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Abstract: Solid/liquid interfaces are exploited in various industrial applications because confinement
strongly modifies the physico-chemical properties of bulk fluids. In that context, investigating the
dynamical properties of confined fluids is crucial to identify and better understand the key factors
responsible for their behavior and to optimize their structural and dynamical properties. For that
purpose, we have developed multi-quanta spin-locking nuclear magnetic resonance relaxometry of
quadrupolar nuclei in order to fill the gap between the time-scales accessible by classical procedures
(like dielectric relaxation, inelastic and quasi-elastic neutron scattering) and obtain otherwise
unattainable dynamical information. This work focuses on the use of quadrupolar nuclei (like 2H,
7Li and 133Cs), because quadrupolar isotopes are the most abundant NMR probes in the periodic
table. Clay sediments are the confining media selected for this study because they are ubiquitous
materials implied in numerous industrial applications (ionic exchange, pollutant absorption, drilling,
waste storing, cracking and heterogeneous catalysis).

Keywords: diffusion in porous media; NMR relaxation; multi-quanta relaxometry; quadrupolar
nuclei; clay sediments

1. Introduction

In the last few decades, numerous experimental [1] and theoretical [2] studies have been
devoted to solid/liquid interfaces in order to understand and predict the influence of confinement
on the structural, thermodynamical and dynamical properties of fluids. In that context, clay-water
solid/liquid interfaces [3–9] were frequently investigated for two reasons. First, from a theoretical
point of view, clay platelets are flat and atomically smooth with a well-characterized structure and
atomic composition, leading to ideal models of solid/liquid interfacial systems. Second, natural and
synthetic clays are used in a large variety of industrial applications (drilling, heterogeneous catalysis [8],
waste storing [9], food, paint and cosmetic industries), exploiting their various physico-chemical
properties (gelling, thixotropy, surface acidity, high specific surface and ionic exchange capacity, water
and polar solvent adsorption, swelling). Optimizing applications such as heterogeneous catalysis and
waste storing requires quantifying the mobility of solvent molecules and neutralizing counterions
inside the porous network of clay minerals. For that purpose, numerous experimental studies have
been performed to determine the mobility of confined fluids over a broad range of diffusing time.
At short time-scales (between pico-seconds and 100 nano-seconds), the mobility of confined water
molecules was successfully investigated by classical Inelastic (INS) [10–12] and Quasi-Elastic Neutron
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Scattering (QENS) [13,14] experiments. By contrast, the long-time mobility of bulk fluids is generally
investigated by pulsed gradient spin echo NMR spectroscopy [15] to probe time-scales larger than
the millisecond. Unfortunately, the mobility of neutralizing counterions is difficult to measure by
neutron scattering experiments, and the presence of paramagnetic impurities within the solid network
significantly enhances the NMR relaxation rates of confined fluids, strongly limiting the use of
pulsed gradient spin echo NMR spectroscopy. For that purpose, NMR relaxation measurements
were frequently performed [16–21] to extract dynamical information on the mobility of the diffusing
NMR probes.

A general trend of the NMR relaxation property of confined fluids is the large difference between
the longitudinal (R1) and transversal (R2) relaxation rates. While the bulk fluids have generally the
same NMR relaxation rates (R1 ∼ R2), confinement drastically enhances their transverse relaxation rate
leading to R2 � R1. Two different phenomena may be responsible for the above-mentioned difference
between the longitudinal and transverse relaxation rates: either chemical exchange of the NMR probes
between various environments under the so-called “moderately rapid exchange” condition [22] or a
slow modulation of the NMR relaxation mechanisms [21,23,24] induced by the molecular motions of
the confined fluids. One can differentiate between these two interpretations without modifying the
sample’s environment (temperature, concentration, composition) by measuring both relaxation rates
as a function of the static magnetic field B0: an increase of their difference (R2− R1) as a function of the
field’s strength is the fingerprint of an intermediate exchange [22,25], while the opposite trend results
from the slow modulation of the NMR relaxation mechanisms. That condition is generally fulfilled by
reducing the fluid temperature or after complexation of the NMR probe by a macromolecule [26–28].

In that framework, confinement was recently shown to induce, at room temperature, the slow
modulation of the NMR relaxation mechanism of fluid [29–31]. As a consequence, numerous theoretical
and experimental studies were devoted to that problem in order to quantify the influence of the
geometrical and thermodynamical properties [31–39] of the porous media on the NMR relaxation
mechanisms of their confined fluids. In addition to NMR relaxation measurements performed at a
limited number of available magnetic fields [16,33], spin-locking relaxation measurements [16,33,40–43]
were initially performed to extend the investigation of the dispersion curves to lower magnetic fields.
These two complementary procedures lead however to a large gap within the dispersion curves that
was successfully filled recently by field cycling NMR relaxometry [29–32,44–48]. Unfortunately, in the
case of confined quadrupolar nuclei, the enhancement of the transverse relaxation rate of the confined
quadrupolar probes prohibits the use of field cycling NMR relaxometry because of the time required
to switch the magnetic field. In that context, we have developed multi-quanta spin-locking NMR
relaxometry to probe the dynamical properties of confined quadrupolar nuclei that pertain to a
large class of observable NMR isotopes within the periodic table [49]. To test the potentiality of that
new approach, we selected the clay/water interface because natural and synthetic clays are well
characterized and exploited in numerous industrial applications. In that context, we used multi-quanta
NMR relaxometry to quantify the mobility of water molecules (heavy water D2O) [40,50–53] and
neutralizing counterions (7Li [54], 133Cs [55]) diffusing within the porous network of clay sediments.

The swelling clays used in this study (montmorillonite, hectorite, beidellite and laponite) pertain
to the class of smectites. Their elementary platelets result from the sandwiching of one layer of
octahedral metallic oxides (AlIII or MgII) between two layers of tetrahedral silica. Atomic substitutions
of some metals in these octahedral or tetrahedral layers by less charged metals lead to a net negative
charge of the clay network neutralized by cations. These exchangeable cations are localized within
the interlamellar space between individual clay platelets and are responsible for the water affinity of
the clay network. Furthermore, the mechanical behavior (swelling versus setting) of the clay/water
interface is monitored by the nature and valance of the neutralizing counterions, the number of
substitution sites and their localization within the clay network.

As displayed in Figure 1, clay sediment exhibits a multiscale structure. At short distances,
the sediment is composed of highly anisotropic platelets (thickness ∼7 Å, diameter ∼300–3000 Å).
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At intermediate distances, microscopic domains result from the stacking of numerous (10–100) parallel
clay platelets. Depending on the hygrometry, the interlamellar space between these platelets is partially
or totally filled by adsorbed water molecules [56–58] in addition to the neutralizing counterions.
Finally, at the largest scale, clay sediment results from the juxtaposition of micro-domains with different
orientations. We have used multi-quanta spin-locking NMR relaxometry measurements to determine
the average residence time of the water molecules and some neutralizing counterions within the
interlamellar space between the clay platelets inside each micro-domain. Furthermore, two-time
stimulated echo NMR spectroscopy [59] was used to quantify the time-scale required by the water
molecules to probe micro-domains with different orientations [52,53,60].

