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Abstract: We studied the electron spin resonance (ESR) line width for localized moments within the
framework of the Kondo lattice model. Only for a sufficiently small Kondo temperature can an ESR
signal be observed for a Kondo impurity. On the other hand, for a Kondo lattice representing a heavy
fermion compound, short-range ferromagnetic correlations (FM) between the localized moments are
crucial to observe a signal. The spin relaxation rate (line width) and the static magnetic susceptibility
are inversely proportional to each other. The FM enhance the susceptibility and hence reduce the
line width. For most of the heavy fermion systems displaying an ESR signal, the FM order arises
in the ab-plane from the strong lattice anisotropy. CeB6 is a heavy fermion compound with cubic
symmetry having a Γ8 ground-quartet. Four transitions are expected for individual Ce ions with
a Γ8 ground-multiplet, but only one has been observed. Antiferro-quadrupolar order (AFQ) arises
below 4 K due to the orbital content of the Γ8-quartet. We addressed the effects of the interplay of
AFQ and FM on the ESR line width and the phase diagram. It is usually difficult to distinguish
among ESR resonances due to localized moments and conducting heavy electron spins, especially for
anisotropic Ce and Yb compounds. However, for CeB6, an itinerant picture within the AFQ phase
is necessary to explain the electron spin resonances. The longitudinal magnetic susceptibility has
a quasi-elastic central peak of line width 1/T1 and inelastic peaks for the absorption/emission of
excitations. The latter are measured via inelastic neutron scattering (INS) and provide insights into
the magnetic order. We briefly summarize some of the INS results for CeB6 in the context of the
picture that emerged from the ESR experiments.
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1. Introduction

The Kondo effect is the compensation into a singlet state of an impurity with spin-1/2 by the
spin density of the conduction electrons. Consequently, the impurity spin S is no longer a good
quantum number and the magnetic susceptibility χ0 and the spin-relaxation time T1 are finite.
According to the Shiba relation [1,2] for ω = T = H = 0, χ0 and T1 are proportional to each
other (χ0/T1 = 2/π) and inversely proportional to the characteristic energy, TK, known as the Kondo
temperature. Hence, for a Kondo impurity, an electron spin resonance (ESR) signal is not observed
unless TK is smaller than 100 mK for X-band microwave frequencies [3].

The above suggests that, in heavy fermion compounds, the ESR line width is too broad to be
observed. However, recently, an ESR signal was found in single crystals of YbRh2Si2 [4–6], YbIr2Si2 [7],
YbRh [8], YbCo2Zn20 [9], CeRuPO [10], and CeB6 [11,12] proving this common belief incorrect.
The resonances are attributed to the Yb3+ and Ce3+ ions despite their rather large TK. Common
to all these compounds is a strong magnetic anisotropy (except for CeB6) with the easy-axis in the ab
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plane, as well as ferromagnetic correlations among the rare earth spins [8]. Due to the skin depth and
spin diffusion in a metallic environment, the observed resonances have a Dysonian line shape [13–15].

The resonance of local magnetic moments in a metal [16–18] and the ESR of conduction electrons
are very difficult to distinguish since both have the same Dysonian line shape [13–15]. The data were
analyzed within the known framework of ESR of magnetic impurities in metals [16–18], i.e., single
ions with localized spins resonating independently. The g-factor and the line width are anisotropic as
expected for a tetragonal crystalline electric field. An estimate indicates that, in YbRh2Si2, more than
60% of the Yb3+ ions contribute to the ESR signal [7,19]. In the case of a band of conducting heavy
electrons, on the other hand, the g-shift is dominated by one of the f orbitals via hybridization and is
going to have the crystalline field anisotropies of the rare-earth sites. Hence, based solely on ESR it is
then difficult to decide if the resonances arise from the carriers in a heavy-electron band or localized
moments [20].

Within the framework of the Anderson lattice, the line width of the ESR signal for a heavy fermion
compound was investigated by Abrahams and Wölfle [21]. They concluded that the heavy mass in
conjunction with ferromagnetic fluctuations can lead to observable narrow resonances. The heavy
mass is equivalent to arguing with a small Kondo temperature for the lattice, but this alone is not
enough to produce an observable ESR signal. The line width of the signal is further reduced by the
ferromagnetic correlations. There is good agreement of this theory with experimental data in the Fermi
liquid regime for YbRh2Si2 [22]. Further extensions of the theory to the non-Fermi liquid regime of
this material lead to a close relation of the T dependence of the specific heat and spin susceptibility
with the observed T dependence of the g-shift and the line width [23,24].

Considering the framework of the Kondo lattice rather than the Anderson lattice, Schlottmann [20]
studied the dynamical susceptibility for localized spins and arrived at similar results to those in
Ref. [21]. Based on the proportionality of the line width with the inverse magnetic susceptibility,
this investigation clearly shows the relevance of the ferromagnetic correlations. The Kondo effect
replaces the Curie-law with a Curie–Weiss law with an antiferromagnetic Weiss temperature slightly
larger than the Kondo temperature giving rise to a wide ESR line, which is too broad to be observed.
On the other hand, ferromagnetic long-range order changes the sign of the Curie–Weiss temperature
and hence enhances the susceptibility in the paramagnetic phase, yielding an observable resonance.

There are several other proposals to explain the ESR in heavy fermion systems. On the one hand,
Zvyagin et al. [25] showed that strong local anisotropic electron–electron interactions in the system
together with a hybridization between localized and itinerant electrons can give rise to a g-shift of the
ESR signal and cause a change in the line width. On the other hand, Huber [26], with main emphasis
on the anisotropy of the g-shift, studied the low-field ESR in YbRh2Si2 and YbIr2Si2 taking into
account the effects of anisotropy and the Yb-Yb interactions. Finally, Kochelaev et al. [27] investigated
the relaxation of a collective spin mode considering the anisotropic Kondo model with anisotropic
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, assuming that the Kondo coupling and the
g-factor have the same anisotropy ratio.

The remainder of the paper is organized as follows. In Section 2, we introduce the Kondo lattice
model and the transverse dynamical susceptibility. The dynamical susceptibility is explicitly calculated
in terms of a relaxation function using second order perturbation theory in the exchange coupling.
Single site terms and inter-site contributions are treated separately. In Section 3, we discuss the
consequences for impurities and for the lattice considering a paramagnetic host, an antiferromagnetic
lattice and ferromagnetic correlations. In Section 4, we summarize our results for the cubic system CeB6.
In this compound, the Ce3+ ions have a Γ8-quartet ground state, allowing for a richer spectrum of
resonances. In Section 5, we study the longitudinal dynamical susceptibility, which yields the spin-flip
relaxation time and is of relevance for neutron scattering. Finally, conclusions follow in Section 6.
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2. The Kondo Lattice Model and the Transversal Dynamical Susceptibility

We consider the Kondo lattice which consists of conduction electrons and a spin S = 1/2 at every
lattice site interacting with each other via spin exchange J. The Hamiltonian then consists of the kinetic
energy of the conduction states, the Zeeman splitting of the spins in a magnetic field and the exchange
coupling, i.e.,H = H0 +Hsd, with

