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Abstract: Two ligands, 2,4-di-2-pyridyl-2,4-pentanediol (rD and mD), were employed to synthesize
two Mn2 complexes, [Mn2(rD)2Br2] (1) and [Mn2(mD)2(H2O)2]Br2 (2). Compound 1 crystallized in a
tetragonal space group, P41212, with a novel hamburger shaped structure. A detailed study indicated
that compound 1 did not contain a metal–metal bond, but antiferromagnetic coupling was observed
between the Mn(III) ions. Compound 2 crystallized in a monoclinic space group, C2/c, with one
Mn(II) and the other with Mn(IV). The two manganese ions were bridged by two alkoxide ligands,
resulting in ferromagnetic coupling. Magnetic property studies confirm the above assignments.
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1. Introduction

Manganese containing coordination complexes are of great interest due to their unique magnetic
properties [1–3] as well as their variety of functions in chemistry [4–6]. A very large number of oxygen
bridging compounds have been synthesized [7–24]. However, in a survey of the literature, all of
the manganese ions in these complexes are connected with neighboring manganese ions through
bridging atoms. The only example of a complex where manganese atoms are in direct contact is the
well known (OC)5Mn-Mn(CO)5 complex, which contains a single metal–metal bond between the two
Mn units [25]. Because the unpaired electrons on the metal centers are paired, this moiety is therefore
diamagnetic. Except for this example, there are no reports in the literature of a capped form of a
structure with a direct Mn–Mn bond. Nevertheless, in our attempts to use the 2-(2-pyridyl)-isopropanol
(dmhmp-H) ligand to synthesize a manganese cluster, we accidently but repeatedly isolated a small
amount of a capped form of an Mn2 complex. Although only small amounts of a dark-green complex
were isolated, elemental analysis as well as an XRD powder pattern indicated that it was a highly
pure compound. Due to its special structure, we attempted to develop a method to systematically
prepare this compound. Based on the X-ray structure, we concluded that the ligand was a racemate of
2,4-di-2-pyridyl-2,4-pentanediol (rD). Numerous efforts were made to optimize the yield, but they
were not successful [26]. In a search of the literature, we found that Shopov and co-workers [27]
encountered a situation that was very similar to ours, i.e., the most efficient route for preparing such
complexes is to start by preparing dmhmp-H from a Grignard reagent [27,28]. We then used MeMgI as
the starting material and purified the product by distillation followed by flash column chromatography.
Approximately 1% of the racemate and the meso 2,4-di-2-pyridyl-2,4-pentanediol (rD and mD) were
obtained, respectively. Armed with the pure ligands, we were then able to generate isolable amounts
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of the capped form of the [Mn2(rD)2Br2] (1) complex. For a comparison in magnetic property studies,
we also used the same procedure for preparing compound 1 to synthesize [Mn2(mD)2(H2O)2]Br2 (2).
The magnetic properties of compound 2 remained unreported, although a similar compound with
different counter ions, [Mn2(mD)2(H2O)2](NO3)2, was reported by Shopov and co-workers [27]. In this
report, we describe the novel structure of compound 1 and the magnetic properties of both compounds
1 and 2.

2. Results and Discussion

2.1. Description of Structures

The 2,4-di-2-pyridyl-2,4-pentanediol (rD and mD) ligands (see Scheme 1) were crucial for preparing
these complexes. With the same synthetic approach, different ligands (rD and mD) led to different
structures. Numerous efforts were made to synthesize these ligands, but none were successful. Finally,
we realized that the best strategy for producing the products was the original reaction condition used
for the synthesis of dmhmpH. The Grignard reagent automatically led to minor but promising amounts
of rD and mD. After careful work on distillation and chromatography, a reasonable amount of rD and
mD ligands could be obtained.
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Scheme 1. Structural representations of the ligands rD and mD.

