Supplementary Materials

Modelling the Effect of Zero-Field Splitting on the ¹H, ¹³C and ²⁹Si Chemical Shifts of Lanthanide and Actinide Compounds

	D/cm⁻¹	-19.830		
<i>(E/D)</i> <i>g</i> _{iso} Eigenvalues of g		0.127		
		-0.938 -1.349		
			-1.290	-0.1740
H ⁽¹⁾	$A_{ m iso}/ m MHz$	-0.0079		
	Asd/ MHz	-0.1886		
		-0.0041	0.0898	
		-0.0101	-0.0007	0.9880
H ⁽²⁾	$A_{ m iso}/ m MHz$	-0.0248		
	Asd/ MHz	-0.4386		
		-0.0172	0.2210	
		-0.0298	0.0020	0.2177
H ⁽³⁾	$A_{ m iso}/ m MHz$	-0.0744		
	Asd/ MHz	0.4201		
		0.0485	-0.2463	
		0.1290	0.0469	-0.1737
H ⁽⁴⁾	$A_{ m iso}/ m MHz$	-0.0190		
	Asd/ MHz	-0.0230		
		0.0071	0.0023	
		0.0101	-0.0060	0.0207
H ⁽⁵⁾	$A_{ m iso}/ m MHz$	0.0219		
	ASD/MHz	-1.6432		
		-0.0743	0.8657	
		-0.1018	0.0118	0.7774
H ⁽⁶⁾	$A_{ m iso}/ m MHz$	-0.0274		
	ASD/MHz	-0.5400		
		-0.0203	0.2800	
		-0.0325	0.0032	0.2601
H ⁽⁷⁾	$A_{ m iso}/ m MHz$	-0.0033		
	Asd/ MHz	-0.6485		
		-0.0246	0.3262	
		-0.0332	-0.0041	0.3223
H ⁽⁸⁾	$A_{ m iso}/ m MHz$	-0.1960		
	Asd/ MHz	0.3921		
		0.0191	-0.1946	
		0.0273	-0.0010	-0.1974
H ⁽⁹⁾	$A_{ m iso}/ m MHz$	0.0010		
	Asd/MHz	2.1094		
		0.0866	-1.0539	
		0.1217	0.0043	-1.0555
H ⁽¹⁰⁾	$A_{ m iso}/ m MHz$	-0.1548		
	Asd/ MHz	0.4669		
		0.0224	-0.2310	
		0.0325	0.0028	-0.2360

Table 1. EPR data for [Nd L^{Py}]³⁺. Atom numbering of protons refers to Figure 1 of the main text. Hyperfine values averaged over chemically equivalent atoms.

D/cm^{-1}		20.751		
(E/D)		0.219		
giso		-1.182		
Eig	envalues of g	-1.027	-1.242	-1.291
H ⁽¹⁾	$A_{ m iso}/ m MHz$	0.8704		
	Asd/MHz	0.0846		
		0.0047	-0.0390	
		-0.0054	0.0018	-0.0456
H ⁽²⁾	$A_{ m iso}/ m MHz$	-0.2220		
	Asd/MHz	0.2522		
		0.0062	-0.1287	
		-0.0077	-0.0027	-0.1234
H ⁽³⁾	$A_{ m iso}/ m MHz$	-0.3817		
	Asd/MHz	-0.4027		
		0.0011	0.1810	
		-0.0012	-0.0113	0.2217
H ⁽⁴⁾	Aiso/MHz	-1.1959		
	Asd/MHz	-0.5767		
		-0.0403	0.2391	
		0.0402	-0.0285	0.3375

Table 2. EPR data for tris(2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine) uranium(III), U(MeBTP)³⁺. Atom numbering of protons refers to Figure 3 of the main text. Hyperfine values averaged over chemically equivalent atoms.

Table 3. EPR data for tris(pentamethylcyclopentadienyl) uranium (III), U(C₅Me₅)₃. Hyperfine values averaged over chemically equivalent atoms.

	D/cm ⁻¹	289.808						
	(E/D)	0.021						
	8 ^{iso}	-0.605						
Eigen	values of g	0.725	-1.265	-1.276				
Н	$A_{ m iso}/ m MHz$	0.0454						
	Asd/MHz	0.0216						
		-0.0077	-0.0429					
		0.0360	0.0165	-0.0644				
С	$A_{ m iso}/ m MHz$	-0.4868						
Ring	ASD/MHz	0.1243			Apso/MHz	-0.4864	0.1280	-0.0726
		-0.1138	-0.3193			0.0968	-0.6695	-0.0156
		-0.0723	-0.0185	-0.4436		-0.0725	-0.0194	0.7318
С	$A_{\rm iso}/{ m MHz}$	0.6527						
Me- thyl	Asd/MHz	0.0389			Apso/MHz	-0.0265	0.0012	-0.0002
		0.0003	0.0398			-0.0010	-0.0261	0.0009
		0.0004	-0.0004	-0.0787		-0.0007	0.0010	0.0832

D/cm ⁻¹	-89.051		
(E/D)	0.212		
giso	-0.849		
Eigenvalues of g	-0.137	-0.892	-1.888
Aiso/MHz	-0.9381		
Asd/MHz	-0.0477		
	0.0069	-0.1151	
	-0.1508	-0.0015	0.1630

 Table 4. EPR data for U(N(SiMetBu2)2)3. Hyperfine values averaged over chemically equivalent atoms.

Table 5. EPR data for Tris(trimethylsilyltetramethylcyclopentadienyl)uranium(lll), U(C₅Me₄SiMe₃)₃. Hyperfine values averaged over chemically equivalent atoms.

D/cm ⁻¹	29.714		
(E/D)	0.125		
<i>S</i> ^{iso}	-0.739		
Eigenvalues of g	-0.272	-0.676	-1.291
Aiso/MHz	-0.5841		
A_{SD}/MHz	0.0385		
	-0.1520	0.0928	
	-0.1803	-0.0902	-0.1313

Table 6. EPR data for $U(\eta$ -C₅Me₄Et)(η -(1,4-C₈H₆(SiⁱPr₃)₂). Hyperfine values averaged over chemically equivalent atoms.

D/cm ⁻¹	-178.253		
(E/D)	0.182		
giso	-1.162		
Eigenvalues of g	-0.549	-0.769	-2.172
Aiso/MHz	-0.4951		
Asd/MHz	0.0490		
	-0.1016	-0.0799	
	-0.0646	-0.1165	0.0310