H0 = ∑kσ εkσc†
kσckσ − g f µBB ∑j Sz

j ,

Hsd = J
N ∑kk′σσ′ j ei(k−k′)·Rj c†

kσSj · sσσ′ck′σ′ ,
(1)

where j labels the lattice sites and Rj denotes the position of the site j. The spin-1/2 operators for
the localized spin at site j are denoted Sj and sσσ′ represents 1/2 times the Pauli matrices for the
conduction states. For the Zeeman splitting of the conduction electrons, we have εkσ = εk − σBc/2,
where Bc = gcµBB. It is convenient to work with the Hartree–Fock factorization of Hsd, i.e., we replace

B→ B′ = B− JρFgcµBB/2 , (2)

which corresponds to the “Knight-shift” of the magnetic resonance.
The ESR line is given by the transverse dynamical susceptibility. According to Equation (1),

the Zeeman field is along the z-direction and, hence, the microwave field rotates in the x− y plane, i.e.,

χT(z) = −(g f µB)
2 1

2N ∑
ij
〈〈S+

i ; S−j 〉〉z , (3)

where N is the number of rare earth sites, S±j = Sx
j ± iSy

j are the spin-flip operators at site j, z = ω + i0
is the external frequency, and the factor 1/2 is introduced to normalize the susceptibility (note that
the Sx and Sy correlation functions are equal). The spin operators satisfy the standard commutation
relations, [S+

j , S−j ] = 2Sz
j and [Sz

j , S±j ] = ±S±j , while spin operators of different sites commute with
each other.

Applying equation of motion on the first argument of the susceptibility, we obtain

χT(z) =
−(g f µB)

2〈Sz〉+ ψ(z)
z− g f µBB′

, (4)

where 〈Sz〉 is the spin polarization per site and

ψ(z) = −(g f µB)
2 J

2N2 ∑
kk′σσ′ij

ei(k−k′)·Ri 〈〈(−S+
i sz

σσ′ + Sz
i s+σσ′)c

†
kσck′σ′ ; S−j 〉〉z. (5)

The equation of motion on the second argument yields

(z− g f µBB′)ψ(z) = −(g f µB)
2 J

2N2 ∑
kk′σσ′ i

ei(k−k′)·Ri
{
−2〈Sz

i sz
σσ′ c

†
kσck′σ′ 〉 − 〈S−i s+

σσ′ c
†
kσck′σ′ 〉

}
+ (g f µB)

2 J2

2N3 ∑
ij

∑
kk′σσ′

∑
pp′ττ′

ei(k−k′)·Ri ei(p−p′)·Rj (6)

× 〈〈(−S+
i sz

σσ′ + Sz
i s+

σσ′ )c
†
kσck′σ′ ; (S

−
j sz

ττ′ − Sz
j s+

ττ′ )c
†
pτcp′τ′ 〉〉z ,

which can be evaluated for the noninteracting system and rewritten as

(z− g f µBB′)ψ(z) = (g f µB)
2 J

2N2 ∑kk′σσ′i ei(k−k′)·Ri
{

2〈Sz
i sz

σσ′c
†
kσck′σ′〉+ 〈S−i s+σσ′c

†
kσck′σ′〉

}
− (g f µB)

2 J2

2N3 ∑ij ∑kk′ e
i(k−k′)·Ri−Rj f (εk)− f (εk′ )

z−εk′+εk
〈Sz

i Sz
j 〉

− (g f µB)
2 J2

4N3 ∑ij ∑kk′ e
i(k−k′)·Ri−Rj f (εk)− f (εk′ )

z−εk′+εk−g f µBB′ 〈S
+
i S−j 〉

− (g f µB)
2 J2

2N3 ∑kk′i
f (εk′ )[1− f (εk)]

z−εk′+εk−g f µBB′ 〈S
z
i 〉 .

(7)
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Here, f (εk) represents the Fermi distribution function and we have neglected the Zeeman field of the
conduction electrons, except in B′.

The dynamics of the magnetic moments is usually described by Bloch’s equations [28], which can
be cast into the form [29,30]

χT(z) =
[
z− Be f f + NT(z)/χT

0

]−1[
−Be f f χT

0 + NT(z)
]

, (8)

where Be f f = g f µBB′ is the effective Zeeman splitting and χT
0 is the static transverse magnetic

susceptibility. For the noninteracting system, we have χT
0 = (g f µB)

2〈Sz〉/Be f f . NT(z) is called
the relaxation function. Assuming that NT(z) is an imaginary constant at low frequencies, we can
identify NT(0) with iχT

0 /T2 and Equation (8) reduces to a Lorentzian resonance shape [29]. Comparing
Equations (4) and (7) with Equation (8), we obtain the relaxation function to second order in the
exchange J [29], i.e.,

(z− g f µBB′)χT(z) + g f µBB′χT
0 =

1
z− g f µBB′

zNT(z) = ψ(z) . (9)

We are mainly interested in the imaginary part of NT′′(ω). The first term in Equation (7) is real
and does not contribute. For the remaining terms, the angular integrals of momenta are carried out
and the (z− εk′ + εk) factors in the denominator are converted into δ-functions, so that for a parabolic
band we obtain

NT′′(ω) = π
2N (g f µB JρF)

2 ∑ij
sin(kF Rij)

2

(kF Rij)2 〈Sz
i Sz

j 〉

+ π
4N (g f µB JρF)

2 ω−g f µBB′

ω ∑ij
sin(kF Rij)

2

(kF Rij)2

[
〈S+

i S−j 〉+ 2δij〈Sz
i 〉

1

e
(ω−g f µB B′)/T−1

]
.

(10)

It is convenient to treat single site and multiple site terms separately. Using that
〈Sz〉 = (1/2) tanh[(g f µBB′)/(2T)], we obtain for the single site contribution

NT′′
s (ω) =

π

4
(g f µB JρF)

2

{
1
2
+ 〈Sz〉

ω− g f µBB′

ω

[
coth

(
ω− g f µBB′

2T

)
+ coth

(
g f µBB′

2T

)]}
, (11)

which agrees with the result of Ref. [29], and for the multi-site terms

NT′′
m (ω) =

π

4N
(g f µB JρF)

2 ∑
ij,i 6=j

sin(kFRij)
2

(kFRij)2 e−Rij/l

[
2〈Sz

i Sz
j 〉+

ω− g f µBB′

ω
〈S+

i S−j 〉
]

, (12)

where l is the spin mean-free path due to the spin-lattice relaxation. Our spin S is actually a pseudo-spin
arising from the crystalline field splittings of the rare earth total angular momentum. As such,
it has a large orbital component due to the strong spin-orbit interaction. This way, when the conduction
electrons travel, their “spin” relaxes into the lattice (spin-lattice relaxation).

The resonance takes place at the field B′ and the spin relaxation rate is now given by

1
T2

=
NT′′(ω = B′)

χT
0

, (13)

where NT′′ = NT′′
s + NT′′

m .

3. Special Cases

In this section, we discuss the consequences of the single site and multiple site contributions for
different magnetic orders of the host.
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3.1. Korringa Relaxation

For the isolated impurity case, we consider only the single site terms. The single site relaxation
function NT′′

s (ω) can be regularized into an analytic function[29]

NT(z) = (g f µB)
2 π

4 (JρF)
2
[
i + 2

π 〈Sz〉φ(z)
]

φ(z) = ln(D/2πT)− z−g f µBB′

z ψ
(

1− i
z−g f µBB′

2πT

)
− g f µBB′

z ψ
(

1 + i
g f µBB′

2πT

)
,

(14)

where ψ is the digamma function and D is the band cut-off. This is the exact expression to second
order in J of the relaxation function.

