Supplementary Materials

Structure, DFT Calculations and Magnetic Characterization of Coordination Polymers of Bridged Dicyanamido-metal(II) Complexes

Franz A. Mautner ^{1*}, Patricia Jantscher ¹, Roland C. Fischer ², Ana Torvisco ², Ramon Vicente ³, Tolga N.V. Karsili ⁴, Salah S. Massoud ^{4*}

³ Department de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028

Barcelona, Spain

⁴ Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370 Lafayette, LA 70504, USA

Table of Contents:

Table S1. The groud state minimum energy of Co(II) or Mn(II) centers of **1** and **2**, respectively in their high-spin and low-spin configurations.

Fig. S1 - S4. IR spectra of 1 – 4 compounds, respectively..
Fig. S5 - S7. UV-VIS-NIR spectra of 1, 2 and 4 compounds, respectively.
Fig. S8 - S11. Observed and simulated X-ray powder pattern of 1 - 4.

Table S1. The groud state minimum energy of Co(II) or Mn(II) centers of **1** and **2**, respectively in their high-spin and low-spin configurations.

Spin Multiplicity	Absolute Energy / Hartree
Co(II) – quartet (1)	-2975.5856
Co(II) - singlet	-2975.4610
Mn(II) - sextet (2)	-2893.3463
Mn(II) - singlet	-2893.2149

¹ Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, A-8010 Graz, Austria

² Institut für Anorganische Chemie, Technische Universität Graz, A-8010 Graz, Austria

Figure S1. IR spectrum of *catena*-[$Co(\mu_{1,5}$ -dca)₂(4-MOP-NO)₂] (1)

Figure S2. IR spectrum of *catena*- $[Mn(\mu_{1,5}-dca)_2(4-MOP-NO)_2]$ (2)

Figure S3. IR spectrum of *catena*-[Cd($\mu_{1,5}$ -dca)₂(4-MOP-NO)₂] (3)

Figure S4. IR spectrum of $[Cu(\kappa^1-dca)_2(4-MOP-NO)_2]$ (4)

Figure S5. The solid state UV-VIS-NIR spectrum of *catena*-[$Co(\mu_{1,5}-dca)_2(4-MOP-NO)_2$] (1)

Figure S6. The solid state UV-VIS-NIR spectrum of *catena*- $[Mn(\mu_{1,5}-dca)_2(4-MOP-NO)_2]$ (2). (Uncorrected spectrum, offset at approx.810 nm is caused by detector change)

Figure S7. The solid state UV-VIS-NIR spectrum of mixture of $[Cu(\kappa^1-dca)_2(4-MOP-NO)_2]$ (4) with BaSO₄ (1:5 w:w) (uncorrected spectrum; the spike at approx. 315 nm is caused by change of UV lamp)

Figure S8. Observed and simulated X-ray powder pattern of *catena*-[$Co(\mu_{1,5}-dca)_2(4-MOP-NO)_2$] (1)

Figure S9. Observed and simulated X-ray powder pattern of *catena*- $[Mn(\mu_{1,5}-dca)_2(4-MOP-NO)_2]$ (2)

Figure S10. Observed and simulated X-ray powder pattern of *catena*-[Cd($\mu_{1,5}$ -dca)₂(4-MOP-NO)₂] (3)

Figure S11. Observed and simulated X-ray powder pattern of $[Cu(\kappa^1-dca)_2(4-MOP-NO)_2]$ (4)