Compound 1 crystallized in a tetragonal space group, P41212. X-ray refinement data for the
complex are listed in Table 1. The structural plot of complex 1 is presented in Figure 1. The structure
clearly shows that two manganese ions were penta-coordinated and approached each other through
the flat vacancy site of the square-pyramidal structure. Two rD ligands held these two ions in a
hamburger form through the nitrogen atoms of the pyridine and the oxygen atom from the alkoxide
arm. Two bromide ions functioned as caps from both the top and the bottom of the complex. The
metal–ligand bond lengths are shown in Table 2, which shows that the equatorial metal–ligand
bond lengths were from 1.846 to 2.003 Å, while the axial Mn–Br bond was 2.5853(7) Å [29,30]. This
character clearly indicated a z-out form of the Jahn–Teller distortion of Mn(III) ion. Both the bond
valence sum (BVS) calculation (see supporting information) and the charge balance supported our
charge assignments. We know that the Mn(III) ions have the same electron configuration as Cr(II), in
which the Cr–Cr quadrupole bonds are seen in face-to-face forms of many chromium dimers [31,32].
Nevertheless, the metal–metal distances were maintained at a distance of 3.69 Å from each other,
which prevented significant metal–metal bond formation. We therefore became curious about the
metal–metal interactions at such a distance. In the discussion below, we conclude that, instead of
metal–metal bonds, there was strong antiferromagnetic coupling between these two Mn(III) ions.
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Table 1. Refined crystal data and unit cell information.

Empirical Formula C30H32N4O4Br2Mn2 C30H44N4O10Br2Mn2

Fw 782.3 890.39
Space Group P41212 C2/c

a, Å 10.1069(5) 27.9847(12)
b, Å 10.1069(5) 8.3508(3)
c, Å 29.1085(16) 19.8000(8)

α, deg 90 90
β, deg 90 129.3794(10)
γ, deg 90 90
V, (Å3) 2973.4(3) 3576.6(2)

Z 4 4
ρ(calc), Mg/m3 1.748 1.654

T, K 150(2) 150(2)
λ, Å 0.71073 0.71073

θ range (deg) 2.133–27.499 2.614–30.000

hkl ranges −10<=h<=12, −13<=k<=13,
−37<=l<=37

−39<=h<=39, −11<=k<=11,
−27<=l<=27

Reflections collected 18008 17265
Independent reflections 3411 [R(int) = 0.0354] 5220 [R(int) = 0.0262]

µ, mm−1 3.580 2.999
GOF 1.139 1.052

R1 [I > 2σ(I)] 0.0224 0.0228
wR2 0.0547 0.0571

Flack parameter 0.009(5)

R1 = Σ||F0| − |Fc||/Σ|F0|; wR2 = [Σw(F0
2
− Fc

2)2/Σw(F0
2)2]1/2; GOF =

√∑
hkl w∆2

m−n
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Figure 1. (a) Structural plot of compound 1. (b) Side view of compound 1, where the Mn–Mn distance
is 3.686 Å.

Compound 2 crystallized in a monoclinic C2/c space group. X-ray refinement data for the complex
are also listed in Table 1. The structural plot of complex 2 is displayed in Figure 2. Two manganese
ions were held by two double deprotonated ligands with one bound by four alkoxy-groups and two
pyridines, the other bound by two bridging alkoxides, two pyridines, and coordinates to two water
molecules. Both of the manganese ions were six coordinated, but their charges were quite different.
The Mn(1) ion had two metal–ligand bonds with distances of 1.85 Å, two with distances of 1.91 Å, and
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bound with pyridine at a distance of 1.99 Å. Since all six metal–ligand bonds were short, we assigned
this atom as an Mn(IV) ion. In contrast, Mn(2) bound with a bridging alkoxide at a distance of 2.13 Å,
with two water molecules with a distance of 2.18 Å and two pyridines at 2.31 Å. These metal–ligand
bonds were obviously long and were therefore assigned as an Mn(II) ion. (See Table 3) This assignment
was also supported by bond-valence-sum (BVS) calculations. As described below, we concluded that,
as the half filled d orbital in the Mn(II) ion overlapped the empty eg orbital of the neighbor Mn(IV) ion,
this actually triggered the ferromagnetic coupling of compound 2.

Table 2. Selected bond distances (Å) and angles (deg) of compound 1.

