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Abstract: A class of two dinuclear dysprosium based complexes 1 and 2 were synthesized by
employing salicyloylhydrazone derived pentadentate ligand (L). Structural analysis reveals that
in complex 1, two DyIII centers are in muffin (Cs) coordination geometry while in 2, one DyIII

center is in bicapped square antiprism (D4d) and other one is in triangular dodecahedron (D2d)
coordination geometry. AC magnetic susceptibility measurements disclose that complexes 1 and
2 exhibit single-molecule magnet (SMM) behavior, with effective energy barrier of 36.4 and 9.7 K,
respectively. The overall studies reveal that small differences in the coordination environment
around the DyIII centers played a significant role in the difference in relaxation dynamics of the
complexes. In order to elucidate the role of intermolecular interactions between nearby DyIII centers
in the magnetic relaxation behavior, a diamagnetic isostructural YIII analog (3) was synthesized and
magnetic behavior was examined.
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1. Introduction

In recent years, single molecule magnets (SMMs), a unique class of nano-dimensional magnetic
materials, have attracted significant research interest. SMMs have potential applications in a variety of
fields, including high-density data storage devices, quantum computing, and molecular spintronics [1].
The importance of SMMs is that, even in the absence of an external magnetic field, they can
preserve the magnetization for long period of time at low temperatures. After an extensive
research on 3d metal complexes in the last decade [2–4], a rapid development of Ln based
SMMs has been observed in recent years [5–9]. Compared to 3d metals, Ln based SMMs are
mostly investigated owing to the fact that the LnIII ions such as DyIII, TbIII, ErIII, and HoIII

have huge and unquenched orbital angular momentum [10–12] which causes substantial magnetic
anisotropy. The major approach for the construction of such systems is to choose a ligand field
(LF) which could offer an axial crystal field acting on the LnIII ion and stabilize the MJ states
with a large absolute value of the total angular momentum projection |MJ|, therefore realizing
a magnetization easy axis. Outstanding Ln based SMMs include TbIII/DyIII-phthalocyanin (Pc)
double-decker complexes [13] and sandwiched ErIII complexes with polyoxometallate based
ligands [14]. Dinuclear Ln SMMs represent the simplest molecular units which permit the study
of magnetic interactions between two spin carriers. If a dinuclear SMM can be designed in
a controllable manner, it can be possible to construct larger molecules via a bottom up molecular
approach and make SMMs with higher blocking temperatures. Herein two dinuclear complexes
[Dy2(L)2(MeOH)2(NO3)2]·(MeOH)·(CH2Cl2) (1) and [Dy2(L)3(H2O)·(MeOH)]·(MeOH)4·(H2O) (2) are
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reported, which are obtained from the reaction of a pentadentate organic ligand L with Dy(NO3)3 and
DyCl3, respectively (L = 2,6-bis(1-salicyloylhydrazonoethyl) pyridine; Figure S1).

As the overall electronic structure of a DyIII ion is very sensitive to its coordination environment,
minor changes in the ligand systems can significantly affect the magnetic properties of the
complexes [15–17]. Most of the reports on Ln-based SMMs concentrated mainly on either changing the
Ln ion keeping the ligand system constant [18–20] or changing the ligand but keeping the coordination
environment around the Ln ion unchanged [8]. Only few studies are known where modification in
the ligand system was done to tune the relaxation behavior in the complexes [21–26]. In this paper,
differences in slow relaxation of the magnetization behavior were explored in two DyIII dinuclear
complexes, where minor changes in the coordination environment around the DyIII ions disturbed the
local symmetry.

