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Abstract: The iron (II) coordination compound, {[Fe(3,6 pzdc)](H2O)2}2. (1) has been synthesized
from a mixture of FeCl2.4H2O and pyridazinedicarboxylate (3,6 pzdc). The molecular structure of
complex 1 was determined by single crystal X-ray diffraction study. It reveals that the dinuclear
structure contains a pyridazine bridge in between the two metal centers. The variable temperature
magnetic study results in g = 2.496(8), J = −2.50(8) cm−1, θ = −0.1 K values, by fitting the magnetic
data in a simple dinuclear Fe-Fe model which indicates that the major exchange pathway through the
N-N bridge. Presence of dense H-bonding interaction leads to supramolecular network formation.
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1. Introduction

The last couple of decades, in coordination chemistry pyridazine has been extensively used
as ligands [1–4]. Pyridazine-based and its substituted analogue compounds are explored due to
their practical applications in various enzymes regulation processes and have applications in drug
design [5–7]. The electron-deficient aromatic systems containing two nitrogen atoms have reduced
electron-donor abilities compared to that of pyridines [6]. The two adjacent nitrogen donor atoms
in the pyridazine heterocycle attract two metal centers in close proximity [8,9]. With one or two
additional donor centers next to the ring nitrogen atoms of pyridazine at 3,6-position leads to tri-
or tetra dentate ligands, which have been less explored [10–14]. Symmetric dinuclear complexes
of two redox active metal centers have been of interest with regard to the mixed-valence oxidation
states [15,16]. For several decades, both experimental and theoretical chemists have been interested
in the magnetic properties of dinuclear coordination complexes. A variety of compounds come
into sight from the extensive study of different bridging ligands, such as pyrazolates, triazolates
and pyrimidine- or pyridazine-linked aimed at fundamental magnetostructural study of iron (II)
complexes [17–19]. Transition metal chelates of tetra dentate N2O2 donor type ligands have been
employed as chelating bidentate ligands showed interesting structurally equivalent iron (II) centers
with intriguing magnetic properties [20]. A large number of simple di- or poly-nuclear complexes are
reported where the metal ions are superexchange coupled through different bridging moiety and most
of them exhibit anti-ferromagnetic magneto-structural correlations [7]. Moreover, hydrogen bonding,
due to its directional and selective nature is a powerful organizing force in designing useful solid-state
materials [21,22]. Construction of a series of supramolecular architecture depends on the choice of
spacer (organic moiety) and linker (bridging ligands), and also on the coordination geometries of
metal ions [23]. In occurrence of the oxygen atoms in peripheral carboxylate groups, the oxygen
atoms might act as potential coordination donors or hydrogen bond receptors. Moreover, to generate
the metal-organic coordination networks or molecular building blocks through hydrogen-bonded

Magnetochemistry 2018, 4, 53; doi:10.3390/magnetochemistry4040053 www.mdpi.com/journal/magnetochemistry

http://www.mdpi.com/journal/magnetochemistry
http://www.mdpi.com
http://www.mdpi.com/2312-7481/4/4/53?type=check_update&version=1
http://dx.doi.org/10.3390/magnetochemistry4040053
http://www.mdpi.com/journal/magnetochemistry


Magnetochemistry 2018, 4, 53 2 of 9

supramolecular interactions, the metal-pyridazine moiety plays a very important role as a metallo-
ligand [24,25].

Here, we report the preparation of a pyridazine-3, 6-dicarboxylate (Scheme 1) based dinuclear
complex of iron with extensive hydrogen boning, leads to an interesting supramolecular network
formation, where two rigid dianionic pyridazinedicarboxylate (3,6 pzdc) ligands are organized in a
coplanar side-by-side mode around two octahedral metal ions.
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Scheme 1. The bis (bidentate) coordination mode of the pyridazinedicarboxylate ligand (3,6 pzdc) and
the side-by-side binuclear arrangement.

2. Experimental Results and Discussions

2.1. X-ray Crystal Structure Description

The key to the complex formation was an exact amount of ferrous chloride tetrahydrate in the
mixture of methanol & acetonitrile solution of the pyridazinedicarboxylate (3,6 pzdc). The formation of
the desired product was characterized by Elemental analysis (EA), Infrared spectroscopy (IR), Thermo
gravimetric analysis (TGA) and Single Crystal X-ray structure determination (SCXRD).