We now expand the relaxation kernel NT(z) for small (ω − g f µBB′) using z = ω +

i0, i.e., NT(z) = ∆′ + i∆′′ + (γ′ + iγ′′)(ω− g f µBB′) + · · · . The dynamical susceptibility has then
a Lorentzian shape with a relaxation rate [29]

1/Trel = ∆′′/(χT
0 + γ′) , (15)

where
∆′′ = (g f µB)

2 π
4 (JρF)

2
[
i + 2

π 〈Sz〉Imψ
(

1 + i
g f µBB′

2πT

)]
,

γ′ = (g f µB)
2 π

4 (JρF)
2 2

π
〈Sz〉

g f µBB′Re
[

ψ
(

1 + i
g f µBB′

2πT

)
− ψ(1)

]
,

(16)

Re and Im denote real and imaginary part, respectively, and γ′ represents the retardation effects
arising from the frequency dependence of NT(z). The calculation of NT(z) to second order in the
exchange only requires the free ion χT

0 = 〈Sz〉/(g f µBB′) and 〈Sz〉 = (1/2) tanh(g f µBB′/2T) [29].
In the zero-field limit, we obtain the well-established Korringa relaxation rate

1
Trel

= π(JρF)
2T , (17)

which is proportional to T. Here, the factor T arises from the inverse of χT
0 , while, alternatively and

equivalently, in textbook calculations, the T originates from the integration over the Fermi functions
for the conduction electrons.

For g f µBB′ >> T, on the other hand, the relaxation rate is

1
Trel

=
π

4
(JρF)

2 g f µBB′

1 + 1
2 (JρF)2 ln(g f µBB′/2πT)

, (18)

which shows an almost linear increase of the line width with the external field. Consequently, at low
temperatures, the residual line width in Q-band ESR should be larger than the corresponding one for
X-band, as found in many experiments.

3.2. The Kondo Impurity

Above, we considered second order perturbation theory in J. Terms of higher order in J introduce
the Kondo effect. Both, the static susceptibility χT

0 and the relaxation function NT(z), are affected by
the logarithmic corrections due to the Kondo effect.

For the case T � TK, the Kondo terms appear as logarithmic corrections as a consequence of
the renormalization of the interaction vertex. The dressed vertex enhances NT(z) on a logarithmic
scale [31,32]. Similarly, χT

0 acquires logarithmic terms that reduce the susceptibility. Both effects
are the precursor of the compensation of the localized spin at low temperatures and fields by the
spin-density of the conduction electrons. At high T, the relaxation rate resembles a Korringa behavior,
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i.e., linear in T, with an enhanced exchange coupling and logarithmic corrections. The relaxation rate
is approximately given by

1
T2

=
π

2
T

[
1 +

(g f µBB′/2T)
tanh(g f µBB′/2T)

] [
ln(T/TK) +

1
2

ψ(1) +
1
2

Reψ(1− ig f µBB′/2πT)
]−2

, (19)

where ψ is the digamma function. The application of these results to 171Yb and 174Yb impurities in Au
can be found in Ref. [3]. The data for Au171Yb are shown in Figure 1 for a slightly different fit with
TK = 0.5× 10−8 K. The Kondo logarithms are necessary for a reasonable agreement.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
log

10
(T)

100

150

200

250

300

350

400

450

W
/(

2
π

T
) 

[M
H

z/
K

]

Au
171

Yb

Figure 1. Relaxation rate over T of Au171Yb for 9 GHz (X-band) as a function of T. Open symbols
denote the mI = +1/2 transitions and closed symbols the mI = −1/2 transitions. Triangles correspond
to a sample with 280 ppm and squares to a sample with 670 ppm. The solid curve is Equation (19) for
TK = 0.5× 10−8 K. Adapted with permission from Ref. [3], American Physical Society, 2018.

For |ω|, T, g f µBB′ � TK, on the other hand, a singlet spin state forms as a consequence of the
Abrikosov resonance. The susceptibility is finite (in contrast to the Curie law) and the maximum value
of NT(z = T = B′ = 0) is given by the unitarity bound for the Kondo scattering, i.e., i2(g f µB)

2/π,
giving rise to Fermi liquid properties. Note that, as a consequence of the unitarity bound, the relaxation
function in this limit is independent of J [1,2]. The imaginary part of NT decreases as a function of
ω and T as (ω/TK)

2 and (T/TK)
2. The ground state is a spin singlet, so that the susceptibility χT

0
is a constant (the singlet is coupled to the excited spin triplet via Van Vleck-like terms) of the order
of 1/TK. The relaxation rate, 1/T2, is then proportional to TK rather then linear in the temperature
(Korringa). Hence, only if TK is less than 100 mK would it be possible to observe an X-band ESR
resonance [3].

In summary, for an ESR resonance to be seen for a Kondo impurity, TK has to be very small.
Otherwise, the width of the resonance is going to be too broad to be observed. This difficulty can be
overcome if the measurement is carried out in rather high magnetic fields with a correspondingly
larger frequency of the microwave field. The above considerations lead to the commonly accepted
statement that ESR of a Kondo ion cannot be observed.

3.3. Paramagnetic Kondo lattice

For the Kondo lattice, in addition to the single site terms, we now consider the multi-site terms in
Equation (12). To second order in J we have for the inter-site terms, i.e., for i 6= j, 〈Sz

i Sz
j 〉 ≈ 〈Sz〉2 and

〈S+
i S−j 〉 ≈ 〈S

+
i 〉〈S

−
j 〉 ≈ 0. The imaginary part of the relaxation function is then

NT′′(ω → 0) = π
4 (g f µB JρF)

2
[

1
2 +

g f µBB′/T
sinh(g f µBB′/T)

]
+ π

8 (g f µB JρF)
2
[
tanh(g f µBB′/2T)

]2
∑ij,i 6=j

sin(kF Rij)
2

(kF Rij)2 e−Rij/l ,
(20)
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and the relaxation rate is given by

1
Trel

=
NT′′(ω → 0)

χT
0

, χT
0 =

C
T + θ

, (21)

where C is the Curie constant and θ ∝ TK is the Curie–Weiss temperature. The proportionality constant
of θ with TK is slightly larger than one.

The two terms of NT′′ behave differently as a function of g f µBB′/T. For large g f µBB′/T, the single
site term decreases by 50% of its zero-field value, while the inter-site term increases from zero. It now
depends on the value of the spin mean-free path l on how many sites are involved and hence which
term dominates. In any case, NT′′(0) is finite (and positive) and consequently 1/Trel ∝ TK at low T.
For the same reason, as in the case of the Kondo impurity, the width of the resonance line is too large
to be observed, unless the heavy fermion band is extremely narrow with an effective mass as large as
105 times the free electron mass. For T � TK, on the other hand, we recover a Korringa-like behavior
with a renormalized Korringa constant (1/(TrelT)).