2. Results and Discussion

Single-crystal X-ray analysis showed that both the complexes crystallize in the triclinic P-1 space
groups (Table 1). The molecular structures of the complexes are shown in Figure 1. For complex 1,
both DyIII centers contain similar DyN3O6 cores, surrounded by the ligand, one coordinated nitrate
anion, one methanol molecule and one phenoxide oxygen atom of another ligand, whereas for
complex 2, both DyIII centers contain different DyN6O4 and DyN3O5 cores. Two interlocked
pentachelating ligands make up the coordination sphere of one DyIII center, while other one is
surrounded by the ligand, one coordinated methanol molecule, one water molecule and one phenoxide
oxygen atom of another ligand. In both complexes, ligand coordinates via the pyridyl nitrogen,
both hydrazone nitrogen and both carbonyl oxygen atoms. The C–O bond lengths in 1 and 2
(Tables S1 and S2) are all in good agreement with their assignment as carbonyls (1.225(5)–1.265(6) Å)
rather than alkoxides [27]. The structural differences between 1 and 2 were deeply investigated
since the coordination environment around the DyIII ion has a dramatic influence on the magnetic
properties of the resulting complexes [28]. Systematic analysis of the coordination geometries around
the DyIII centers using SHAPE 2.1 [29] reveals that the nine-coordinated DyIII centers of complex 1
adopt geometries that are best described as muffin (minimum CShM values of 2.565), whereas for
complex 2, the ten- and eight-coordinated DyIII centers adopt bicapped square antiprism and triangular
dodecahedron coordination geometries, respectively (minimum CShM values of 3.125 and 3.548 were
obtained) (Table S3).

In complex 1, all the hydrogen atoms from the coordinated methanol molecules are involved in
intermolecular hydrogen bonding (Table S4) with the phenoxy oxygen atoms and these interactions
support the formation of a supramolecular two dimensional arrangement (Figures S2 and S3).
In complex 2, all the hydrogen atoms of coordinated methanol and water molecules are involved
in intermolecular hydrogen bonding (Table S5) with the phenoxy oxygen atoms and lattice
methanol molecules resulting in the formation of a supramolecular two dimensional arrangement
(Figures S4 and S5). In addition to the H-bonding interactions, strong CH· · ·π interactions are also
noticed with CH to centroid distances of 3.595(4) Å and 3.508(6) Å for 1 and 2, respectively.
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Figure 1. View of the molecular structures of: complex 1 (a); and complex 2 (b). Polyhedral view of: 
nine- (c); ten- (d); and eight- (e) coordinated geometries of DyIII centers found in complexes 1 and 2.  

Table 1. X-ray Crystallographic Data and Refinement Parameters for complexes 1 and 2. 

 1 2 

Formula C52H54Cl4Dy2N12O18 C74H76Dy2N15O19 
Mw (g·mol−1) 1601.87 1804.50 

Crystal size (mm) 0.45 × 0.18 × 0.16 0.43 × 0.15 × 0.10 
Crystal system Triclinic Triclinic 

Space group P-1 P-1 
T (K) 296(2) 151(2) 
a (Å) 10.868(3) 12.7428(8) 
b (Å) 10.872(3) 16.2939(9) 
c (Å) 12.955(3) 19.1396(11) 
α (°) 84.323(14) 89.6900(18) 
β (°) 85.574(13) 85.6640(18) 
γ (°) 76.415(13) 75.657(2) 

V (Å3) 1478.3(7) 3838.7(4) 
Z 1 2 

ρcalcd (g·cm−3) 1.799 1.561 
µ (MoKα) (mm−1) 2.771 2.012 

F(000) 794.0 1818.0 
Tmax, Tmin 0.652, 0.545 0.828, 0.723 

h, k, l range −14 ≤ h ≤ 13, −14 ≤ k ≤ 14, −16 ≤ l ≤ 16 −15 ≤ h ≤ 15, −20 ≤ k ≤ 20, −23 ≤ l ≤ 23 
Collected reflections 6645 15689 

Independent reflections 5667 9904 
Goodness-of-fit (GOF) on F2 1.038 1.456 

R1, wR2 (I > 2σI) 0.0444, 0.1163 0.0494, 0.0794 
R1, wR2 (all data) 0.0518, 0.1229 0.0887, 0.0842 
CCDC Number 1482439 1482440 

R1 = Σ||Fo| − |Fc||/Σ|Fo| and wR2 = |Σw(|Fo|2 − |Fc|2)|/Σ|w(Fo)2|1/2. 

The purity of the as-synthesized products was confirmed by the good agreements of the bulk 
phase powder X-ray diffraction patterns with the simulated one (Figure S6). Elemental composition 
of 1 and 2 were confirmed by the elemental analysis, which matches well with the calculated values. 
The IR spectra of complexes 1 and 2 show bands at ~3434 cm−1, 1640 cm−1, 1583 cm−1 and 1018 cm−1, 
which can be assigned to ν(phenolic OH), ν(C=N), pyridine ring stretching vibrations and ν(N–N), 
respectively. The bands at 1435 cm−1, 1304 cm−1 and 1030 cm−1 clearly identify the presence of 
coordinated nitrate in complex 1. In the IR spectrum of 2, the bands at ca. 3221 and 819 cm−1 are 
characteristic of coordinated water molecule in complex 2.  