The complex 1 was fully characterized by Single Crystal X-ray analysis. The complex 1 crystallizes
in the orthorhombic crystal system with space group Pbca. Structural parameters along with crystal
data are listed in Table 1. Single Crystal X-ray structure determination confirmed that during the
metalation the ester group of the ligand hydrolyzed to COO- and coordinated as a bis-tetradentate
mode to the two iron (II) centers. In this complex both iron(II) centers surrounded by N2O4 donor
sets and bridges by two neutral N1 and N2 atoms of pyridazine moiety in the equatorial plane.
The asymmetric unit is shown in Figure 1. The dinuclear complex consists of a center of inversion.
Therefore, the two iron (II) centers are crystallographically alike although half of each ligand is unique.
The coordination geometry of the dinuclear complex is shown in Figure 2. Both iron (II) atoms are in a
distorted octahedral N2O4 coordination environment, where the two parallel but oppositely aligned
ligand strands supplying eight donor atoms and four axial oxygen atoms belong to water molecules.
Each Fe (II) ions are member of two five-membered chelate rings of N2O2 comprising from each of
the two ligands. Distorted octahedral (FeN2O4) coordination sphere is also clear from the values
of the bond angles and bond lengths (Table 2). The average equatorial Fe-O bond length is 2.15 Å
and axially compressed Fe-O bonds average length is 2.0975 Å. There is no significant difference in
the Fe-Npyridazine bond lengths and bonds present at trans to each other having equal bond length.
However, the bond lengths of Fe-Oequatorial are slightly shorter than those of Fe-Npyridazine bond
lengths. Fe-N bond lengths [average 2.195Å] are typical for HS iron (II) ions [26]. The iron atoms
in the dimer unit are separated by 3.8947(4) Å. The average equatorial angles fall in the region of
89.99◦. The complex possesses coordination environments of the two crystallographically distinct
iron (II) sites are very similar due to a center of symmetry located at the mid-point of the complex.
The pyridazinedicarboxylate anion has a rich stock of peripheral coordinated and uncoordinated
carboxylate oxygen atoms, which are interesting coordination donors and hydrogen bond receptors
for the complex which forms hydrogen-bonded supramolecular networks. The complex is highly
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stable due to presence of not only strong intramolecular H-bond but also extensive intermolecular
H-bonding. Non-bonded oxygen atoms of carboxylate groups are involved in H-bonding interactions
with neighboring dimer that is C–O . . . H interactions. The O–H . . . .Ointeractions are also potent
here which gives the complex much more stability. These two types of hydrogen bonding are the
main contributing factor for complex 1 in the supramolecular entity formation and stabilization.
Hydrogen bonding interactions are revealed in Figure 3 and H-bond distances are listed in Table 3.
Hydrogen bonding between these suitable molecules generates multi-dimensional arrays or network.
These networks are also connected into a dense 3D network between the axially coordinated water
molecule and the carboxylate groups of adjoining sheets. These significantly dense hydrogen bonding
interactions lead to supramolecular network formation.

Table 1. Crystal Data for the Structure Determination of {[Fe(3,6 pzdc)](H2O)2}2.

Crystal Data Complex 1

Formula C12H12Fe2N4O12

Formula Weight 515.96

Crystal System Orthorhombic

Space group Pbca (No. 61)

a/Å 13.458(5)

b/Å 8.721(3)

c/Å 14.760(6)

V/Å3 1732.3(11)

Z 4

D(calc)/ g cm−3 1.978

µ(MoKα)/mm−1 1.753

F(000) 1040

Crystal Size/mm 0.22 × 0.18 × 0.15

Temperature /K 293

Radiation/Å MoKα 0.71073

Theta Min-Max/◦ 2.8, 29.2

Data set −18: 17; −11: 10; −19: 19

Total 10253

Unique Data 2072

R(int) 0.027

Observed[I > 2.0 σ(I)] 1821

Nref 2072

Npar 136

R1 0.0322

wR2 (2sigma < I) 0.0920

GOF 1.077

Max. and Av. σ/esd 0.00, 0.00

Min. and Max. ∆ρ [e/Å3] −0.78, 0.77

w = 2(FO2)+ (0.0466P)2+2.2844P] WHERE P=(FO2 +2FC2)/3’.
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Table 2. A few Selected Bond Lengths (Å) and Bond Angles (deg) of Complex 1.

Bond Lengths/Å Bond Angles/deg

Fe1-O1 2.097(1) O5-Fe1-N1 75.54(5)
Fe1-O2 2.098(1) O6-Fe1-N2 75.58(5)
Fe1-O6 2.107(1) N2-Fe1-N1 108.54(5)
Fe1-N2 2.199(1) O6-Fe1-O5 100.33(5)
Fe1-O5 2.114(1) O1-Fe1-O6 89.47(5)
Fe1-N1 2.191(1) O1-Fe1-N2 85.21(6)
Fe1-Fe1 3.8947(4) O1-Fe1-N1 89.10(6)

O2-Fe1-N2 88.66(6)
O2-Fe1-N1 88.70(6)
O2-Fe1-O5 91.93(5)
O2-Fe1-O6 93.25(5)
O1-Fe1-O5 94.50(5)

Table 3. Selected hydrogen bond dimensions in complex 1.

D-H···A D-H/(Å) H· · ·A/(Å) D· · ·A/(Å) <D-H· · ·A/(◦) Symmetry

O1W-H1W1· · ·O3 0.85 2.07 2.706(2) 131 3/2-x, −1/2+y, z

O1W-H2W1· · ·O1 0.85 2.05 2.745(3) 138 1-x, −1/2+y, 1/2-z

O2W-H1W2· · ·O1 0.85 1.99 2.794(3) 157 x, 1/2-y, 1/2+z

C7-H7· · ·O1W 0.93 2.58 3.365(3) 142 3/2-x, −y, 1/2+z
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2.2. IR Spectroscopy Study

We have studied the bonding behaviors of the complex 1 using Fourier transform IR spectroscopy
and it reveals all the characteristic bands which were in accordance with single crystal analyses.
The appearance of a strong band characteristic for stretching vibrations of C=N at 1638 cm−1 instead
of the normally observed region (1625–1610 cm−1) [27,28] indicates the coordination of pyridazine’s
nitrogens in complexation. Two peaks in 1638 & 1384 cm−1 regions corresponded to the antisymmetric
and symmetric COO stretching vibrations, respectively. A peak at 1026 cm−1 indicates the presence of
pyridazine moiety. Appearance of small intensity band at 833 cm−1 indicates Fe-N coordination and
band at 550 cm−1 due to Fe-O bond. Appearance of a broad band in the region 3435 cm−1 is due to
stretching vibrations of O-H, which indicates the presence of the water molecule.

2.3. Thermal Study

From the Thermo Gravimetric Analysis under non-isothermal conditions it is found that the
complex 1 loses four coordinated water molecules in the temperature range 90 ◦C to 110 ◦C.
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Upon further heating, the final products of decomposition above 380 ◦C correspond to brown colored
metallic oxide of Fe2O3, which was confirmed by qualitative test.

2.4. Magnetic Study

Using the crystalline sample of Fe2(pzdc)2(H2O)4 the variable temperature magnetic susceptibility
measurements were performed in the temperature range 2–300 K which is shown in Figure 4 as a plots
of molar susceptibility and moment as a function of temperature. As temperature decreases the effective
magnetic moment of the complex decreases slowly, representing an antiferromagnetic interaction
between the two iron(II) centres. Examining the molecular structure it is clear that the main feature
which would lead to such type behavior is the dinuclear Fe2(N-N)2 subunit, with diazine N2 bridges
between the two iron(II) centres. Thus, the magnetic data were fitted to a straight forward model based
on a dinuclear exchange Hamiltonian (Hex = −J {S1S2}; S1 = 4/2, S2 = 4/2). The best least squares fit
was obtained with J = −2.50(8) cm−1, g = 2.496(8), ρ = 0.0001, θ = −0.1 K, TIP = 0, 102 R = 2.19. (where
R = [Σ(χobs−χcalc)2/Σχobs

2]1/2; J is the antiferromagnetic coupling constant, ρ = fraction paramagnetic
impurity, θ = Weiss correction). No significant longer-range interactions observed in the extended
structure, which might imply additional longer-range exchange. The iron atoms in the dimer unit are
separated by 3.8947(4) Å and this large separation rules out any direct metal-metal interaction as the
origin of this weak spin coupling. Thus, for the observed antiferromagnetic spin coupling, the most
likely pathway is the super-exchange via the N-N bridges.
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3. Materials and Methods

3.1. Materials

Required chemicals and solvents used for the synthesis were purchased from E. Merck, India and
used as received without further purification.