Clay platelet

Heavy water

molecule

Neutralizing

counterion

c
τ

exch
τ

Micro-domain

Clay

film

Figure 1. Schematic view of multiscale organization of the clay sediment resulting from the coexistence
of clay aggregates with various orientations of the platelet directors. Reprinted with permission
from [53]. Copyright (2014) American Chemical Society.

In addition to these experimental investigations, multi-scale numerical simulations were
performed to determine the structure of the confined fluids and their mobility. Grand Canonical
Monte Carlo (GCMC) simulations [56–58] were first performed to determine the number of
confined water molecules as a function of the water partial pressure and the interlamellar distance.
These numerical simulations also illustrate the organization of the water molecules and neutralizing
counterions confined between the clay platelets (see Figure 2a,b). This organization of the confined
water molecules significantly contributes to the X-ray and neutron scattering spectra [56–58] of oriented
clay sediments. Nevertheless, the same confined water molecules exhibit a large mobility in the
direction parallel to the clay surface, as detected by QENS [13,14]. This local mobility of the confined
probes was determined by numerical simulations of molecular dynamics and directly compared
to the QENS spectra [14]. Numerical simulations of Brownian dynamics [51] are then required to
propagate at a larger time-scale the water mobility predicted by MD simulations in order to interpret
the residence time determined by multi-quanta NMR relaxometry. Finally, a set of macroscopic
differential equations [60] were solved to describe the exchange of the water molecules between
differently-oriented micro-domains in order to interpret the echo attenuation detected by two-time
stimulated echo NMR spectroscopy.
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Figure 2. (a) Snapshot illustrating one Grand Canonical Monte Carlo (GCMC) equilibrium
configuration of confined water molecules and neutralizing sodium counterions; (b) concentration
profiles of sodium counterions and oxygen and hydrogen atoms pertaining to water molecules confined
between two beidellite clay lamellae. Reprinted with permission from [53]. Copyright (2014) American
Chemical Society.

2. Sample Preparation and Experimental Setup

All natural clay samples used in this study were purified according to the classical
procedure [61], and the neutralizing cations were exchanged leading predominantly to mono-ionic
clay samples. The clay platelets were further selected according to their size by centrifugation [61].
Transmission Electronic Microscopy (TEM) was used to determine their size distribution [61].
Self-supporting clay films were obtained by ultrafiltration under nitrogen pressure of dilute clay
dispersions. The clay films were further dried under nitrogen flux before equilibration with a reservoir
of heavy water at fixed chemical potential by using saturated salt solutions. The partial pressure of
D2O is selected to obtain hydrated clay samples with mainly one or two hydration layers in accordance
with the water adsorption isotherm [56,57]. A lamella (30 × 5.5 mm2) is cut into the clay film and
inserted into a sealed glass cylinder, which fit the gap into a home-made solenoid coil [51] used for
the NMR measurements (Figure 3). The sample holder can rotate into the coil in order to perform
NMR experiments with different orientations of the clay film (denoted θLF) by reference to the static
magnetic field B0. An important point is that a home-made detection coil is not required to perform
multi-quanta spin-locking relaxometry measurements. The only requirement is the use of a solenoidal
coil. Note however that spectra and relaxation measurements must be recorded at various orientations
of the clay sample by reference to the static magnetic field. As a consequence, the detection coil must
be modified to measure the sample orientation with good accuracy.
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Figure 3. Schematic view of: (a) the film orientation within the NMR tube used to insert the clay
film sample into the detection coil (see the text); and (b) the different Euler angles characterizing the
orientation of the clay film by reference to the static magnetic field B0. Reprinted with permission
from [53]. Copyright (2014) American Chemical Society.
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NMR measurements were performed on a DSX360 Bruker spectrometer operating at a field of
8.465 Tesla equipped with home-made detection coils. For this experimental setup, the typical duration
for the inversion of the longitudinal magnetization varies between 15 and 30 microseconds depending
on the nature of the NMR probes (2H, 7Li and 133Cs). Because of the efficiency of the NMR relaxation
of these NMR quadrupolar probes, a fast detection mode was selected with a sampling time varying
between 0.25 and one microsecond. Pulse sequences where selected to optimize the magnetization
transfers required by multi-quanta NMR relaxation measurements. Details on the theory of NMR
relaxation and multi-quanta spin-locking measurements are given in Appendices A–D.

3. Results and Discussion

3.1. NMR Spectra

Figures 4 and 5 exhibit the variation of the NMR spectra as a function of the orientation of the
clay film into the static magnetic film B0. The doublet detected by 2H NMR spectroscopy of the water
molecules confined within hectorite [53] (Figure 4) results from two phenomena: a good alignment of
the various clay platelets with respect to the lamella director and a specific orientation of the water
molecules confined within the interlamellar space of the clay platelets. The principal component of
the tensor quantifying the Electric Field Gradient (EFG) monitoring the quadrupolar Hamiltonian
(see Appendix A, Equations (A1)–(A2b)) responsible for the NMR relaxation of the deuterium atoms
of the water molecule is directed along the

−→
OD director [62]. If the water molecule reorients freely,

this
−→
OD director samples uniformly all orientations with respect to the static magnetic field, canceling

the average quadrupolar coupling felt by the deuterium atoms (Equations (A5)–(A6)). By contrast,
confined water molecules are strongly structured with specific orientations (see Figure 2a,b) leading
to a non-vanishing average of the order parameter quantifying the orientation of the

−→
OD director

with respect to the clay director (see Equation (A6)). Furthermore, if the clay directors are randomly
oriented into the static magnetic field, a powder spectrum should be detected [63], partially masking
the doublets reported in Figure 4a. Since the order of magnitude of the quadrupolar coupling felt by
the 2H atom within the water molecule is known (180–200 kHz) [62], the maximum splitting measured
for an orientation of the clay director parallel to the static magnetic field may be used to evaluate the
degree of alignment of the confined water molecules. Finally, the variation of the 2H doublet as a
function of the orientation of the clay film in the static magnetic field (see Figure 4b) perfectly matches
the expected relationship (Equation (A6)) with annulation of the doublet at the so-called magic-angle
(θLF = 54.74◦).
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Figure 4. (a) 2H NMR spectra as a function of the film orientation θLF into the static magnetic field B0;
(b) variation of the residual quadrupolar coupling νQ extracted from the 2H NMR spectra as a function
of the film orientation θLF into the static magnetic field B0. Reprinted with permission from [53].
Copyright (2014) American Chemical Society.
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7Li NMR spectra (Figure 5a) recorded for lithium counterions confined within Laponite
sediment [64] exhibit the same behavior except that the previous doublet is replaced by a triplet,
as expected for 3/2 spin nuclei [63]. As determined by numerical simulations [65], the principal axis
of the tensor describing the EFG felt by the neutralizing counterions is oriented parallel to the clay
director. As a consequence, the residual quadrupolar coupling is also monitored by the film orientation
into the static magnetic field.
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Figure 5. NMR spectra recorded as a function of the film orientation θLF of the clay sediment into the
static magnetic field B0: (a) 7Li NMR spectra measured within laponite concentrated clay dispersions;
(b) 133Cs NMR spectra measured within hectorite clay sediment. Reprinted with permission from [55].
Copyright (2015) American Chemical Society.