Mn(1)-O(1) 1.846(2) Mn(2)-O(2) 1.854(2)
Mn(1)-O(1)#1 1.846(2) Mn(2)-O(2)#1 1.854(2)
Mn(1)-N(1) 2.003(2) Mn(2)-N(2) 2.004(2)
Mn(1)-N(1)#1 2.003(2) Mn(2)-N(2)#1 2.004(2)
Mn(1)-Br(1) 2.5853(7) Mn(2)-Br(2) 2.5710(7)
O(1)-Mn(1)-O(1)#1 152.66(13) O(2)-Mn(2)-O(2)#1 155.75(15)
O(1)-Mn(1)-N(1) 82.98(10) O(2)-Mn(2)-N(2) 82.57(9)
O(1)#1-Mn(1)-N(1) 92.34(10) O(2)#1-Mn(2)-N(2) 93.92(9)
O(1)-Mn(1)-N(1)#1 92.34(10) O(2)-Mn(2)-N(2)#1 93.92(9)
O(1)#1-Mn(1)-N(1)#1 82.98(10) O(2)#1-Mn(2)-N(2)#1 82.58(9)
N(1)-Mn(1)-N(1)#1 160.16(13) N(2)-Mn(2)-N(2)#1 163.33(16)
O(1)-Mn(1)-Br(1) 103.67(7) O(2)-Mn(2)-Br(2) 102.12(8)
O(1)#1-Mn(1)-Br(1) 103.67(7) O(2)#1-Mn(2)-Br(2) 102.12(8)
N(1)-Mn(1)-Br(1) 99.92(6) N(2)-Mn(2)-Br(2) 98.33(8)
N(1)#1-Mn(1)-Br(1) 99.92(6) N(2)#1-Mn(2)-Br(2) 98.33(8)
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To further confirm the assignments of the charges for the metal ions, BVS [33] approximations
were carried on both compounds 1 and 2. The calculations were based on Equation (1), where the
parameter B was an experience constant with the value 0.37 and the r0 values were obtained from
literature reports and are listed in Table 4. The metal–ligand bond lengths listed in Tables 2 and 3 were
then substituted into Equation (1), which indicated that both manganese ions in compound 1 were
Mn(III) ions, whereas the metal centers in compound 2 were Mn(II) and Mn(IV) ions [34–37].

V =
∑

i

Si =
∑

i

exp (
r0 − r

B
) (1)



Magnetochemistry 2019, 5, 43 5 of 12

Table 3. Selected bond distances (Å) and angles (deg) of compound 2.

Mn(1)-O(3)#1 2.1223(10) Mn(2)-O(2)#1 1.8435(9)
Mn(1)-O(3) 2.1223(10) Mn(2)-O(2) 1.8436(9)
Mn(1)-O(1) 2.1832(9) Mn(2)-O(1) 1.9049(8)
Mn(1)-O(1)#1 2.1832(9) Mn(2)-O(1)#1 1.9049(8)
Mn(1)-N(1) 2.3073(11) Mn(2)-N(2)#1 1.9862(11)
Mn(1)-N(1)#1 2.3073(11) Mn(2)-N(2) 1.9862(11)
O(3)#1-Mn(1)-O(3) 90.13(6) O(1)-Mn(2)-O(1)#1 85.63(5)
O(3)#1-Mn(1)-O(1) 102.84(4) O(2)#1-Mn(2)-N(2)#1 80.90(4)
O(3)-Mn(1)-O(1) 156.24(4) O(2)-Mn(2)-N(2)#1 93.45(4)
O(3)#1-Mn(1)-O(1)#1 156.24(4) O(1)-Mn(2)-N(2)#1 92.28(4)
O(3)-Mn(1)-O(1)#1 102.84(4) O(1)#1-Mn(2)-N(2)#1 93.67(4)
O(1)-Mn(1)-O(1)#1 72.74(4) O(2)#1-Mn(2)-N(2) 93.45(4)
O(3)#1-Mn(1)-N(1) 99.60(4) O(2)-Mn(2)-N(2) 80.90(4)
O(3)-Mn(1)-N(1) 86.97(4) O(1)-Mn(2)-N(2) 93.67(4)
O(1)-Mn(1)-N(1) 71.43(4) O(1)#1-Mn(2)-N(2) 92.28(4)
O(1)#1-Mn(1)-N(1) 100.88(4) N(2)#1-Mn(2)-N(2) 171.90(6)
O(3)#1-Mn(1)-N(1)#1 86.96(4) O(2)#1-Mn(2)-Mn(1) 133.89(3)
O(3)-Mn(1)-N(1)#1 99.60(4) O(2)-Mn(2)-Mn(1) 133.89(3)
O(1)-Mn(1)-N(1)#1 100.87(4) O(1)-Mn(2)-Mn(1) 42.82(3)
O(1)#1-Mn(1)-N(1)#1 71.43(4) O(1)#1-Mn(2)-Mn(1) 42.82(3)
N(1)-Mn(1)-N(1)#1 170.75(6) N(2)#1-Mn(2)-Mn(1) 94.05(3)
O(3)#1-Mn(1)-Mn(2) 134.94(3) N(2)-Mn(2)-Mn(1) 94.05(3)
O(3)-Mn(1)-Mn(2) 134.94(3) C(6)-O(1)-Mn(2) 127.13(7)
O(1)-Mn(1)-Mn(2) 36.37(2) C(6)-O(1)-Mn(1) 115.89(7)
O(1)#1-Mn(1)-Mn(2) 36.37(2) Mn(2)-O(1)-Mn(1) 100.81(4)
N(1)-Mn(1)-Mn(2) 85.38(3) C(8)-O(2)-Mn(2) 111.86(7)
N(1)#1-Mn(1)-Mn(2) 85.38(3) C(5)-N(1)-C(1) 118.48(11)
O(2)#1-Mn(2)-O(2) 92.22(5) C(5)-N(1)-Mn(1) 114.76(8)
O(2)#1-Mn(2)-O(1) 172.42(4) C(1)-N(1)-Mn(1) 125.45(9)
O(2)-Mn(2)-O(1) 91.48(4) C(13)-N(2)-C(9) 121.39(11)
O(2)#1-Mn(2)-O(1)#1 91.48(4) C(13)-N(2)-Mn(2) 126.02(9)
O(2)-Mn(2)-O(1)#1 172.42(4) C(9)-N(2)-Mn(2) 112.58(8)