3.2. Synthesis of {[Fe (L)]. (H2O)2}2

Ligand (3,6 pzdc) was synthesized according to literature procedures [29,30]. Under the dinitrogen
atmosphere pyridazinedicarboxylate ligand (3,6 pzdc) (0.748, 2.0 mmol) was dissolved in a hot solution
of FeCl2.4H2O (0.795 g, 4.0 mmol) in methanol (20 mL) and MeCN (10 mL). Afterwards 2 mmol
triethylamine was added to the mixture & dark solution formed. The dark solution was further stirred
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with heating for 45 min in dinitrogen atmosphere. Then after cooling the resulting mixture was filtered
and allowed for standing at room temperature. After 15 days dark brown crystals were obtained (yield:
48%). Anal. Cald (%) for complex 1: C, 27.93; H, 2.34; N, 10.85; Found: C, 27.98; H, 2.45; N, 10.61.

3.3. Single-Crystal X-ray Diffraction Crystallography

X-ray diffraction data of a brown single crystal of complex 1 having dimension 0.22 × 0.18 × 0.15
mm were collected with a “Oxford Xcalibur” diffractometer fitted with graphite monochromatized fine
focus Mo Sealed tube Mo-Kα radiation (λMo Kα= 0.71073 Å). Data were collected at 293K temperature
usingω scan technique. Data collection, unit cell refinement and data reduction were performed using
CrysAlisPro [31] and CrysAlis RED [32] programs. Using CrysAlis RED [32] multiscan absorption
corrections were applied empirically to the intensity values (Tmax = 0.775, Tmin = 0.695). The molecular
structure was solved by a direct method and subsequently expanded using the Fourier technique [33].
Refinements of all Non-hydrogen atoms were performed with anisotropic thermal parameters. Water
hydrogen atoms were refined with isotropic thermal parameters and geometrically fixed. Molecular
graphics were prepared by ORTEP [34], crystallographic illustrations by using CAMERON [35],
and publication materials were prepared WinGX [36] software. Further crystallographic data and
structure refinement parameter of the complex 1 is summarized in Table 1. A few selected bond
distances and bond angles for the complex 1 are given in Table 2.

3.4. Magnetic Measurement

Using a Quantum Design MPMS 5 superconducting quantum interference device (SQUID)
magnetometer using field strength of 0.1 T variable-temperature magnetic data (2–300◦ K) were
obtained. The crystalline samples were placed in a gel capsule which was secured within a plastic
straw attached to the sample rod. Background corrections for the sample holder assembly and
diamagnetic component of the complex were applied.

3.5. Other Physical Measurements and Calculations

By using a Perkin-Elmer 240 C elemental analyzer elemental analyses (carbon, hydrogen, nitrogen)
were performed. FT-IR spectra were also collected by using a Perkin-Elmer FT-IR spectrophotometer
in KBr pellets (4000–400 cm−1). Thermo gravimetric analyses were carried out with a heating rate
of 10 ◦C/min with a Perkin-Elmer STA-6000 thermal analyser system in a dynamic atmosphere of
N2 (flow rate 80 mL min−1), the sample was in an alumina crucible, and the temperature range was
25–550 ◦C. Powder X-ray data was recorded using the Proto AXRD, (Cu Kα radiation, λ = 1.5406 Å)
diffractometer and is given in the supplementary file.

4. Conclusions

Here, we present the synthesis, crystal structure, low-temperature magnetic study of one
symmetrical iron dinuclear complex. From the forgoing discussion, it is found that the N-N from
pyridazine moiety coordinated to two iron (II) centres. The dinuclear complex shows moderate
antiferromagnetic behaviour and the magnetic interaction is dependent predominantly on the N-N
bridges between the two iron (II) centres. It also formed a 3D supramolecular network by extensive
hydrogen bonding.

Supplementary Materials: For the structural analysis crystallographic data have been deposited with the
Cambridge Crystallographic data centre, CCDC No. 1875744. Copy of this information may be obtained
free of charge from The Director, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail:
deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Author Contributions: Synthesis and characterizations were done by A.C.. L.K.T. collected and analysed the
magnetic data. S.K.D. planned the project and wrote the manuscript.
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