Figure 1. View of the molecular structures of: complex 1 (a); and complex 2 (b). Polyhedral view of:
nine- (c); ten- (d); and eight- (e) coordinated geometries of DyIII centers found in complexes 1 and 2.

Table 1. X-ray Crystallographic Data and Refinement Parameters for complexes 1 and 2.

1 2

Formula C52H54Cl4Dy2N12O18 C74H76Dy2N15O19
Mw (g·mol−1) 1601.87 1804.50

Crystal size (mm) 0.45 × 0.18 × 0.16 0.43 × 0.15 × 0.10
Crystal system Triclinic Triclinic

Space group P-1 P-1
T (K) 296(2) 151(2)
a (Å) 10.868(3) 12.7428(8)
b (Å) 10.872(3) 16.2939(9)
c (Å) 12.955(3) 19.1396(11)
α (◦) 84.323(14) 89.6900(18)
β (◦) 85.574(13) 85.6640(18)
γ (◦) 76.415(13) 75.657(2)

V (Å3) 1478.3(7) 3838.7(4)
Z 1 2

ρcalcd (g·cm−3) 1.799 1.561
µ (MoKα) (mm−1) 2.771 2.012

F(000) 794.0 1818.0
Tmax, Tmin 0.652, 0.545 0.828, 0.723
h, k, l range −14≤ h≤ 13, −14≤ k ≤ 14, −16≤ l≤ 16 −15≤ h≤ 15, −20≤ k ≤ 20, −23≤ l≤ 23

Collected reflections 6645 15689
Independent reflections 5667 9904

Goodness-of-fit (GOF) on F2 1.038 1.456
R1, wR2 (I > 2σI) 0.0444, 0.1163 0.0494, 0.0794
R1, wR2 (all data) 0.0518, 0.1229 0.0887, 0.0842
CCDC Number 1482439 1482440

R1 = Σ||Fo| − |Fc||/Σ|Fo| and wR2 = |Σw(|Fo|2 − |Fc|2)|/Σ|w(Fo)2|1/2.

The purity of the as-synthesized products was confirmed by the good agreements of the bulk
phase powder X-ray diffraction patterns with the simulated one (Figure S6). Elemental composition
of 1 and 2 were confirmed by the elemental analysis, which matches well with the calculated values.
The IR spectra of complexes 1 and 2 show bands at ~3434 cm−1, 1640 cm−1, 1583 cm−1 and 1018 cm−1,
which can be assigned to ν(phenolic OH), ν(C=N), pyridine ring stretching vibrations and ν(N–N),
respectively. The bands at 1435 cm−1, 1304 cm−1 and 1030 cm−1 clearly identify the presence of
coordinated nitrate in complex 1. In the IR spectrum of 2, the bands at ca. 3221 and 819 cm−1 are
characteristic of coordinated water molecule in complex 2.

The variable-temperature DC magnetic susceptibility measurements were performed under
an applied field of 1000 Oe and in the range of 1.8–300 K. The room temperature experimentally
obtained χMT values for complexes 1 and 2 are 28.4 and 28.3 cm3·K·mol−1, respectively (Figure 2 and
Figure S7), which are consistent with the theoretical value of 28.34 cm3·K·mol−1 for two isolated DyIII

ions [15]. On lowering the temperature from 300 K, the χMT value decreases gradually due to the
single ion crystal-field effects. This result is further prominent below 70 K, where it reaches value of
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10.9 and 10.7 cm3·K·mol−1 for 1 and 2, respectively, at 2 K. The observation reveals the continuous
depopulation of the excited Stark sublevels of the DyIII ions [30].
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value for DyIII-based SMMs [8]. As shown in Figure 2 and Figure S7, all isotherm magnetization 
curves do not merge, which confirms the presence of large magnetic anisotropy in the complexes 
[10].  

To probe spin dynamics in 1 and 2, ac magnetic susceptibility measurements were carried out at 
3.5 Oe ac field and varying the temperature from 1.8–10 K under zero dc field. Complexes 1 and 2 
show temperature (Figure 3 and Figure S8) and frequency dependency (Figures S9 and S10) of out of 
phase (χM″) ac susceptibilities. The phenomenon indicates the single-molecule magnet (SMM) like 
behavior in the complexes [6]. Moreover, the Cole–Cole plots [31,32] (Figure 3 and Figure S11) were 
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0.08–0.32 (2), signifying the narrow distribution of the relaxation time. Effective energy barrier (Ueff) 
and relaxation time (τ0) were calculated from the Arrhenius Equation (1): [33–35] 
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where k = Boltzmann constant, and 1/τ0 = pre-exponential factor. The linear fit to high temperature 
data gave values of Ueff = 36.4 K and τ0 = 3.3 × 10−6 s for 1 (Figure 3). However, the out-of-phase signals 
(χM″) for complex 2 do not show the peak maxima in the mentioned temperature range. Therefore, 
Debye model and Equation (2) were used to calculate energy barrier and relaxation time [36]  
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From the best fitting, the value of energy barrier and relaxation time were calculated as Ueff = 9.7 
K and τ0 = 1.4 × 10−6 s, respectively (Figure S11), and found to be in good agreement with the expected 
value of 10−6–10−11 for a SMM [37–39].  

Figure 2. (a) χMT vs. T plot measured at 0.1 T for complex 1; and M/NµB vs. H (b); and M/NµB vs.
H/T plots (c) in the field range of 0–7 T and temperature range of 2–10 K for complex 1.

The reduced magnetization data (M/NµB vs. H) of the complexes were collected at 2, 6 and 10 K.
For 1 and 2, with increase in field M/NµB values increase sharply and attained the values of 11.5 and
11.2 NµB respectively (Figure 2 and Figure S7), which are in good agreement with the theoretical value
for DyIII-based SMMs [8]. As shown in Figure 2 and Figure S7, all isotherm magnetization curves do
not merge, which confirms the presence of large magnetic anisotropy in the complexes [10].

To probe spin dynamics in 1 and 2, ac magnetic susceptibility measurements were carried out
at 3.5 Oe ac field and varying the temperature from 1.8–10 K under zero dc field. Complexes 1 and 2
show temperature (Figure 3 and Figure S8) and frequency dependency (Figures S9 and S10) of out of
phase (χM”) ac susceptibilities. The phenomenon indicates the single-molecule magnet (SMM) like
behavior in the complexes [6]. Moreover, the Cole–Cole plots [31,32] (Figure 3 and Figure S11) were
generated from the frequency-dependent ac susceptibility data. The fit of the χM” vs. χM

′ data using
the generalized Debye model [31,32] produced the values of α within the ranges 0.05–0.27 (1) and
0.08–0.32 (2), signifying the narrow distribution of the relaxation time. Effective energy barrier (Ueff)
and relaxation time (τ0) were calculated from the Arrhenius Equation (1) [33–35]:

ln(1/τ) = ln(1/τ0)−Ueff/kT (1)

where k = Boltzmann constant, and 1/τ0 = pre-exponential factor. The linear fit to high temperature
data gave values of Ueff = 36.4 K and τ0 = 3.3 × 10−6 s for 1 (Figure 3). However, the out-of-phase
signals (χM”) for complex 2 do not show the peak maxima in the mentioned temperature range.
Therefore, Debye model and Equation (2) were used to calculate energy barrier and relaxation time [36]

ln(χ′′/χ′) = ln(ωτ0) + Ueff/kT (2)

From the best fitting, the value of energy barrier and relaxation time were calculated as Ueff = 9.7 K
and τ0 = 1.4 × 10−6 s, respectively (Figure S11), and found to be in good agreement with the expected
value of 10−6–10−11 for a SMM [37–39].

In order to explore the consequence of inter- and intramolecular exchange interactions on the
magnetic behavior, the influence of magnetic dilution on relaxation of the magnetization was studied.
To gain more in sight we synthesized the diamagnetic dinuclear YIII analog (3) (see ESI for experimental
and X-ray details, Figure S12 and Table S6) and then prepared the doped sample in which the
DyIII complex (1) was magnetically diluted with the YIII complex in a 5:95 ratio. AC susceptibility
measurements were performed on a polycrystalline sample of the diluted complex. No major difference
was found in the energy barrier of the diluted sample compared to the undiluted one (Figure S13).
Therefore, it can be concluded that the intermolecular forces and dipolar interactions are insignificant
in this case.
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Ligand was prepared by a simple hydrazine condensation reaction of one equivalent 2,6-
diacetylpyridine with two equivalents of 2-salicyloylhydrazide in methanol according to an earlier 
reported procedure [49].  

Synthesis of [Dy2(L)2(MeOH)2(NO3)2] (MeOH) (CH2Cl2) (1). L (43 mg, 0.1 mmol) was dissolved 
in CH2Cl2 (5 mL) and the solution was warmed to 45 °C. LiOH·H2O (4.0 mg, 0.1 mmol) was added to 
the reaction mixture to deprotonate the ligand. Then, Dy(NO3)3·5H2O (43 mg, 0.1 mmol) dissolved in 
MeOH (5 mL) and added to the above ligand solution. The solution formed an intense yellow mixture 
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From comparative point of view, even though 1 and 2 contain two DyIII centers, their relaxation
dynamic behaviors are considerably different. The difference was attributed to the slight changes in
the coordination environments around the DyIII centers [19,27,40–42]. This is due to the nature
and symmetry of crystal field which controls anisotropy and effects on overall effective energy
barrier [43–47]. As can be seen, in complex 1, two DyIII centers are in muffin (Cs) geometry, while in 2,
one DyIII center is in bicapped square antiprism (D4d) and other one is in triangular dodecahedron
(D2d) geometry. Hence, the observed difference in magnetic behaviors of 1 and 2 was mostly because
of the different coordination environments around the DyIII centers, which affects the nature of easy
axes [43].

3. Materials and Methods

All chemicals were of reagent grade and used without further purification. The elemental analyses
were carried out on an Elementar Microvario (Mumbai, India) Cube Elemental Analyzer. FT-IR spectra
(4000–400 cm−1) were recorded on KBr pellets using a Perkin-Elmer (Mumbai, India) Spectrum BX
spectrometer. Powder X-ray diffraction (PXRD) data were collected on a PANalytical EMPYREAN
(Mumbai, India) instrument using Cu-Kα radiation. Magnetic measurements were performed using
a SQUID VSM magnetometer (Quantum Design, Mumbai, India). The measured values were corrected
for the experimentally measured contribution of the sample holder, while the derived susceptibilities
were corrected for the diamagnetism of the samples, estimated from Pascal’s tables [48].

Ligand was prepared by a simple hydrazine condensation reaction of one equivalent
2,6-diacetylpyridine with two equivalents of 2-salicyloylhydrazide in methanol according to an earlier
reported procedure [49].

Synthesis of [Dy2(L)2(MeOH)2(NO3)2] (MeOH) (CH2Cl2) (1). L (43 mg, 0.1 mmol) was dissolved
in CH2Cl2 (5 mL) and the solution was warmed to 45 ◦C. LiOH·H2O (4.0 mg, 0.1 mmol) was
added to the reaction mixture to deprotonate the ligand. Then, Dy(NO3)3·5H2O (43 mg, 0.1 mmol)
dissolved in MeOH (5 mL) and added to the above ligand solution. The solution formed an intense
yellow mixture and it was stirred for another 2 h. The solution was filtered off and the filtrate was
left in open atmosphere for slow evaporation which gives large X-ray quality yellow crystals of
[Dy2(L)2(MeOH)2(NO3)2] (MeOH) (CH2Cl2) (1) after 4 days. The crystals were separated and washed
with cold water and Et2O; yield (57%). Anal. Calcd for C52H54Cl4Dy2N12O18: C, 38.99; H, 3.40;
N, 10.49%. Found: C, 39.09; H, 3.47; N, 10.41%. Selected IR data (KBr pellet, 4000–400 cm−1) ν/cm−1:
3434, 1640, 1580, 1435, 1304, 1030, 1018.

Synthesis of [Dy2(L)3(H2O) (MeOH)] (MeOH)4 (H2O) (2). L (65 mg, 0.15 mmol) was dissolved in
CH2Cl2 (5 mL) and the solution was warmed to 45 ◦C. LiOH·H2O (4.0 mg, 0.1 mmol) was added to the
reaction mixture to deprotonate the ligand. