005).

The two parts of the synthesized hetero-dimeric nanoparticles can be conveniently modified
with different molecules using the difference of the surface properties of the two parts of the dimer.
For example, the Ag nanoparticle in the dimeric hybrid was functionalized with self-assembled
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thiolated molecules, while the Fe3O4 magnetic nanoparticle was modified using dopamine units as
anchor groups bound to Fe2+/3+ sites of the iron oxide surface (Figure 3c). In a different synthetic
approach hetero-dimeric species were produced from FePt two-metal alloy nanoparticles coated
by an amorphous CdS shell. The metastable amorphous CdS layer had tendency of changing to a
crystalized form upon temperature increase. When the multi-component core-shell nanoparticles were
heated, FePt and CdS components were transformed into hetero-dimers due to incompatibility of the
FePt and CdS lattices, thus resulting in their separation and formation of individual FePt and CdS
nanoparticles (less than 10 nm size) connected to each other [76]. Importantly, the hetero-dimeric
species demonstrated superparamagnetism characteristic of the FePt part and fluorescence produced
by the CdS quantum dot, providing excellent means for labeling of biomaterials. In a different approach,
separately synthesized superparamagnetic γ-Fe2O3 nanoparticles (ca. 11.8 nm) and fluorescent CdSe
quantum dots (ca. 3.5 nm) were mixed and encapsulated together in a silicon oxide shell yielding a
complex multifunctional assembly that demonstrated a unique combination of the magnetic property of
γ-Fe2O3 and fluorescent features of CdSe [78]. The silicon oxide shell served as a matrix keeping together
the functional nano-components, preserving their individual properties, and providing accessibility
of the two-component hybrid system for additional chemical modification of both components with
different molecules.

7. Modification of Magnetic Nanoparticles with Various Biomolecules

Various organic shells exhibiting different chemical functional groups (e.g., aminosiloxane,
dextran or dimercaptosuccinic acid) were prepared around magnetic nanoparticles [71,79,80].
Organic functional groups available at the outer-layer of the organic shell have been used
for numerous chemical coupling reactions resulting in covalent immobilization of different
(bio)molecules [81,82] to allow various biochemical, bioanalytical and biomedical applications [83].
For example, covalent immobilization of a polyclonal IgG anti-horseradish peroxidase antibody
bound to dextran-coated magnetic particles allowed the use of the functionalized particles for the
capturing and separation of horseradish peroxidase enzyme from a crude protein extract from
Escherichia coli [83]. In another example, magnetic core of Fe3O4 nanoparticles was silanized and then
covalently modified with polyamidoamine (PAMAM) dendrimer [84]. The amino groups added to the
nanoparticles upon their modification with PAMAM were used for covalent binding of streptavidin
with the load 3.4-fold greater comparing to the direct binding of streptavidin to the silanized magnetite
nanoparticles. The increased streptavidin load originated from the increase of the organic shell diameter
and the increased number of the amino groups available for the covalent binding of streptavidin.
While silanization of metal-oxide magnetic nanoparticles is the most frequently used technique for their
primary modification [22], dopamine was also suggested as a robust anchor group to bind biomolecules
to magnetic Fe3O4 particles [85]. Dopamine ligands bind to iron oxide magnetic nanoparticles
through coordination of the dihydroxyphenyl units with Fe+2 surface sites of the particles providing
amino groups for further covalent attachment of various biomolecules, usually through carbodiimide
coupling reactions.

Immobilization of proteins (e.g., bovine serum albumin) [31,86,87] or enzymes (e.g., horseradish
peroxidase (HRP) or lipase) [88–91] upon their binding to organic shells of magnetic nanoparticles has been
extensively studied and reported for many applications. Immobilization of various enzymes on magnetic
nanoparticles preserves the enzyme catalytic activity and, sometimes, results in the enzyme stabilization
comparing with the soluble state. For example, alcohol dehydrogenase covalently immobilized on Fe3O4

magnetic particles demonstrated excellent biocatalytic activity [92,93]. In many experimentally studied
systems magnetic nanoparticles functionalized with redox enzymes demonstrated bioelectrocatalytic
activities upon direct contacting with electrode surfaces [91].

While covalent binding or any other permanent immobilization of enzymes on magnetic nanoparticles
is beneficial for many applications (e.g., in magneto-controlled biosensors), reversible binding of
enzymes might be important for other special applications. Reversible binding of positively charged



Magnetochemistry 2019, 5, 61 7 of 15

proteins/enzymes to negatively charged polyacrylic-shell/Fe3O4-core magnetic nanoparticles has been
reported as an example of electrostatically controlled reversible immobilization [94]. The protein
molecules, positively charged at low pH values (pH < pI, isoelectric point), were electrostatically
attracted and bound to the negatively charged organic shells, while at higher pH values (pH > pI)
the negatively charged protein molecules were electrostatically repulsed and removed from the
core-shell magnetic nanoparticles. The demonstrated reversible attraction/repulsion of the proteins
controlled by pH values was applied for collecting, purification, and transportation of the proteins
with the help of magnetic nanoparticles in the presence of an external magnetic field. Many other
applications are feasible, for example, magnetic particles functionalized with carbohydrate oligomers
yielding multivalent binding of the magnetic labels to proteins or cells via specific carbohydrate-protein
interactions have been used in imaging procedures [95].

DNA molecules have been used as templates for formation of magnetic nanoparticles. A mixture
of Fe2+/Fe3+ ions was deposited electrostatically on the negatively charged single-stranded DNA
molecules [96]. Then, the iron ions associated with DNA were used as seeds to produce Fe3O4

magnetic particles associated with the DNA molecules. The magneto-labeled single-stranded DNA
was hybridized with complementary oligonucleotides yielding the double-stranded DNA complex with
the bound magnetic nanoparticles. This allowed magneto-induced separation of the oligonucleotide,
which can be later dissociated from the magneto-labeled DNA by the temperature increase.

8. Controlled Aggregation of Magnetic Nanoparticles and Formation of Magnetic Nanowires

The controlled assembling of magnetic nanoparticles using different kinds of cross-linking
species or organic matrices has been studied for preparing novel materials with unique properties.
Different mechanisms and interactions can be responsible for the nanoparticle assembling. For example,
assembling of magnetic nanoparticles in the presence of amino acid-based polymers resulted in
the controlled organization of these components due to electrostatic interactions between the block
co-polypeptides and nanoparticles [97]. Depending on the kind of the added polypeptide the results
of their interaction with magnetic nanoparticles can be different. The addition of polyaspartic acid
initiated the aggregation of maghemite (γ-Fe2O3) nanoparticles into clusters, without their precipitation.
On the other hand, the addition of the block co-polypeptide poly(EG2-Lys)100-b-poly(Asp)30 resulted
in the assembling of the magnetic nanoparticles in more sophisticated structures composed of micelles
with cores consisting of the nanoparticles electrostatically bound to the polyaspartic acid end of the
block co-polypeptide. The micelle shell stabilizing the core clusters and controlling their size was
composed of the poly(EG2-Lys) ends of the copolymers. The size and stability of the nanoparticle
assembly can be tuned by changing the composition of the block co-polypeptide, thus adjusting the
composite structures for their use in different applications.

Magnetic nanowires of different types, sizes and materials have been created for various
applications, mostly using alumina membrane template method [98,99]. This method is based
on the formation of nanowires inside the pores of the ordered aluminum oxide membrane, usually with
electrochemical deposition of the material selected for the nanowires formation, Figure 4. Variation and
optimization of the electrochemical deposition parameters allows the control of the nanowires length
and structure, while the nanowires diameter depends on the membrane pores. The magnetic properties
as well as some other features of the one-dimensional nanowires are unique and allow their use in
the fabrication of magnetic nanodevices with high performance and controllability. For example,
an ordered hexagonal array of highly aligned strontium ferrite nanowires was produced by dip coating
in alumina templates, with magnetic properties dependent on the nanowire diameter and length [100].
The diameter of nanowires, synthesized with high aspect ratios, was changed from 30 to 60 nm while
maintaining the same center-to-center distance between the wires. Nickel nanowires (98 nm diameter
and 17 µm length) were fabricated by electrodeposition in anodic aluminum oxide membranes [101].
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Figure 4. (A) Scanning electron micrograph, SEM, (top view) of a typical hexagonally ordered nanoporous
alumina template with a pore diameter of 70 nm and an interpore distance of 100 nm. (B) SEM
cross-sectional view of alumina membranes filled with Fe nanowires deposited from electrolytes
containing: (a) 0.1 M FeSO4, (b) 1 M FeSO4 and (c) 0.5 M FeSO4 + 0.4 M H3BO3. (C) Schematic description
of the membrane-template electrochemical preparation of multifunctional nanowires. (Parts A and B
were adapted from [102] with permission; part C was adopted from [103] with permission).

The synthetic method based on the alumina template can be applied to formation of multi-segment
nanowires [104], which include magneto-responsive domains (usually represented by metallic Ni
or Fe) and domains made of other materials (e.g., Au for deposition of thiolated redox species
and biomolecules). The multi-segment nanowires can demonstrate multi-functional behavior with
the magnetic properties combined with biocatalytic or biorecognition features depending on the
biomolecule species bound to the non-magnetic segments. It is particularly easy to fabricate nanowires
made of different metals, each with different properties. For example, Ni-Cu-Co composite magnetic
nanowires have been successfully synthesized by electrochemical deposition inside the alumina
template [105]. A few examples of magnetic nanowires are shown in Figures 5 and 6.
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applications. For example, CoFe2O4-core/Au-shell nanoparticles have been successfully used to 
design a biosensor for foot-and-mouth viral disease biomarkers [53]. In this example a system with 
biomimetic oligo peptide-nucleic acid (PNA) was assembled on a gold shell of the magnetic 
nanoparticles and then hybridized with the complementary DNA sequence which is the disease 
biomarker. The biosensing was performed upon intercalation of the double-stranded PNA/DNA 
with a fluorescence probe, Rhodamine 6G. The magnetic features of the nano-species allowed easy 
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the scope of this short review and can be found elsewhere [106–111]. While the present review offers 
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Figure 6. Scanning electron micrographs (SEM) of Ni nanowires with average diameter of 98 nm and
length of 17 µm after removal of alumina templates. (The figure was adapted from ref. [101] with
permission.). Images (a-d) show various examples of Ni nanowires prepared in alumina templates.

9. Conclusions and Perspectives

The state-of-the-art in the synthesis, functionalization, characterization, and application of
(bio)molecule-functionalized magnetic particles and other related micro-/nano-objects, such as
nanowires or nanotubes, allows efficient performance of various in vitro and in vivo biosensors
and bioelectronic devices. Many of these devices are aimed for biomedical and biotechnological
applications. For example, CoFe2O4-core/Au-shell nanoparticles have been successfully used to
design a biosensor for foot-and-mouth viral disease biomarkers [53]. In this example a system
with biomimetic oligo peptide-nucleic acid (PNA) was assembled on a gold shell of the magnetic
nanoparticles and then hybridized with the complementary DNA sequence which is the disease
biomarker. The biosensing was performed upon intercalation of the double-stranded PNA/DNA
with a fluorescence probe, Rhodamine 6G. The magnetic features of the nano-species allowed
easy separation of the analyzed species from a multi-component biofluid. The present example
demonstrates powerful applicability of the biomolecule-functionalized magnetic nanoparticles in
biomedical biosensors. Many other applications are feasible using various types of magneto-active
nanospecies. Discussion on biological issues related to the biocompatibility, toxicity, etc. are outside
the scope of this short review and can be found elsewhere [106–111]. While the present review
offers a brief introduction to the topic, interested readers can find comprehensive reviews published
recently [112–117].
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