3.4. Kondo Lattice with Antiferromagnetic Order

For simplicity, we assume that the antiferromagnetic order consists of a Néel state with two
sublattices, so that nearest neighbor spins have opposite ordered magnetic moments. The single site
results are the same ones as for the paramagnetic phase, while, for the inter-site terms to second
order in J, we obtain 〈Sz

i Sz
j 〉 ≈ (−1)i−j〈Sz〉2, where i− j is either even or odd, giving rise to a sign

oscillation. At low T, the term 〈S+
i S−j 〉 is zero if we neglect collective modes. If we include spin waves,

this expression gives rise to a positive contribution. Without considering collective modes, we have,
similar to the paramagnetic case,

NT′′(ω → 0) = π
4 (g f µB JρF)

2
[

1
2 +

g f µBB′/T
sinh(g f µBB′/T)

]
+ π

8 (g f µB JρF)
2
[
tanh(g f µBB′/2T)

]2
∑ij,i 6=j(−1)i−j sin(kF Rij)

2

(kF Rij)2 e−Rij/l
(22)

and NT′′ in an antiferromagnet is reduced as compared to the paramagnet.
In heavy fermion systems, the spins of the rare earth ions are usually antiferromagnetically

correlated, even if the compound displays no transition to a long-range ordered phase. The short-range
correlations together with the Kondo screening gives rise to a Curie–Weiss susceptibility with
antiferromagnetic Weiss-temperature θAF, χ0 = C/(T + θAF). Here, θAF is determined by the Néel
temperature, TN , the frustration in the system (enhancing θAF) and TK. The relaxation rate is

1
Trel

=
NT′′(ω → 0)

χT
0

, (23)

so that the width of the resonance follows approximately a Korringa law, with a residual T = 0 line
width proportional to θAF. Since θAF is still considerable, the same conclusions as for the paramagnetic
phase hold, and a resonance line can only be observed if θAF is very small.

3.5. Kondo Lattice with Ferromagnetic Order

If, on the other hand, the spins of the rare earth ions are correlated ferromagnetically, the single
site results are the same ones as for the paramagnetic phase, while for the inter-site terms, we have
〈Sz

i Sz
j 〉 ≈ 〈Sz〉2 and 〈S+

i S−j 〉 is again zero if we neglect collective modes. However, if collective
modes such as magnons are considered, then these terms yield a positive contribution. The static
susceptibility in this case is χT

0 = C/(T − TC) for T > TC, where C is the Curie constant and TC(> 0)
is the Curie temperature of the ferromagnet. For T → TC χT

0 becomes very large (diverges) and,
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according to Equation (23), the ESR line width turns very narrow, and hence becomes observable
(see Figure 2). In general, close to the critical point, we would have to approximate by χT

0 ∼ |t|−γ,
where t = (T − TC)/TC is known as the reduced temperature and γ the critical exponent, which is
larger than 1. Consequently, the line narrows even faster as t→ 0. Here, we have neglected in NT′′ the
relaxation through magnons (collective excitations), so that this result has to be taken with caution.

For weaker ferromagnetic correlations the system will not have long-range order at any T.
The correlations are then short-ranged and the susceptibility is proportional to T−γ. In this case,
again, the relaxation rate is strongly reduced at low T. The relaxation through magnons would only
play a secondary role in this case, because for low energy excitations the wavelength would be larger
than the range of the correlations. On the other hand, shorter wavelength magnons cannot be excited
because their energy is larger than that of the thermal bath. Hence, there is the possibility that the
electron spin resonance can be observed.

1/
T

r
e
l

T

Kondo, AFM

Korringa

FM

Figure 2. Sketch of the relaxation rate as a function of T for AFM or Kondo correlations, FM fluctuations
and no interactions (Korringa). Close to a magnetic transition (either AFM or FM), there are additional
relaxation mechanisms due to collective excitations (spin-waves or magnons) which have not been
taken into account here. The horizontal dashed line schematically indicates the resonance energy.
Only below that line is a signal observable.

The ferromagnetic correlations for YbRh2Si2 are predominantly in the ab-plane. The width of the
resonance then depends on the orientation of the magnetic field, i.e., in the plane or along the c-axis.
Hence, if the field lies in the ab-plane, domains with short-range order tend to align and the static
in-plane susceptibility, χT

0 , will be strongly enhanced. If, on the other hand, the field is oriented along
the c-direction, the tilting of the spin out of the plane gives rise to a smaller susceptibility. The line
width of the resonance is then expected to be less for the field in the ab-plane, which agrees with the
experimental observations [6,19]. Since the g-factor in the ab-plane has a much smaller value than that
along the c-axis, there is in addition to the above-mentioned line width enhancement, a broadening of
the resonance due to the magnetic field (see Equation (18)).

3.6. Summary

Short-range correlations among the localized moments in a Kondo lattice play a fundamental role.
Antiferromagnetic interactions between the spins lead to a resonance with a broad line width of the
order of the Weiss temperature of the susceptibility. Consequently ESR cannot be observed. If, on the
other hand, the spins are correlated ferromagnetically, the line width gets strongly suppressed and the
possibility of an ESR signal is real. In other words, the ferromagnetic short-range correlations prevent
the spin-flips from being passed on from site to site. This situation can to some extent be interpreted as
a narrowing of the signal due to bottleneck [6].
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4. Antiferroquadrupolar Ordered CeB6

In contrast to the other compounds discussed above, which have tetragonal symmetry and
strong anisotropy, CeB6 is a cubic crystal. The crystalline field of an eightfold coordination splits
the J = 5/2 into a Γ8 ground state quartet and an excited Γ7 doublet. The crystalline field excitation
energy is 540 K, so that for all practical purposes we can ignore the Γ7 [33,34]. The Γ8 quartet has
simultaneously spin and quadrupolar content, which gives rise to a rich phase diagram consisting
of four phases, as shown in Figure 3. The high temperature phase is the paramagnetic Kondo-like
state (phase I) above TQ = 3.3 K. The Kondo temperature is approximately 3 K. Phase II corresponds
to antiferro-quadrupolar order with QAFQ = R[ 1

2 , 1
2 , 1

2 ] in the temperature range between TN = 2.3 K
and TQ (assuming zero magnetic field). Below TN , the phase diagram displays two antiferromagnetic
phases, phase III with QAFM,1 = Σ[ 1

4 , 1
4 , 0] and as a function of field at H ≈ 1.2 T phase III’ with

QAFM,2 = S[ 1
4 , 1

4 , 1
2 ]. In this paper, we mainly refer to phase II.

1 2 3 4
0

5

10

15

20

T [K]

H
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O
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III

III’
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H//[111]

Figure 3. The low temperature H vs. T phase diagram for CeB6 displays four phases. Phase I is the
paramagnetic Kondo phase. Before the Kondo effect can compensate the internal degrees of freedom,
there is a second order transition to the antiferro-quadrupolar phase (II) with the QAFQ at the R point
of the Brillouin zone. At lower T in the phases III and III’ antiferromagnetism kicks in. Phase diagram
taken from Ref. [35].

4.1. g-Factor for ESR in Phase II of CeB6

There are numerous examples of ESR studies of systems with Γ8 ground quartets, for instance
Dy3+ impurities in the insulator [36] CaF2 and the metal [37] Au, as well as Er3+ ions in the low-carrier
heavy fermion compound YbBiPt [38]. The total angular momentum of Dy3+ and Er3+ ions is J = 15/2,
which requires two crystalline field parameters, namely B4 and B6, in cubic symmetry to describe the
splittings. The wave functions and the energy levels depend on the ratio B4/B6 [39] and are then not
universal. In contrast, the Ce3+ ions need only one parameter, namely B4, since J = 5/2. The wave
functions of the Γ8 ground quartet, written in terms of the Jz eigenstates, are [39]

|+ ↑〉 =
√

5
6 |+

5
2 〉+

√
1
6 | −

3
2 〉 ,

|+ ↓〉 =
√

5
6 | −

5
2 〉+

√
1
6 |+

3
2 〉 , (24)

|− ↑〉 = |+ 1
2 〉 , |− ↓〉 = | − 1

2 〉 .

Here, the spin degrees of freedom, σ, are denoted with ↑ and ↓ and + and − refers to the
quadrupolar (orbital) states. It is customary in ESR experiments to rotate the magnetic field in the
(1,−1, 0) plane. We parameterize the magnetic field as ~B = B(sin θ, sin θ,

√
2 cos θ)/

√
2, so that
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~B ‖ [0, 0, 1]-axis for θ = 0, if θ = π/2 the field is along the [1, 1, 0]-axis, and the magnetic field points
into the [1, 1, 1] direction for θ = arctan(

√
2) = 54.7o. The theoretical positions of the resonances

strongly depend on the angle θ. There are then six possible microwave transitions within the quartet,
however, two are doubly degenerate, so there are actually only four lines [40].

Experimentally, however, only one ESR signal was observed at 60 GHz for 1.8 K < T < 3.8 K for
~B parallel to the [110] direction [11,12], rather than the four expected lines. The resonance [41] has
a Dysonian-like lineshape, characteristic of a metallic environment, and a g-factor of 1.59. CeB6 displays
antiferro-quadrupolar (AFQ) order [42] in the field and temperature range where the resonance was
observed. The quadrupolar degrees of freedom drive the long-range order with QAFQ = R[ 1

2 , 1
2 , 1

2 ],
breaking the translational invariance of the lattice and forming two interpenetrating sublattices.
The problem is conveniently studied using the Anderson lattice model which leads to hybridized
localized and conduction states [40]. Within the reduced Brillouin zone, there are now twice as many
bands, i.e., four, and we need to place four electrons into these bands. The f -electron energies for
the two sublattices due to the AFQ order are ε1 and ε2 and the corresponding g-factors g1 and g2

(they depend also on the direction of the applied field). Within the mean-field slave-boson formulation,
this leads to a 4× 4-matrix Hamiltonian for each k-value, with the single site energies in the diagonal
and the hybridization terms on the off-diagonal entries. The diagonalization of the Hamiltonian
yields the band dispersions [40]. The lower hybridized band is intersected by the Fermi level close
to the band-gap giving rise to heavy fermions. This leads to a single resonance with effective g-factor
ge f f = (g1 + g2)/2. This result depends on two angles, namely, the angle θ of the magnetic field with
the crystal axis and an angle ϕ defining the AFQ long-range order [40].

The operators for the magnetization depend only on τx and τz, but not on τy. The quantization
axis for the τ-matrices defines orientation of the orbital order. To determine the direction of the order,
we rotate the τ-matrices in the x-z plane [40], i.e.,

τ̃x = cos(ϕ)τx − sin(ϕ)τz , τ̃z = sin(ϕ)τx + cos(ϕ)τz . (25)

We can now choose, without loss of generality, the direction of the quadrupolar order along τ̃z.
The effective g-factor was found to be [43]

ge f f (θ, ϕ) =

{
cos2(θ)

(
1 +

4
7

cos(ϕ)

)2
+ sin2(θ)

[(
1− 2

7
cos(ϕ)

)2
+

12
49

sin2(ϕ)

]}1/2

+

{
cos2(θ)

(
1− 4

7
cos(ϕ)

)2
+ sin2(θ)

[(
1 +

2
7

cos(ϕ)

)2
+

12
49

sin2(ϕ)

]}1/2

(26)

− K + corr .

Here, “corr” is a small negative correction term of the order of 1–2% due to the Zeeman splitting
of the conduction electrons and the dispersions of the bands (see Ref. [40]), and K > 0 is
the “Knight-shift” correction arising from the Hartree–Fock term of the exchange interaction (see
Equation (2)). The magnitude of the Knight-shift correction can be estimated from the Kondo
temperature and is expected to be of the order of 0.15–0.20 of ge f f .

The angular dependence of the resonance at 60 GHz has recently be measured in Ref. [44].
Their data with error bars for 1.8 K (open circles) and 2.65 K (dark circles) are shown in Figure 4.
The solid curve is our fit to the data for 2.65 K using Equation (27) with ϕ = 0.18π and
K∗ = K− corr = 0.48. The constant shift K∗ is slightly larger than expected from our simple
considerations. This fit is quite different from the one attempted in Ref. [44] and would change
their conclusions. All data are taken in the AFQ phase II. For 2.65 K the system is in phase II for all
fields, while for 1.8 K the resonance positions vary between 2.4 T and 2.7 T, i.e., not far away from
boundary with phase III’. In this region, antiferromagnetic spin fluctuations are expected, and the
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present theory is no longer applicable without caution. Note that a pure AFQ in the absence of field is
a “hidden” order phase and cannot be observed by inelastic neutron scattering.

The fact that only one resonance is observed and the single-ion picture yields two lines, one for
each sublattice, shows that the signal in CeB6 can only be interpreted within the itinerant electron
picture. This is in contrast to the compounds discussed in Section 3, which allow an analysis as
a single-site or a collective resonance. CeB6 clearly shows that ESR in heavy fermion systems is
a collective phenomenon.

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
 θ/π

1.4

1.5

1.6

1.7

1.8

1.9
g

ef
f

[100] [110][111]

1.8 K

2.65 K
ϕ=0.18π

K*=0.48

Figure 4. ge f f as a function of θ for the rotation of the magnetic field in the 〈011〉 plane for two
temperatures (T = 1.8 K and 2.65 K) from Ref. [44]. The solid curve is the fit to theory [40,43] for
T = 2.65 with ϕ = 0.18π and K∗ = 0.48. Stronger antiferromagnetic fluctuations are expected at 1.8 K.

4.2. Ferromagnetic Correlations in Phase II of CeB6

In Section 3, we argued that the line width of the resonance is of the order of TK and too broad
to be observed, unless there are ferromagnetic correlations among the moments. The compounds
mentioned in Section 3 are tetragonal and this anisotropy favors ferromagnetic correlations with
the moments oriented in the ab-plane. The isotropy of the cubic CeB6 lattice is not favorable for
ferromagnetic correlations. Ferromagnetic fluctuations have to suppress the Curie–Weiss temperature
arising from the heavy fermion band (or the Kondo effect). Below, we discuss the mechanism leading
to ferromagnetic spin correlations in CeB6 and hence to an observable ESR signal within the AFQ
ordered phase.

We now study the states of two f -electrons on neighboring sites. The wave functions consist
of the product of three factors, namely, a coordinate wave function, a factor involving only orbital
(quadrupolar) degrees of freedom and a function of the spin indices [40,43]

Ψ ∼ ψcoor(~r1,~r2)ψorb(m1, m2)ψspin(σ1, σ2) . (27)

According to Pauli’s principle, fermion wave functions, such as Ψ, are antisymmetric under the
interchange of the electrons, i.e., the indices 1 and 2, implying that either one or all three of the three
factors in Equation (27) are antisymmetric and the remaining symmetric. Since there is no charge
density wave, the coordinate wave function at each site must be the same, i.e., ψcoor(~r1,~r2) = ϕ(~r1)ϕ(~r2).
Hence, ψcoor is necessarily a symmetric function. Hence, either ψorb(m1, m2) or ψspin(σ1, σ2) must be
antisymmetric and consequently the other function symmetric. We now suppose that the effective
interaction between the two sites is a quadrupolar exchange, i.e., Hint = a~τ1 ·~τ2. Here, a is the
quadrupolar exchange, which necessarily has to be positive to be able to generate AFQ order.
Consequently, ψorb(m1, m2) represents an orbital singlet with odd parity. Hence, the wave function
of the spins has to have even parity and must be triplet. It follows that the spins are then
ferromagnetically correlated.

On the lattice, the quadrupolar singlet state cannot be satisfied for all bonds (pairs of neighboring
sites) simultaneously. This generates a resonant valence bond lattice for the quadrupolar degrees of
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freedom. The spins are aligned by a magnetic field. This enhances the antiferro-orbital correlations,
stabilizing this way the orbital order. Consequently, the Tc of the phase boundary between phase I
( para-quadrupolar disordered Kondo) and phase II (AFQ) increases with magnetic field, as shown
in Figure 3. It is interesting to notice that the rate of increase of Tc with field decreases at higher
fields [45,46], but does not saturate up to 35 T. This reduced increment of Tc with field is due to the
orbital resonant valence bond lattice, which cannot satisfy all bonds simultaneously.

The magnetization shows a sizeable increase in phase II, with a marked increase in slope at the
boundary Tc. Hence, the magnetic susceptibility increases quite dramatically, as a consequence of
a reduction of the Weiss temperature. In phase I, the Weiss temperature θ is of the order of TK, and in
phase II it appears to have changed sign, i.e. the correlations are clearly ferromagnetic [41] (see also
Figure 1 of Ref. [47] and Figure 5 of Ref. [48]). The inverse proportionality of the static transversal
susceptibility and the relaxation rate (see Equation (23)) then has the consequence that an increase of χT

0
reduces the ESR line width and the resonance becomes observable. A similar conclusion, although with
different arguments, has been presented in Refs. [41,44].

In systems with Ce3+ and Nd3+ ions with Γ8 ground-state the quadrupolar degrees of freedom
play an important role [49]. In first place they manifest themselves through interactions between the
sites. However, there is no consensus about the origin of the interactions. Using nearest-neighbor
intersite exchange and quadrupolar interactions, Kubo and Kuramoto [50] were successful in describing
the excitation spectrum of NdB6. Uimin and Brenig [51], on the other hand, proposed a different
approach emphasizing crystalline fields. For CeB6, quadrupolar interactions between sites [52],
the RKKY interaction arising from the Coqblin–Schrieffer model [53,54], and a detailed group
theoretical study [55] have been presented.

4.3. Line Width of ESR in Phase II of CeB6

The T-dependence of the line width of the Dysonian resonance for the three principal
crystallographic directions (data from Ref. [44]) is shown in Figure 5. The solid straight line corresponds
to a Korringa relaxation for a small interval at intermediate T. The figure clearly shows that 1/Trel does
not have a Korringa-like T-dependence, but a more complicated one. In Section 3, we argue that 1/Trel
is inversely proportional to the susceptibility. It is 1/χT

0 that provides the dominant T-dependence
for 1/Trel . We can conclude that the susceptibility is smaller in the [100]-direction than in the other
two main directions. The anomalous χT

0 (T)-dependence is due to magnetic fluctuations in phase II for
sufficiently large fields, e.g., the difference between the straight line (Korringa) and the dashed curve.
At the highest temperature, the slight increase of the relaxation rate could also be the beginning of the
onset of the Orbach spin–lattice relaxation mechanism [56] into the excited crystalline field Γ7 doublet.

1.5 2.0 2.5 3.0 3.5 4.0
T [K]

0.0

0.5

1.0

1.5

W
 [

T
]

[100]

[110]

[111]

Figure 5. Line width W of CeB6 as a function of temperature for the three principal axis from
Ref. [44]: The dark triangles correspond to [100], the open squares to [110] and the open circles
to [111]. The straight line represents a Korringa relaxation for intermediate T and the [110] and [111]
directions. The dashed line is a parabolic fit.
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The g-shift (Knight-shift) for larger fields is proportional to the susceptibility of the conduction
states. Hence, the Knight-shift subtraction along the [100]-direction is expected to be smaller for this
orientation and consequently ge f f is larger at lower T, as shown in Figure 4.

4.4. Second Resonance at High Fields in Phase II of CeB6

Above, we only consider resonances between the initial and final states belonging to the AFQ
condensate in phase II, i.e., both states belong to the ordered phase. At high resonance frequencies,
however, the final state of the transition may be outside the energy range of the ordered phase and
corresponds to the Kondo phase I. As argued in Section 3, the number of final states is larger in the
paramagnetic phase I, since all states of the Γ8 are in principle available and a second (and perhaps
third) transition may arise. Assuming a mean-field BCS-type for the condensate, the energy of the
AFQ order parameter is approximately ∆ = 1.75× kBTc. At the relevant fields, we have Tc ≈ 6 K and
∆ ≈ 10 K ≈ 200 GHz. This implies that for frequencies less than 200 GHz the initial and the final states
of the transition have to belong to the AFQ ordered phase and only one transition will be observed.
On the other hand, for frequencies larger than 200 GHz, the initial (ground) state is in the condensate,
while the final (excited) state has to be a free ion (Γ8) state.

A second resonance was detected by Demishev et al. [57] in ESR of CeB6 for the field in the [110]
crystallographic direction for frequencies exceeding 200 GHz. The g-factor of the secondary resonance
is considerably smaller than that of the primary line. The intensity of the secondary line is also less
than that of the primary resonance. The two resonance energies are shown in Figure 6 as a function of
magnetic field (figure adapted from Ref. [58]). The splitting is approximately linear in field indicating
that it is a Zeeman splitting. In Ref. [57] (Figure 4), the g-values are plotted as a function of frequency
showing a small field-dependence. A calculation of these resonances is rather complicated since the
AFQ-ordered state, the Γ8-states and the coherence of the Anderson lattice need to be invoked.
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Figure 6. Magnetic field dependence of the two resonances. One is observed for all fields (open circles)
and the other one (open squares) is only seen at high magnetic fields above 12 T [57]. The dashed
straight lines correspond to a pure Zeeman splitting with ge f f ≈ 1.7 and ge f f ≈ 1.3, respectively.
Data reproduced with permission from Ref. [58], American Physical Society, 2018.

4.5. Inelastic Neutron Scattering in CeB6

The ESR results for CeB6 are complementary and closely related to those of inelastic neutron
scattering (INS). While standard ESR measures the transversal dynamical magnetic susceptibility for
~q = 0, INS realizes the longitudinal dynamical magnetic susceptibility (see next section) as a function
of wave vector~q and frequency ω. In the paramagnetic Kondo phase, the dynamical susceptibility has
a quasi-elastic peak (centered at ω = 0) of width 1/T1 given by the maximum of T and TK. In phase II
at zero-field the neutrons do not couple to the ordered quadrupolar moments. This phase is frequently
called a “hidden” order phase with QAFQ = R[ 1

2 , 1
2 , 1

2 ]. A finite magnetic field breaks the symmetry
and induces magnetic moments which can be detected by neutrons. Phase III has antiferromagnetic
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long-range order with QAFM1 = Σ[ 1
4 , 1

4 , 0] and in phase III’ the Q-vector changes to QAFQ2 = S[ 1
4 , 1

4 , 1
2 ].

The phase diagram is shown in Figure 3.
There are four types of excitations observed by INS.

(1) A resonant magnetic exciton mode [59], similar to the ones found in unconventional
superconductors [60], including heavy fermion superconductors (CeCu2Si2, CeCoIn5, and
CeRu2Al10) [61,62], was observed at R[ 1

2 , 1
2 , 1

2 ], but in phase III. The mode is non-dispersive,
sharply peaked and associated with the opening of a spin-gap at low energies. The spin-gap
is the consequence of the magnetic order, since for T > TN the resonance peak shifts to ω = 0
and becomes the quasi-elastic peak of the paramagnetic state. A theoretical interpretation of the
resonant exciton mode was provided by Akbari and Thalmeier [63].

(2) At the Γ-point (zone center), a strong FM soft mode was observed [64], These ferromagnetic
fluctuations are large in phase III but also present (although weak) in phase II. However, no dispersive
magnon excitations were found in the AFQ phase. The intensity of the magnetic excitations collapses
into a broad central peak at zero energy (quasi-elastic peak) just above TN . The INS line width is
smallest at the Γ-point. The ferromagnetic fluctuations are expected to be enhanced in a magnetic
field and are the reason for an accessible ESR signal in CeB6.

(3) Spin-wave modes emanate from the AFM wave-vectors QAFM1 and QAFM2 below TN .
They display a spin-gap of about 0.3 to 0.4 meV and, at the zone boundary (M point), the modes
reach up to 0.7 meV. Hence, the spin-gap and the band width are comparable.

All the above excitations merge to form a continuous dispersive magnon band in a narrow energy
range. The band is more dispersive in the AFQ phase.

(4) In unconventional superconductors, a strong magnetic field splits the resonant magnetic exciton
mode into two components. This is not the case for CeB6, where a second field-induced magnon
mode emerges whose energy increases with magnetic field [58]. At the FM zone center (Γ-point)
only a single mode is found with a non-monotonic field dependence in phase III. Inside the hidden
order phase, it agrees well with the ESR resonance energy (Figure 6). INS measurements in the
field range of the second (high-field) ESR resonance have not been carried out. It is interesting
to point out that this secondary ISN response occurs also at the R-point, which is not accessible
by ESR.

INS and ESR results are complementary and there is still much work to be done to understand
the magnetic correlations in CeB6.

4.6. Summary

The AFM correlations in heavy fermion compounds lead to a broad ESR line, which
generally cannot be observed. Exceptions are compounds with very strong magnetic anisotropy,
where ferromagnetic correlations reduce the line width, as discussed in Section 3. CeB6 represents an
exception to the exceptions, since a resonance was observed and it is a cubic Kondo lattice (no significant
magnetic anisotropy) in the AFQ phase. This situation needs a separate explanation.

Each Ce ion has a fourfold degenerate Γ8 ground state, displaying spin and orbital degrees of
freedom. We concluded from the antisymmetry of the wave functions of the electrons that there is
a strong interplay between AFQ and ferromagnetic order of the spins at the Γ-point. This state is
favored by a magnetic field and consequently the Tc of the boundary between the Kondo and the AFQ
phases increases with B, which agrees with the experiment. Furthermore, the susceptibility is increased
by the ferromagnetic correlations as observed experimentally, where χ0 displays a kink [41,48], and
hence it reduces the ESR line width, which this way is accessible to observation.

Previous ESR experiments on heavy fermion systems with Kramers doublets, e.g., YbRh2Si2 [4,6–8],
have originally all been interpreted as if localized moments are resonating, i.e. as for ESR on individual
impurities. The local dynamical susceptibility is the proper response function in that case, rather than
the global dynamical susceptibility [21,22]. However, it is difficult to distinguish between the two
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approaches [20], since more than 60% of the Yb ions participate in the resonance [19]. The fact that
only one resonance was observed in CeB6, in conjunction with the analysis in Ref. [22], is evidence
that the ESR signal is a collective phenomenon involving all the sites of the lattice.

The Γ8 ground quartet of a single Ce3+ site leads to expect four resonances. Three of these
resonances are quenched by the AFQ order at each site and the coherence of the wave functions
reduces the signal to one resonance. The experimentally observed g-value [11,12,41] is about 1.6
and depends on the angle θ of the magnetic field with the crystallographic axis. The theoretical
effective g-factor depends then on two angles, θ and ϕ, and the Knight shift. Here, ϕ is the angle of
the quadrupolar order relative to the crystallographic axis. There is good agreement between theory
and experiment at T = 2.65 K for a proper choice of parameters (in contrast to statements in Ref. [44]).
Both the Γ8 multiplet and AFQ order are crucial ingredients for the observability of an ESR signal in
a cubic environment.

5. Longitudinal Dynamical Susceptibility

In a configuration in which the oscillating magnetic field of the microwaves is parallel to the
Zeeman field (assumed along the z-axis) the resonance is given by the longitudinal dynamical
susceptibility, χL(z) = −(g f µB)

2 1
N ∑ij〈〈Sz

i ; Sz
j 〉〉z. This correlation function, but also as a function

of a wave vector~q, contains the response to inelastic neutron scattering (INS). We consider the same
Hamiltonian as in Section 2, namely Equation (1), together with the “Knight”-shifted magnetic field,
Equation (2). To higher order in the Kondo exchange J, the model generates a Heisenberg exchange
between the different sites (RKKY-interaction). In Section 3 this spin-exchange was incorporated into
the expectation values of spin operators and the static susceptibility. The same procedure will be
followed here. The longitudinal response for INS consists then of a quasi-elastic central peak of width
1/T1 and inelastic peaks arising from the transition (emission and absorption of ω(~q)) into spin-excited
states. To study the latter it is convenient to artificially include a Heisenberg Hamiltonian with the
appropriate symmetries. Here, we limit ourselves to study the quasi-elastic peak.

We apply the equation of motion to the first argument of the susceptibility [29,30],

z〈〈Sz
i ; Sz

j 〉〉z = J
2N ∑kk′σσ′ ei(k−k′)·Ri 〈〈(S+

i c†
kσs−σσ′ck′σ′ − S−i c†

kσs+σσ′ck′σ′); Sz
j 〉〉z

= 〈〈jL
i ; Sz

j 〉〉z .
(28)

The above equation defines the spin-current jL
i . Applying the equation of motion on the second

argument of the correlation function yields

z〈〈jL
i ; Sz

j 〉〉z = 〈[jL
i , Sz

j ]〉 − 〈〈jL
i ; jL

j 〉〉z , (29)

which is now evaluated for the noninteracting system.
The Bloch equation can be written in the form [29,30]

χL(z) =
[
z + NL(z)/χL

0

]−1
NL(z) , (30)

where χL
0 is the static longitudinal magnetic susceptibility and NL(z) is the longitudinal relaxation

function. To second order in the exchange NL(z) is given by [29,30]

NL(z) ≈ −(g f µB)
2 1

N ∑ij z〈〈Sz
i ; Sz

j 〉〉z
= −(g f µB)

2 1
N ∑ij

1
z

{
〈
[

jL
i , Sz

j

]
〉 − 〈〈jL

i ; jL
j 〉〉z

}
.

(31)
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Evaluating the imaginary part of NL(z) for the noninteracting system we obtain

NL′′(ω) =
π

4
(g f µB JρF)

2〈Sz〉{2 coth(g f µBB′/2T)−
ω + g f µBB′

ω
coth[(ω + g f µBB′)/2T]

+
ω− g f µBB′

ω
coth[(ω− g f µBB′)/2T]}+ π

2N
(g f µB JρF)

2 ∑
ij,i 6=j

e−Rij/l sin(kFRij)
2

(kFRij)2 (32)

×
[
〈S+

i S−j 〉+ 〈S
−
i S+

j 〉
]

.

Here, we neglected the Zeeman field of the conduction electrons. The first term is the single site
contribution, while the second one arises from the intersite interactions.

We first analyze the single site terms, which correspond to the single impurity case. For ω → 0,
the function NL”(ω) reduces to

NL′′(ω → 0) =
π

2
(g f µB JρF)

2〈Sz〉
g f µBB′/2T

sinh2(g f µBB′/2T)
. (33)

For g f µBB′ << T, this expression becomes the constant (π/4)(g f µB JρF)
2 and with χL

0 = (g f µB)
2/4T

we obtain the Korringa relaxation rate 1/T1 = π(JρF)
2T. This is the same expression as for 1/T2,

since for g f µBB′ << T the dynamical susceptibility is isotropic. In the limit g f µBB′ >> T, on the
other hand, NL′′(ω = 0) tends to zero exponentially as exp(−g f µBB′/2T), because the spin-flips are
suppressed by the magnetic field. The suppression of spin-flips also reduces the static susceptibility
exponentially, χL

0 = (g f µB)
2/[4T cosh2(g f µBB′/2T)], so that the spin-flip relaxation rate in the high

field limit is 1/T1 = (π/2)(JρF)
2g f µBB′, i.e. T1 = T2/2 [29].

The width of the quasi-elastic central peak is 1/T1 and its weight is roughly χL
0 . In addition to

the central peak, the longitudinal dynamical response has a shoulder at low T as a function of ω

close to ±g f µBB′. At low T, the thermal bath is unable to provide sufficient energy to flip the spin,
unless the external frequency is larger than g f µBB′. The Kondo effect is introduced to higher order in J
and it impacts both, the relaxation kernel NL(z) and the static susceptibility χL

0 [65]. Eventually, as
T → 0, the impurity spin is compensated leading to a finite susceptibility and 1/T1 relaxation
rate [31,32], in analogy to the transverse response. The Kondo effect in a small magnetic field smears
the abovementioned properties and the characteristic energy of the central peak is the larger of T and
TK. The intersite terms play a substantial role only in the presence of collective excitations, so that
expectation values of spin-flips at different sites are nonzero. As for the transversal response function,
most of the physics is dominated by the static response. Ferromagnetic intersite correlations therefore
again narrow the central peak, while AF correlations tend to broaden the quasi-elastic peak.

6. Conclusions

An ESR signal for a magnetic impurity in a metal is not observable unless TK is very small.
This suggests that the line width in heavy-fermion compounds is too broad for measurement with
conventional ESR techniques. This general belief had to be corrected, when a resonance was found
in several heavy-fermion Ce and Yb compounds. Common to these compounds are ferromagnetic
short-range correlations among the rare earth moments due to a strong magnetic anisotropy usually in
the ab plane. The observed signals have the Dysonian line shape as expected from spin diffusion in
a metallic environment. The static transversal susceptibility and the ESR relaxation rate are inversely
proportional to each other. For noninteracting impurities, χT

0 is a Curie law and hence 1/T2 ∝ T,
known as the Korringa relaxation rate, which alternatively can also be obtained from the Fermi–Dirac
distribution function of the conduction states.

The Kondo exchange interaction of the resonating spin with the conduction electrons gives rise
to the Kondo spin compensation and the susceptibility becomes finite. Consequently, the ESR line
width is proportional to TK and is too large for the resonance to be observed, unless TK is much
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less than the microwave frequency as for Yb impurities in Au [3]. In a compound, there are also
short-range interactions among the localized moments, which play a crucial role. For heavy fermion
compounds, involving Ce3+ and Yb3+ ions, χT

0 is inversely proportional to the band width (TK).
For antiferromagnetically correlated spins the width of the line is of the order of the Weiss temperature
θ of the static transversal susceptibility, which is usually too large for conventional ESR to be measured.
For ferromagnetically correlated moments, on the other hand, the width of the resonance is strongly
reduced and it is possible to measure an ESR line. This situation can be considered a bottleneck [6]
since the FM short-range correlations inhibit the spin-flip from being passed on to other sites. Similar
conclusions for Kondo impurities and the Kondo lattice (i.e., involving localized moments) have been
derived by Abrahams and Wölfle for the Anderson impurity and Anderson lattice [21,22].

Due to spin diffusion and the skin depth, the characteristic ESR line shape in a metal is Dysonian.
This is the case for both, resonating localized moments [16] and conduction states [13–15]. For heavy
fermion compounds, the shape of the line can then not distinguish between localized moments and
conduction states in a narrow band (heavy mass). The crystalline electric field scheme determines
the g-tensor for the localized spins, i.e., the g-values and their anisotropy. On the other hand, the
hybridization of the f -electrons with the conduction states gives rise to the heavy fermion states. In the
neighborhood of the Fermi level, they are dominated by the f -character and, consequently, the g-tensor
is again predominantly given by the crystalline field scheme of the f -states. Hence, from the g-tensor
we once again cannot distinguish between resonating localized and conducting states.

CeB6 is a cubic Kondo lattice with no significant magnetic anisotropy in the AFQ phase.
The observation of a signal in CeB6 is then an exception to the exceptions. The Γ8 ground state
of each Ce ion is a quartet containing orbital and spin degrees of freedom. Naively, this should give rise
to four resonance lines, however only one was observed in the usual range of microwaves. The AFQ
long-range order and the coherence of the electron states due to the hybridization are necessary to
quench the remaining transitions. The agreement of the angular dependence of the spectrum in the
AFQ phase with theory is remarkable. At low T there are differences because of the proximity of
phase III, which induces AF correlations not included in the theory. The Pauli principle requires
antisymmetric electron wave functions. It follows that the spins are ferromagnetically coupled to each
other in order to have AFQ correlations. A magnetic field favors this state and the Tc of the phase
boundary between the Kondo and AFQ phases increases with field, in agreement with experiment.
In addition, the ferromagnetic correlations enhance the magnetic susceptibility [41,48] and hence
reduce the ESR line width, which then becomes accessible to observation.

Demishev et al. [57] detected a second ESR resonance line in ESR for frequencies larger than
200 GHz. The g-factor of the secondary resonance and its intensity are considerably less than that
of the primary line. The second resonance can be explained as a transition from the AFQ-ordered
resonance into a final state belonging to phase I (Kondo phase).

The INS results for CeB6 have provided insights into the low T ordered phases and their spin
correlations. More work is still needed to relate the INS experiments to the ESR results.
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