In the case of 133Cs, a sextuplet is expected to occur since this isotope is a 7/2 spin nucleus [63].
Unfortunately, only the first satellites [55] are detected (see Figure 5b) because the fast relaxation of
this confined nuclei partially masks the theoretical quadrupolar structure.

3.2. Multi-Quanta NMR Relaxation Rates

Because of the presence of paramagnetic impurities within the clay network [18], two mechanisms
are expected to monitor the NMR relaxation of confined quadrupolar probes, i.e., quadrupolar and
heteronuclear dipolar couplings (see Appendix A). Theoretical details on the contributions of these
two relaxation mechanisms are given in Appendix B. In that framework, a complete basis set [66–68]
is required to fully understand the time evolution of the magnetization under the influence of the
relaxation mechanisms, the pulse sequences and the static residual quadrupolar and heteronuclear
dipolar couplings. For that purpose, we used the irreducible tensor operators [66–68] (see Appendix C)
whose number increases as a function of the spin I of the nucleus. Nuclei with I = 1/2 spin are
fully described by the identity (labeled T00) and a row of first-order operators describing the three
components of the magnetization (labeled T1−1, T10 and T11 see Figure A1). The well-known
Pauli matrices are another irreducible representation of these four operators, also called coherences.
Quadrupolar I = 1 spin nuclei (like 2H) require another set of five second-order coherences [68] (labeled
T2−2, T2−1, T20, T21, T22; see Figure A2) in order to describe the quadrupolar coupling. In the same
manner, I = 3/2 spin nuclei (like 7Li) require another set of third-order coherences [68] (labeled T3−3,
T3−2, T3−1, T30, T31, T32, T33; see Figure A3) describing the octopolar coupling. In that framework,
I = 7/2 spin nuclei (like 133Cs) require a basis set extending up to seventh-order coherences [67]
(see Figure A4). Thanks to the completeness of these different basis sets, it becomes possible to
describe the time evolution of the various coherences during each step of the pulse sequence by taking
implicitly into account the influence of various relaxation mechanisms and residual static couplings
(see Appendix D).

In the case of heavy water molecules confined within the clay sediments, we have measured by
2H NMR the time evolution of two independent coherences [52] (namely T20 and T22(a, s)) in addition
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to the classical longitudinal and transverse magnetizations corresponding respectively to the T10 and
T11(a, s) coherences (see Figure 6a). Let us call Rij the corresponding relaxation rates. The pulse
sequence used to measure these different relaxation rates was detailed in previous publications [52].
A first general feature of these relaxation measurements of confined fluid is the large difference between
the transverse and longitudinal relaxation rates (i.e., R11 � R10; see Figure 6a).
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Figure 6. Variations as a function of the film orientation θLF into the static magnetic field B0 of:
(a) the apparent multi-quantum relaxation rates of the T10, T11(a, s), T20 and T22(a, s) coherences,
denoted R10, R11(a, s), R20 and R22(a, s), respectively; and (b) the apparent spectral densities JQ

0 (0),
JD
0 (0), UQ and UD extracted from these Rij values (see Equation (A24)). Reprinted with permission

from [52]. Copyright (2013) American Chemical Society.

As evidenced by numerical simulations [18], that difference results from the long time-scale
necessary to obtain a complete decorrelation of the couplings monitoring the NMR relaxation.
This phenomenon is characteristic of the slow modulation regime occurring when the corresponding
time-scale becomes larger than the inverse of the resonance angular velocity (ω0) [23,63]. Under such
conditions, the integral of the decorrelation function (i.e., J(0)) becomes much larger than its Fourier
transforms evaluated at the resonance angular velocity (i.e., J(ω0) and J(2ω0)):

J(0)� J(ω0) ≈ J(2ω0) (1)

As detailed in Appendix D, the detected difference (R11 � R10) becomes obvious
since the longitudinal relaxation rate R10 is a linear combination of J(ω0) and J(2ω0)

(see Equations (A21) and (A22e)), while J(0) also contributes to the transverse relaxation rate R11

(see Equations (A21) and (A22b)). The contributions of the quadrupolar and heteronuclear dipolar
couplings to the various relaxation rates are detailed in Appendix D. By focusing our analysis on the
dominant components (see Figure 6b), it becomes possible to distinguish the relative contributions of
both the quadrupolar and heteronuclear dipolar relaxation mechanisms by simply performing four
independent measurements of the R10, R11, R20 and R22 relaxation rates (see Equations (A21)–(A24)).
As displayed in Figure 6b, the quadrupolar and heteronuclear dipolar couplings contribute significantly
to the relaxation of confined water molecules. Figure 6b also exhibits a significant variation of the
dominant contribution to the quadrupolar relaxation mechanism (denoted JQ

0 (0)) as a function of
the orientation of the clay lamella in the static magnetic field, with a large enhancement near the
magic angle. As detailed by numerical simulations [64], this behavior results from the organization
of the clay platelets within the self-supporting lamella. As explained in Appendix B, one can use the
Wigner rotation matrices (Equation (A16a–c)) to extract the intrinsic contributions to both quadrupolar
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and heteronuclear dipolar relaxation mechanisms. These intrinsic contributions are evaluated in the
frame of the clay lamella where molecular diffusion occurs. By this analysis, we can extract, for each
relaxation mechanism, labeled X for X ∈ {Q, D}, three intrinsic components, called spectral densities
and denoted JX

m(0) for m ∈ {0, 1, 2}, respectively. The purpose of our multi-quanta spin locking
relaxation measurements is to probe the low frequency variation of this set of six independent spectral
densities to obtain dynamical information on the long-time mobility of the confined NMR probes.
By contrast with the 2H [52] and 7Li [64] relaxation measurements, the heteronuclear dipolar coupling
becomes negligible for confined 133Cs nuclei [55] because of the enhancement of its quadrupolar
coupling (see Table A1).

3.3. Multi-Quanta Spin-Locking NMR Relaxometry

The purpose of spin-locking relaxation measurements is to extract the dispersion curve of
the spectral densities JX

m(ω) in order to quantify the time-scale describing the decorrelation of the
quadrupolar and heteronuclear dipolar couplings felt by the confined diffusing probes. This study
focuses on the long-time motions responsible for the complete decorrelation of these nuclear couplings.
As illustrated by numerical modeling of water diffusion [40], such complete decorrelation occurs only
after desorption of the confined probes in order to lose the memory of their residual coupling that
is not averaged to zero by the local motions. As a consequence, the dispersion curves are expected
to exhibit a transition between a plateau [40], at low angular velocities, and a continuous decrease,
at high angular velocities. The inverse of that characteristic angular velocity (ωc) is a measure of the
average residence time (τc = 1/ωc) of the nuclear probes confined within the interlamellar spaces of
the clay sediments. Furthermore, 2D diffusion within the interlamellar space of the clay platelets [40]
is the dynamical process responsible for such long-time decorrelation of the nuclear couplings felt by
the confined NMR probes. As a consequence, the dispersion curve is expected to exhibit a logarithmic
decrease [33,36] at angular velocities larger than ωc.

Figure 7a–d exhibits the typical time evolution of the T11(s), T21(a), T21(s) and T22(a) coherences
(see Appendix C) measured by 2H NMR under spin-locking conditions for heavy water confined
within beidellite clay sediment [53]. The irradiation power used for these measurements is quantified
by the angular velocity (ω1 = 1.12× 105 rad/s) describing free nutation of 2H nuclei under such
irradiation. As illustrated by a Fourier transform of the time evolutions (Figure 7e–h), we detect
three non-zero characteristic angular velocities (λ1 = 2.5 × 105 rad/s, λ2 = 1.6 × 105 rad/s and
λ3 = 0.9× 105 rad/s) for a single irradiation power, extending significantly the dynamical range
probed by this quadrupolar nucleus (see Table 1). As explained in Appendix D (see Equation A20),
these three characteristic angular velocities vary not only as a function of the irradiation power, but also
the residual quadrupolar coupling felt by the quadrupolar probes. As a consequence, by varying
the film orientation into the static magnetic field (i.e., θLF), it becomes possible to probe a large
dynamical range by using a limited number of irradiation powers (see Table 1). As displayed in
Figure 8a, the resulting dispersion curve covers two decades, exhibiting a clear transition at the
characteristic angular velocity (ωc = (6± 1)× 104 rad/s), corresponding to an average residence
time (τc = (17± 3) µs) of the water molecules confined within the interlamellar space of beidellite.
As illustrated in Figure 8b, this result is compatible with the average residence time obtained by
simulations of Brownian dynamics exploiting the size of the clay platelets 500± 100 nm and the water
mobility (D = 7× 10−10 m2/s) measured by QENS on equivalent samples [13,14].
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Table 1. Set of characteristic angular velocities (λ1, λ2, λ3) detected by multi-quanta spin-locking
relaxometry for 2H NMR experiments, varying the irradiation power ω1 and the angle θLF (see the text).

θLF 0◦ 30◦ 90◦ 0◦ 30◦ 90◦ 0◦ 30◦ 90◦

ω1 (105 rad/s) λ1 (105 rad/s) λ2 (105 rad/s) λ3 (105 rad/s)

1.122 2.46 2.28 2.22 1.60 1.36 1.23 0.86 0.86 0.86
0.561 1.48 1.29 1.36 1.11 0.86 0.86 0.37 0.37 0.43
0.280 1.05 0.80 0.80 0.92 0.68 0.62 0.18 0.18 0.09
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Figure 7. Time evolution of (a) T11(s); (b) T21(a); (c) T21(s) and (d) T22(a) coherences measured under
spin-lock conditions, denoted T11ρ(s), T21ρ(a), T21ρ(s) and T22ρ(a), respectively, and their Fourier
transforms for (e) T11(s); (f) T21(a); (g) T21(s) and (h) T22(a) coherences (2H NMR). Reprinted with
permission from [53]. Copyright (2014) American Chemical Society.
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m (λ1) with m ∈ {0, 1}, describing
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(b) average residence time of the confined water molecules obtained by numerical simulations of
Brownian dynamics. Reprinted with permission from [51,53]. Copyright (2014 and 2012) American
Chemical Society.

In the case of 3/2 spin nuclei, six non-zero angular velocities (denoted λi) are expected to occur in
the time evolution of the various coherences under the spin-locking condition (see Equation (A27)).
Spin-locking measurements of the T11(s), T11(a), T33(s) and T33(a) coherences have been performed
for 7Li counterions neutralizing laponite synthetic clay [54]. Figure 9a–d exhibits complex time
evolutions of the various coherences under spin-locking because of the multiplicity of contributing
modes. By contrast, their Fourier transform (see Figure 9e–h) clearly identifies the six expected modes,
with a perfect matching between the experimental data and the theoretical analysis [54]. As displayed
in Figure 10, a broad range of angular velocities ω is then probed by using only four irradiation powers
sampling simply one decade.

In the case of 133Cs neutralizing a synthetic fluoro-hectorite [55], a complete numerical treatment
of the time evolution of the coherences is required due to the large size of the basis-set required to
describe all the quantum states of this 7/2 spin nucleus. Our analysis leads to a good agreement
between the experimental and calculated data (Figure 11) by setting all sampled spectral densities
equal to their high frequency [55] value by assuming:

JQ
0 (λp 6= 0) = JQ

0 (ω0) (2)
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Figure 9. For Li+ ions in concentrated laponite dispersion, the comparison between the experimental
and fitted time evolution of the coherences: (a) T11(a); (b) T11(s); (c) T33(s) and (d) T33(a) coherences
measured under spin-lock conditions, denoted T11ρ(a), T11ρ(s), T33ρ(s) and T33ρ(a), respectively,
and their Fourier transforms for (e) T11(a); (f) T11(s); (g) T33(s) and (h) T33(a) coherences (7Li NMR).
Reprinted with permission from [54]. Copyright (2009) American Chemical Society.
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Figure 11. Time evolutions of the spin-locking relaxation measurements (133Cs NMR) for seven
irradiation powers corresponding to various angular velocities ω1: (a) decreasing from 2.1 × 105 to
6.1 × 104 rad·s−1; and (b) decreasing from 3.2 × 104 to 2.7 × 103 rad·s−1 (see the text). Reprinted with
permission from [55]. Copyright (2015) American Chemical Society.

Figure 12 illustrates the range of angular velocities that can be sampled by 133Cs spin-locking
relaxation measurements induced by the quadrupolar relaxation mechanism that was shown to
monitor the relaxation of 133Cs.

As a consequence, the transition between the low frequency plateau and the continuous decrease
of the spectral density must occur at angular velocities (ωc) much smaller than the lowest eigenvalue
λQ

p probed by these spin-locking measurements, i.e., 103 rad/s (see Figure 12). The corresponding
average residence time of the confined cesium counterions must be larger than 1 ms [55]. By taking
into account the average size of the hectorite platelets determined by TEM (L ∼ 0.4 µm), we obtain
a self-diffusion coefficient (D ≈ L2/2τc) smaller than 8 × 10−11 m2/s. That upper limit is fully
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compatible with the cesium mobility within clay sediments obtained by numerical simulations of
molecular dynamics [55,69–74].

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

10
3

10
4

10
5

10
6

10
7

P
ro
b
a
b
ili
ty
 o
f 
th
e
 e
ig
e
n
v
a
lu
e
s
  
λ
p

Q

Angular velocity λ
p

Q
  (rad/s)

Distribution of the

eigenvalues λ
p

Q

Figure 12. Histograms of the distribution of the angular velocities λQ
p corresponding to the quadrupolar

relaxation mechanism that may be probed by the spin-locking experiments of I = 7/2 spin for irradiation
powers ω1 varying between 2.7 × 103 and 2.1 × 105 rad·s−1 (133Cs NMR). Reprinted with permission
from [55]. Copyright (2015) American Chemical Society.

3.4. Two-Time Stimulated Echo Attenuation

Two-time stimulated echo NMR spectroscopy [59,60] exploits the heterogeneity of the
micro-domain orientations within the clay sediment (see Figure 1). For 2H nuclei, these heterogeneities
of the clay platelets’ orientation induce heterogeneities of the residual quadrupolar coupling felt by
the confined water molecules (Equation (A6)). The pulse sequence displayed in Figure 13 illustrates
the experimental procedure [60]: During the first evolution procedure, the transverse magnetization
(corresponding to the T1±1 coherence) of all water molecules pertaining to the micro-domain labeled i
oscillates at a specific angular velocity (denoted ωQi) corresponding to the orientation of their
micro-domain. The total transverse magnetization is next transferred into the T20 coherence and
freely evolves during the mixing time τM. The duration of the fourth pulse (ψ) is selected to optimize
the double-quanta filtering, by optimizing the transfer of the T20 coherence into the T22 coherence and
minimizing the transfer from the other zero-order coherence, i.e., the T10 coherence, into the same
T22 coherence. During the second evolution period, the transverse magnetization of the confined
water molecules again oscillates at the angular velocity (denoted now ωQj) corresponding to the
specific orientation of their actual micro-domain, labeled j. As a consequence, the net magnetization
satisfies [59,60]:

I(te, τM) =
〈
cos

(
ωQi(0)te)

)
× cos

(
ωQj(τM)te)

)〉
× e−(R20τM+2R11te) (3)

If the mixing time (τM) is smaller than the time (denoted τexch) required by the confined water
molecules to exchange between two micro-domains with different orientation, the statistical average
of the product of the cosinus functions within the bracket in Equation (3) reaches its maximum value.
By contrast, for mixing times larger than the same exchange time, the water molecules will now
probe two micro-domains with different orientations, thus reducing the previous statistical average.
Finally, the exponential law of Equation (3) describes the intrinsic attenuation of the magnetization
during the evolution time te and mixing time τM.
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Figure 13. (a) Pulse sequence and (b) coherence pathway used to measure the attenuation of the
two-time 2H NMR stimulated echo I(te, τM) as a function of the evolution period te and the mixing
time τM. Reprinted with permission from [53]. Copyright (2014) American Chemical Society.

Figure 14a illustrates the resulting attenuation of the two-time stimulated echo as a function of
the mixing time [60]. A better illustration is given by simply noting the relative intensity of the first
maximum (see Figure 14b), leading to an exchange time of 33 ms, i.e., three orders of magnitude larger
than the water residence time is the interlamellar space. That interpretation is fully validated by a
simple numerical model [60] describing the exchange of water molecules between neighboring cubic
boxes labeled by a set of three indices (i, j, k):

dσi,j,k

dt
=
(

Ri,j,k − 6kexcht
)

σi,j,k + kexcht
[
σi+1,j,k + σi−1,j,k + σi,j+1,k + σi,j−1,k + σi,j,k+1 + σi,j,k−1

]
(4)

where Ri,j,k contains the contributions from the pulses, the local residual quadrupolar couplings
and the relaxation mechanisms (see Appendixes A and B), leading to a set of generalized Bloch
equations [22,75].
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Figure 14. (a) Variation of the two-time stimulated echo attenuation I(te, τM) as a function of mixing
time τM (2H NMR). The data are normalized to take into account the relaxation of the T20 coherence
during the mixing time τM (see Equation (3)). (b) Two-time correlation function extracted from the
normalized stimulated echo attenuation as a function of the mixing time τM. The red line corresponds
to the best fit of a stretched exponential function, f (t) = A exp(−t/τexch)

α, to determine the exchange
time τexch (τexch = 33 ± 5 ms with an exponent α set equal to 1.5), and the green line dots are obtained
by numerical modeling (see the text). Reprinted with permission from [53]. Copyright (2014) American
Chemical Society.
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4. Conclusions

Multi-quanta spin-locking NMR relaxometry of quadrupolar nuclei was shown to be a powerful
tool to quantify the average residence time of molecular (D2O) and ionic (7Li, 133Cs) probes confined
within the interlamellar space of clay lamellae inside dense sediments. Furthermore, two-time
stimulated echo NMR attenuation leads to dynamical information on the long-time mobility of the
water molecules exchanging between differently-oriented micro-domains constituting dense clay
sediments. Multi-scale numerical simulations were performed to better understand the structural
and dynamical properties of confined ions and water molecules, improving our analysis of the NMR
experiments. These multi-quanta spin-locking NMR relaxometry measurements are expected to be
easily extended to study other interfacial systems, including porous silicate, zeolites, cements, etc.
A large number of diffusing probes may be used for such investigations since quadrupolar isotopes
pertain to a large fraction of detectable NMR isotopes within the periodic table.
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Appendix A. Quadrupolar and Heteronuclear Dipolar Hamiltonian

The quadrupolar Hamiltonian [23,24,63] is defined by:

HQ = CQ

2

∑
p=−2

(−1)p FQ,L
2,−p T IR

2,p with CQ =

√
3
2

e Q (1 + γ∞)

I(2I − 1) h̄
(A1)

where e is the electron charge, Q is the quadrupolar moment of the nuclei [76] and (1 + γ∞) is the
Steinhermer antishielding factor [76]. These three last parameters are detailed in Table A1 for different
quadrupolar nuclei.

In the above equation,

FQ,L
2,0 =

1
2

VL
zz , FQ,L

2,±1 = ∓ 1√
6

(
VL

xz ± iVL
yz

)
, FQ,L

2,±2 =
1

2
√

6

(
VL

xx −VL
yy ± 2iVL

xy

)
(A2a)

and

TQ,IR
2,0 =

1√
6

(
3I2

z − I(I + 1)
)

, TQ,IR
2,±1 = ∓1

2
(Iz I± + I± Iz) , TQ,IR

2,±2 =
1
2

I2
± (A2b)

where VL
αβ are the components of the EFG evaluated in the laboratory frame (denoted L);

TQ,IR
2,±p (for p = −2 to 2) are the second-order irreducible tensor operators; Ix, Iy and Iz are the spin

operators and I± = Ix ± iIy.
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Table A1. Parameters monitoring the order of magnitude of the quadrupolar Hamiltonian of some
alkali cations (see [76]).

Isotope Spin I Q (10−24 cm2) 1 + γ∞ R10 in Water (s−1)
7Li 3/2 0.042 0.74 0.03

23Na 3/2 0.11 5.1 16.2
39K 3/2 0.09 18.3 24

85Rb 5/2 0.31 48.2 420
133Cs 7/2 0.004 111 0.08

In the presence of a static quadrupolar coupling, the equidistant Zeeman energy levels are
modified by the residual quadrupolar coupling, leading to a quadrupolar splitting of the resonance
lines according to:

ωm−1,m =

√
3
8

CQ

〈
VL

zz

〉
(1− 2m) (A3)

for m varying between I and −I + 1.
During a change of frame, the components of the EFG transform like the second-order spherical

harmonics [24]:

FQ,L
2,q =

2

∑
p=−2

FQ,P
2,p DLP

p,q(θ, ϕ, ψ) (A4)

with DLP
p,q(θ, ϕ, ψ), the components of the Wigner rotation matrices [24] where the set of (θ, ϕ, ψ) Euler

angles defines the orientation, into the static magnetic field, of the principal axis of the tensor describing
the EFG felt by the quadrupolar nucleus. Three sets of frames are useful to describe the orientation of
the principal component of the EFG: the laboratory frame (denoted L), a frame attached to the dense
clay sediment (denoted F) and a frame attached to the individual quadrupolar nucleus (denoted P).
The ez directors of these different frames are respectively the direction of the static magnetic field B0

(laboratory frame L), the normal to the clay sediment n (sediment frame F) and the director of the
principal component of the EFG, denoted VP

zz (particle frame P).
The measured quadrupolar splitting is derived from Equations (A3) and (A4):

ω
app
m−1,m = Am VP

zz

2

∑
p=−2

DLF
p,0(θ

LF, ϕLF, ψLF)
〈

DFP
0,p(θ

FP, ϕFP, ψFP)
〉

with Am =
3eQ(1 + γ∞) (1− 2m)

4I (2I − 1) h̄

(A5)

The angular average is evaluated in Equation (A5) over all the orientations of EFG principal
component within the sediment. The first set of the Wigner rotation matrix describes the orientation
of the macroscopic clay sample with respect to the magnetic field, and the Wigner rotation matrix in
the bracket characterizes the average orientation of EFG principal component within the sediment.
For clay sediments with cylindrical symmetry, only the component p = 0 contributes to Equation (A5),
which reduces to:

ω
app
m−1,m = Am VP

zz
3 cos2 θLF − 1

2

〈
3 cos2 θFP − 1

2

〉
(A6)

In addition to the quadrupolar coupling, the heteronuclear dipolar coupling may also be
responsible for the NMR relaxation of the confined probes because of the presence of paramagnetic
impurities. The corresponding heteronuclear dipolar Hamiltonian [23,24,63] becomes:

HD(t) = CD

2

∑
m=−2

(−1)m TD,IR
2,m FD,L

2,−m(t) with CD = − µ0

4π
γI γS h̄ (A7)
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where the CD is the dipolar coupling constant, and the spin operators become [23,24,63]:

TD,IR
2,0 =

1√
6

(
2IzSz −

1
2
(I+S− + I−S+)

)
, TD,IR

2,±1 = ∓1
2
(IzS± + I±Sz) and TD,IR

2,±2 =
1
2

I±S∓ (A8)

The functions FD,L
2,m (t) in Equation (A7) are related to the second-order spherical harmonics

describing the reorientation of the vector joining the two coupled spin (denoted~rIS(t)) by reference to
the static magnetic field [23,24,63]:

FD,L
2,−m(t) =

√
24π

5
Y2,−m(θ, ϕ)

r3
IS

(A9)

Appendix B. NMR Relaxation Theory

In the framework of the Redfield theory [77], the time evolution of the spin quantum states,
also called coherences, is described by the master equation [23,24,63]:

dσ∗

dt
= −i [H∗S , σ∗] + f (σ∗) (A10)

As denoted by the asterisk (∗), all terms are evaluated in the Larmor frequency rotating frame.
The commutator describes the contribution from the static Hamiltonians H∗S , including the excitation
pulses and the residual quadrupolar Hamiltonian. The second term describes the contribution from
the fluctuating parts of the quadrupolar and dipolar Hamiltonians:

H∗XF(t) = CX

2

∑
m=−2

(−1)m TX,IR
2,m eimω0t

(
FX,L

2,−m(t) −
〈

FX,L
2,−m(t)

〉)
(A11)

where the index X stands for the various relaxation mechanisms (i.e., Q or D). This last contribution to
the master equation is given by [23,24,63,77]:

f (σ∗) =
∫ tsup

0

〈 [
H∗XF(t),

[
e−iH∗S τ H∗+XF(t− τ) eiH∗S τ , σ∗(t)

] ]〉
dτ (A12)

If the time-scales characterizing the decorrelation of the various Hamiltonians are much smaller
than the time-scale sampled by the evolution of the coherences, the upper limit of the integral tsup in
Equation (A12) may be set equal to infinity. This hypothesis restricts the validity of the Redfield theory
applied to NMR relaxation [23,24,63].

Let us introduce the autocorrelation functions of the fluctuating components of the Hamiltonian:

GX,L
m (τ) =

〈(
FX,L

2,m (0)− < FX,L
2,m >

)
×
(

FX,L
2,m (τ)− < FX,L

2,m >
)〉

+
〈(

FX,L
2,−m(0)− < FX,L

2,−m >
)
×
(

FX,L
2,−m(τ)− < FX,L

2,−m >
)〉

with m ∈ {0, 1, 2}
(A13)

By neglecting the time evolution of the coherences during the irradiation pulses, Equation (A12)
becomes then [23,24,63]:

f (σ∗) = −
2

∑
m=0

[
TX,IR

2,m ,
[

TX,IR
2,−m, σ∗

]]
JX,L
m (mω0) (A14)

where the so-called spectral densities JX,L
m (mω0) satisfy the relationship [23,24,63]:

JX,L
m (mω0) = −C2

X

∫ ∞

0
GX,L

m (t) e−imω0t dt (A15)
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The above-mentioned approximation is generally valid for classical relaxation measurements
because the duration of the detection pulses (typically a few µs) is much shorter than the time evolution
of the coherences. Finally, a complete basis set of coherences is required to translate Equation (A14)
into a matrix form [18,64,78–80].

In the case of spin-locking relaxation measurements, one cannot neglect the time evolution of the
coherences during the irradiation power since it is applied during the entire evolution period of the
coherences. As a consequence, the time evolution of the dipolar and quadrupolar couplings under
the influence of the static Hamiltonian H∗S must be taken into account in Equation (A12) as described
implicitly by the term e−iH∗S τ H∗+XF(t− τ) eiH∗S τ in the double commutator (see Equation (A12)). For that
purpose, the static Hamiltonian is also formulated in a matrix form by using the complete basis set of
coherences [40,54,55]. After evaluating its eigenvalues (denoted±iλp) and corresponding eigenvectors
(denoted ~vp), one obtains a new complete basis set. The problem is then easily solved by projecting,
into this eigenvectors basis set, the initial basis set of the coherences used to describe the TX,IR

2,m
spin operators.

By using the Wigner rotation matrices [81] (cf. Equation (A4)), it is possible to relate the derivation
of the apparent correlation functions GX,L

m (τ), evaluated in the laboratory frame (denoted L), with their
intrinsic value evaluated in the frame attached to the clay sediment (denoted F) [82]:

GX,L
0 (τ) =

(1− 3 cos2 θLF)2

4
GX,F

0 (τ) + 3 cos2 θLF sin2 θLF GX,F
1 (τ) +

3(1− 3 cos2 θLF)2

4
GX,F

2 (τ) (A16a)

GX,L
1 (τ) =

3 cos2 θLF sin2 θLF

2
GX,F

0 (τ) +
1− 3 cos2 θLF + 4 cos4 θLF

2
GX,F

1 (τ) +
1− cos4 θLF

2
GX,F

2 (τ) (A16b)

GX,L
2 (τ) =

3(1− cos2 θLF)2

8
GX,F

0 (τ) +
1− cos4 θLF

2
GX,F

1 (τ) +
1 + 6 cos2 θLF + cos4 θLF

8
GX,F

2 (τ) (A16c)

Obviously, the same relationship may be deduced for the corresponding spectral densities thanks
to the linearity of the Fourier transform (see Equation (A15)).

Appendix C. Matrix Representation of the Irreducible Tensor Operators

Depending on the spin state, complete orthonormal basis sets may be constructed by using
the irreducible tensor operators, also called coherences [66–68]. Symmetric and antisymmetric
combinations of the coherences [78–80] are also introduced:

Tlp(s) =
1√
2
(Tl−p + Tlp) and Tlp(a) =

1√
2
(Tl−p − Tlp) (A17)

By using these new coherences, the three spin operators, Ix, Iy and Iz, become proportional to
T11(a), T11(s) and T10, respectively, simplifying the formulation of the Hamiltonians describing the
irradiation pulse and the heteronuclear dipolar coupling (see Equation (A8)).

As displayed in Figures A1–A4, the size of the basis set increases significantly as a function of the
spin of the nucleus.
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Figure A1. Complete orthogonal basis set (four elements) describing the evolution of the spin I = 1/2
(Pauli matrices): (a) symbolic representation Tij; (b) explicit matrix representation of irreducible
tensor operators.



Magnetochemistry 2017, 3, 35 19 of 26

00
T

11−T 10
T

11
T

22−T 12−T 20
T

21
T

22
T

00
T

11−T 10
T

11
T

11−T 10
T

11
T

22−T 12−T 20
T

21
T

22
T

22−T 12−T 20
T

21
T

22
T

















001

000

000























0
2

1
0

00
2

1

000























−
0

2

1
0

00
2

1

000























3

1
00

0
3

1
0

00
3

1





















−

2

1
00

000

00
2

1























−

6

1
00

0
6

2
0

00
6

1























−

−

000

2

1
00

0
2

1
0





















 −

000

2

1
00

0
2

1
0

















000

000

100

















001

000

000























0
2

1
0

00
2

1

000























−
0

2

1
0

00
2

1

000























3

1
00

0
3

1
0

00
3

1





















−

2

1
00

000

00
2

1























−

6

1
00

0
6

2
0

00
6

1























−

−

000

2

1
00

0
2

1
0





















 −

000

2

1
00

0
2

1
0

















000

000

100

(a) (b)

Figure A2. Complete orthogonal basis set (nine elements) describing the evolution of the spin I = 1:
(a) symbolic representation Tij; (b) explicit matrix representation of irreducible tensor operators.
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Figure A3. Complete orthogonal basis set (16 elements) describing the evolution of the spin I = 3/2:
(a) symbolic representation Tij; (b) first subset of eight independent coherences Tij(a, s) including
the T10 coherence; and (c) second subset of seven independent coherences Tij(a, s) including the
T20 coherence.
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Figure A4. Orthogonal basis set (63 elements) describing the evolution of the spin I = 7/2:
(a) first subset of 32 independent coherences Tij(a, s) including the T10 coherence; and (b) second
subset of 31 independent coherences Tij(a, s) including the T20 coherence.

Appendix D. Application to the Relaxation of Quadrupolar Nuclei

The differential equation describing the time evolution of the coherences (Equations (A10)–(A15))
may be written in a matrix form. To simplify the derivations of these matrices, we selected symmetric
and antisymmetric combinations of the coherences [78–80]; see Equation (A17). By using these
coherences, the three spin operators, Ix, Iy and Iz, become proportional to T11(a), T11(s) and T10,
respectively, simplifying the formulation of the Hamiltonians describing the irradiation pulse and the
heteronuclear dipolar coupling (see Equations (A7)–(A9)).
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For spin I = 1 nuclei, the time evolution of the coherences under the influence of the static
Hamiltonian (denoted H∗S in Equation (A10)) including the residual quadrupolar coupling (ωQ) and
the irradiation pulse (ω1) becomes [18,78]:

d
dt



T20

T11(a)
T21(s)
T22(s)

T10

T11(s)
T21(a)
T22(a)


= i



0 0 −
√

3 ω1 0 0 0 0 0
0 0 ωQ 0 0 0 0 0

−
√

3 ω1 ωQ 0 −ω1 0 0 0 0
0 0 −ω1 0 0 0 0 0
0 0 0 0 0 −ω1 0 0
0 0 0 0 −ω1 0 ωQ 0
0 0 0 0 0 ωQ 0 −ω1

0 0 0 0 0 0 −ω1 0


×



T20

T11(a)
T21(s)
T22(s)

T10

T11(s)
T21(a)
T22(a)


(A18)

leading to two independent sub-sets of coherences. Analytical derivation of the eigenvalues ±iλp with
p ∈ {0, · · · , 3} and their corresponding eigenvectors ~vp are used to derive the general solutions of
Equation (A18) [40,78]. Among others, two coherences are of practical interest for the interpretation of
spin-locking relaxation measurements:

eiH∗S τT20e−iH∗S τ =
√

3ω1ωQ
1− cos(λ1τ)

λ2
1

T11(a) +
ω2

Q + ω2
1(1− 3 cos(λ1τ))

λ2
1

T20

− i
√

3ω1
sin(λ1τ)

λ1
T21(s) +

√
3ω2

1
cos(λ1τ)− 1

λ2
1

T22(s)

(A19a)

and

eiH∗S τT10e−iH∗S τ =
λ2 cos(λ3τ) + λ3 cos(λ2τ)

λ1
T10 − iω1

sin(λ3τ) + sin(λ2τ)

λ1
T11(s)

+ ω1
cos(λ3τ)− cos(λ2τ)

λ1
T21(a)− i

λ2 sin(λ3τ)− λ3 sin(λ2τ)

λ1
T22(a)

(A19b)

where the characteristic angular velocities λ0, λ1, λ2 and λ3 are defined by:

λ0 = 0, λ1 =
√

ω2
Q + 4ω2

1 , λ2 =
λ1 + ωQ

2
, and λ3 =

λ1 −ωQ

2
respectively. (A20)

As a consequence, under the simultaneous influences of the residual quadrupolar coupling
(ωQ) and the irradiation pulse (ω1), the T20 coherence oscillates according to the angular velocity λ1,
while two angular velocities (λ2 and λ3) drive the oscillations of the T10 coherence.

Straightforward calculations of the set of Equations (A14) and (A15) lead to the contributions of
the quadrupolar [78] and heteronuclear dipolar [18] relaxation mechanisms to the time evolution of
the coherences.

d
dt



T20

T11(a)
T21(s)
T22(s)

T10

T11(s)
T21(a)
T22(a)


= −diag (A, B, C, D, E, B, C, D)×



T20

T11(a)
T21(s)
T22(s)

T10

T11(s)
T21(a)
T22(a)


(A21)
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with:

AQ = 3JQ
1 (ω1) and

AD =
JD
0 (ω0 −ωS)

3
+ JD

1 (ω0) + 2JD
2 (ω0 + ωS)

(A22a)

BQ =
3JQ

0 (0)
2

+
5JQ

1 (ω0)

2
+ JQ

2 (2ω0) and

BD =
2JD

0 (0)
9

+
JD
0 (ω0 −ωS)

18
+

JD
1 (ω0)

6
+

JD
1 (ωS)

3
+

JD
2 (ω0 + ωS)

3

(A22b)

CQ =
3JQ

0 (0)
2

+
JQ
1 (ω0)

2
+ JQ

2 (2ω0) and

CD =
2JD

0 (0)
9

+
5JD

0 (ω0 −ωS)

18
+

5JD
1 (ω0)

6
+

JD
1 (ωS)

3
+

5JD
2 (ω0 + ωS)

3

(A22c)

DQ = JQ
1 (ω0) + 2JQ

2 (2ω0) and

DD =
8JD

0 (0)
9

+
JD
0 (ω0 −ωS)

9
+

JD
1 (ω0)

3
+

4JD
1 (ωS)

3
+

2JD
2 (ω0 + ωS)

3

(A22d)

EQ = JQ
1 (ω0) + 4JQ

2 (2ω0) and

ED =
JD
0 (ω0 −ωS)

9
+

JD
1 (ω0)

3
+

2JD
2 (ω0 + ωS)

3

(A22e)

Under the slow modulation of the quadrupolar and heteronuclear dipolar couplings, i.e., when:

JX
0 (0) >> JX

m(ω0) >> JX
m(ωS) with m ∈ {1, 2} and X ∈ {Q, D} (A23)

the set of equations in Equation (A22a–e) reduces to [51,52]:

A = 3UQ + UD

B = C =
3JQ

0 (0)
2

+
5UQ

2
+

2JD
0 (0)
9

+
UD
2

D = 3UQ +
8JD

0 (0)
9

+ UD

E = 5UQ +
UD
3

where UQ =JQ
1 (ω0) ≈ JQ

2 (2ω0) and: UD =
JD
0 (ωS −ω0)

3
+ JD

1 (ω0) + 2JD
1 (ωS + ω0)

(A24)

Four independent measurements of the relaxation of the T20, T11, T22 and T10 coherences lead
then to the four dominant contributions (UQ, JQ

0 (0), UD and JD
0 (0)) quantifying the quadrupolar and

heteronuclear dipolar relaxation mechanisms [51,52].
The derivation of the time evolution of the coherences under the spin-locking condition

requires taking into account the evolution of the fluctuating part of the quadrupolar [78] and
dipolar [40] Hamiltonians under the influence of the static Hamiltonians as described by the term
e−iH∗S τ H∗+XF(t− τ) eiH∗S τ in Equation (A12). In the next approximation, we focus only on the m = 0
component of the fluctuating Hamiltonians because their m = 1 and m = 2 components oscillate
at angular velocities (ω0 and 2ω0) (cf. Equation (A14)) much larger than the characteristic angular
velocities (λi) (cf. Equations (A19a)–(A20)). By using Equation (A19a,b), that approximation leads to:
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d
dt



T20

T11(a)
T21(s)
T22(s)

T10

T11(s)
T21(a)
T22(a)


= −



A −
√

3K 0 0 0 0 0 0
0 B 0 2KD 0 0 0 0
0 0 C 0 0 0 0 0
0 −KQ + KD 0 D 0 0 0 0
0 0 0 0 E 0 −K 0
0 0 0 0 0 L 0 2KD

0 0 0 0 0 0 M 0
0 0 0 0 0 −KQ + KD 0 D


×



T20

T11(a)
T21(s)
T22(s)

T10

T11(s)
T21(a)
T22(a)


(A25)

with:

AQ = 3JQ
1 (ω0) and

AD =
JD
0 (ω0 −ωS)

3
+ JD

1 (ω0) + 2JD
2 (ω0 + ωS)

(A26a)

BQ =
3ω2

Q JQ
0 (0) + 4ω2

1 JQ
0 (λ1)

2λ2
1

+
5JQ

1 (ω0)

2
+ JQ

2 (2ω0) and

BD =
2
(
λ2 JD

0 (λ3) + λ3 JD
0 (λ2)

)
9λ1

+
JD
0 (ω0 −ωS)

18
+

JD
1 (ω0)

6
+

JD
1 (ωS)

3
+

JD
2 (ω0 + ωS)

3

(A26b)

CQ =
3ω2

Q JQ
0 (0) + 4ω2

1 JQ
0 (λ1)

2λ2
1

+
JQ
1 (ω0)

2
+ JQ

2 (2ω0) and

CD =
2
(
λ2 JD

0 (λ3) + λ3 JD
0 (λ2)

)
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As mentioned above, the quadrupolar relaxation mechanism (implying the T20 coherence) samples
the spectral densities at the angular velocity λ1, while the heteronuclear dipolar relaxation mechanism
(implying the T10 coherence) samples the two other angular velocities (λ2 and λ3), extending notably
the dynamical range probed by spin-locking relaxation measurements.
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For spin I = 3/2 nuclei, the whole set of coherences splits again into two independent
sub-sets [79,80], namely {T11(a), T20, T21(s), T22(s), T31(a), T32(a), T33(a)} and {T10, T11(s), T21(a)),
T22(a), T30, T31(s), T32(s), T33(s)}; see Figure A3. The eigenvalues ±iλp with p ∈ {0, · · · , 6} describing
their time evolution under the influence of the static quadrupolar Hamiltonian and irradiation
pulse [64,79,80] are given by:
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2

(A27)

By contrast, the corresponding eigenvectors must be calculated numerically [83].
For spin I = 7/2 nuclei, no analytical solutions are available, and the eigenvalues and eigenvectors

describing the time evolution of the 63 coherences must be solved numerically [55].
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