Table 4. r0’s value for Mn with different charges bonds to O, N, and Br atoms.

MnII-O MnII-N MnII-Br
1.765 1.849 2.34

MnIII-O MnIII-N MnIII-Br
1.732 1.837 2.315

MnIV-O MnIV-N MnIV-Br
1.75 1.822 2.41

Powder X-ray Diffraction Patterns: To demonstrate the integrity of the bulk samples of
compounds 1 and 2, series powder X-ray diffraction experiments were performed. Powder X-ray
diffraction patterns were collected at the Taiwan Photon Source (TPS) of the National Synchrotron
Radiation Research Center (NSRRC). The powder X-ray diffraction pattern of compounds 1 and 2 are
shown in Figure 3. The simulated powder patterns of the single crystal data were also plotted together
for comparison. The experimental synchrotron radiation X-ray powder diffraction patterns of both
compounds 1 and 2 were very close to the single crystal simulation results. This result clearly showed
that the bulk samples had good integrity.
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2.2. Magnetic Properties

The magnetic properties of both compounds 1 and 2 could be described as follows: magnetic
susceptibility measurements were carried on both compound 1 and compound 2. Polycrystalline
samples restrained in eicosane were measured under a magnetic field of 1000 G in the temperature range
2–300 K. Figure 4 illustrates the χMT vs. T plot of compound 1. The χMT value was 5.69 cm3K mol−1,
which was somewhat smaller than the spin only value of 6.0 cm3K mol−1 for two uncoupled Mn(III)
ions. This could be attributed to antiferromagnetic coupling, even at room temperature. The χMT value
slowly decreased to 3.76 cm3K mol−1 at 50 K and then decreased very rapidly to 0.17 cm3K mol−1 upon
further cooling to 2 K. The magnetic behaviors were then interpreted by the Kambe model [38] with:

H = gβB·(S1 + S2) − 2J (S1·S2) (2)

where β is Bohr magneton, B is the magnetic field, and both S1 and S2 have the values of 2. The best
fitting is presented by the solid red line in Figure 4. The parameters obtained by the fitting gave g = 2.0
and J = −5.0 K, which were in good agreement with the properties of the two Mn(III) ions. Interestingly,
the electron configuration of Mn(III) was high spin d4, which is isoelectronic to Cr(II). By experience,
two Cr(II)s in a capped form tend to build up a metal–metal quadrupole bond [39]. However, in our
case, it was much more difficult for the Mn(III) to form a metal–metal bond than Cr(II) due to Mn(III)
being a harder Lewis acid, whereas the Cr(II) is relatively soft. In addition, in compound 1, the two
Mn(III) ions were separated by a large distance (3.69 Å) by the binding site of ligands. All of these
factors reduced the chance to form an actual metal–metal bond, but strong antiferromagnetic couplings
were clearly observed.

Figure 5 shows a χMT vs. T plot for compound 2. The χMT value was 6.39 cm3K mol−1, which
was slightly higher than the spin only value of 6.25 cm3K mol−1 for one uncoupled Mn(IV) and
one uncoupled Mn(II). This behavior suggested that ferromagnetic coupling occurred, even at room
temperature. The χMT value then increased to 7.98 cm3K mol−1 at 15 K and then decreased to
3.58 cm3K mol−1 at 2 K. Such behavior is usually attributed to zero-field splitting or intermolecular
antiferromagnetic coupling. We then collected magnetic susceptibility data and fitting by utilizing
the Kambe model to account for Mn(IV)-Mn(II) above 15 K. The fitting for this appears as a solid
red line in Figure 5. The best fitting clearly indicated a ferromagnetic coupling J = +1.8 K, g = 2.0.
Judging from the structure, we know there were two unpaired electrons located in the eg orbitals (dx2-y2

and dz2) within the Mn(II) center, whereas these orbitals were empty in the Mn(IV) center. When
these two metal ions produced bridging through the x and the y axis, as shown in Scheme 2, the
occupied eg orbitals in Mn(II) right overlapped with the empty eg orbitals in Mn(IV), which resulted in
ferromagnetic coupling between these two ions.
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To further examine the spin number of the molecule, reduced magnetization measurements were
carried on the polycrystalline sample of compound 2 in the temperature range 2~4 K under a magnetic
field 2~6 Tesla. The results are shown in Figure 6, where the solid red lines represent the best fitting
based on the parameters g = 1.95, S = 4, and D = −0.78 K. The spin value of S = 4 saturated under
high-field and low temperatures further confirmed the existence of ferromagnetic coupling between
the Mn(II) and Mn(IV) ions.
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The alternating current (AC) magnetic susceptibility measurements were also carried out on
both compounds 1 and 2 under 1000 Hz of a 3.5 G AC magnetic field in the temperature range
1.9~10 K. Whether a 0 G or a 500 G direct current (DC) magnetic field was applied, no significant
out-of-phase signals were detected. This measurement further confirmed that neither 1 nor 2 showed
single-molecule magnet (SMM) behavior.

3. Experimental Methods

All chemicals used in this study were of commercial grade and were used without
further purification.

3.1. Ligand Synthesis

To a two-neck 250 mL round bottom flask charged with magnesium powder (7.29 g, 300 mmol),
120 mL of anhydrous ethyl-ether was added under a nitrogen atmosphere. Methyl iodide (64 g in 450
mmol) was slowly added over a period of 2~3 h to form the Grignard reagent. Then, 2-Acetylpyridine
(18.18 g in 150 mmol) was added to the reactant solution, and the temperature was controlled at –8 ◦C
The reaction was carried out for 5 h and then quenched by adding ice water in an ice bath. Without
neutralization, the mixture was extracted by 200 mL ethyl acetate five times. The organic layer was
dried over anhydrous MgSO4. After evaporating the organic solvent, the dmhmp-H ligand was
removed by distillation under reduced pressure (yield about 70%). The residues were then separated
by flash column chromatography eluted with ethyl acetate/hexane (1:1) solution to obtain 1.7% rD, and
1.8% mD was then obtained by eluting pure ethyl acetate.

rD: 1H NMR (300 MHz, CDCl3) δ 1.17 (s, 6H, CH3), δ 2.55 (s, 2H HC-H), δ 6.24 (br, 2H, OH), δ 7.18
(qd, 2H, Py-H), δ 7.61 (td, 2H, Py-H), δ 7.69 (td, 2H, Py-H), δ 8.50 (m, 2H, Py-H). 13C NMR CDCl3: δ
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166.31, δ 147.34, δ 137.05, δ 121.68, δ 119.44, δ 75.58, δ 50.97, δ 30.56. HRMS (FT-ICR): [C15H18N2O2]H+:
259.1441. Found 259.1438.

mD: 1H NMR (300 MHz, CDCl3) δ 1.46 (s, 6H, CH3), δ 2.54; 3.02 (d, HC-H), δ 6.26 (br, 2H, OH), δ 6.78
(qd, 2H, Py-H), δ 7.16 (td, 2H, Py-H), δ 7.31 (td, 2H, Py-H), δ 8.03 (qd, 2H, Py-H). 13C NMR CDCl3: δ
164.16, δ 146.66, δ 135.91, δ 120.73, δ 119.89, δ 75.55, δ 50.32, δ 32.68. HRMS (FT-ICR): [C15H18N2O2]H+:
259.1441. Found 259.1436.

3.2. Materials Synthesis

[Mn2(rD)2Br2] (1) MnBr2·4H2O (0.52 g, 1.85 mmol) and ligand rD (0.45 g, 0.88 mmol) were added to
20 mL of acetonitrile. To the mixture, 25% NMe4OH (0.53 g, 1.46 mmol) was added. The resulting
solution was stirred 1~2 h and then passed through a filter. The filtrate was allowed to stand
2~4 days, and dark green crystals suitable for X-ray crystallography analysis were obtained (yield:
80%). Elemental Analysis: (C30H32N4O4Mn2Br2), Found (Calc.):C, 45.87% (46.06%), H, 4.08% (4.12%),
N, 7.37% (7.16%). IR (cm−1): 3448 (b), 3079 (s), 2971 (s), 2942 (w), 2921 (w), 1607 (s), 1475 (s), 1181 (s),
1094 (s), 1052 (s), 943 (s), 788 (s), 685 (s), 616 (s), 552 (w), 516 (w).

[Mn2(mD)2(H2O)2]Br2(H2O)4 (2) The same reaction conditions that were used for the preparation of
compound (1) were used here. MnBr2 4H2O (0.52 g, 1.85 mmol) and the ligand mD (0.45 g, 0.88 mmol)
were added to 20 mL acetonitrile. Then, 25% NMe4OH (0.53 g, 1.46 mmol) was added to the mixture.
The resulting solution was stirred for 1~2 h and then passed through a filter. The filtrate was allowed to
stand for 2~4 days, whereupon pink crystals suitable for X-ray crystallographic analysis were formed
(yield: 80%). Elemental Analysis: (C30H44N4O10Mn2Br2), Found (Calc.):C, 40.12% (40.46%), H, 4.73%
(4.98%), N, 6.19% (6.29%). IR (cm−1): 3373 (b), 3068 (b), 1596 (s), 1476 (s), 1435 (s), 1182 (s), 1114 (s),
1097 (s), 1045 (s), 929 (s), 863 (s), 780 (s), 759 (s), 650 (s), 606 (s), 579 (w), 549 (w), 513 (w).

3.3. Physical Property Measurements

NMR spectra were measured on a Bruker AV-300 spectrometer. Infrared spectra were collected
using a Perkin Elmer 1600 spectrometer using KBr pellets in the range of 500~4000 cm−1.

DC magnetic susceptibility data were conducted by using a Quantum Design MPMS7 system.
Eicosane was employed to restrain the sample to prevent torqueing. The background was corrected by a
gel cap charged with eicosane. The diamagnetic correction was estimated by Pascal’s constants [40,41].

Elemental analyses were performed by an elemental vario EL cube. All of the measurements
regarding magnetic properties and elemental analysis were carried out at the National Taiwan
University Instrument Centre, College of Science.

For X-ray crystallography, single-crystal X-ray diffraction data collection was carried out on
a Bruker D8 VENTURE CCD diffractometer equipped by Mo, λ = 0.71073 Å as light source. The
temperatures were controlled at 150(2) K using an Oxford Cryosystems Cooler. The absorption
correction was done by using the SADABS [42] (Bruker 2016) program, which is based on
symmetry-equivalent reflections. The structures were solved by direct methods and refined with a
full-matrix least-squares technique within the Shelxs-2018 [43] program and refined by the Shelxl-2018
program. [44] All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were set in
calculated positions and refined using the riding model. The refinement parameters are summarized
in Table 1. CCDC numbers: 1922174 for 1; 1922175 for 2.

4. Conclusions

In this paper, we report on the preparation of two 2,4-di-2-pyridyl-2,4-pentanediol (rD and
mD) ligands, which were then used to prepare two Mn2 complexes: [Mn2(rD)2Br2] (1) and
[Mn2(mD)2(H2O)2]Br2 (2). In compound 1, the rD ligand bound two Mn(III) ions in a hamburger form.
Both of the Mn(III) units were five coordinated and approached each other through the flat vacancy site
of the square-pyramidal. However, this did not lead to the formation of any metal–metal bond between
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these two ions. Upon a magnetic property examination, antiferromagnetic coupling was observed in
compound 1. In compound 2, the half filled eg orbitals in Mn(II) were significantly overlapped with
the empty eg orbitals in Mn(IV). This interaction significantly triggered the ferromagnetic coupling of
compound 2, which led to a molecular spin S = 4 and D = −0.78 K. However, this property did not lead
to SMM behavior for compound 2. This manuscript reports not only on a systematic approach for
producing both rD and mD ligands but also on their use in forming complexes with novel structures
and magnetic properties.
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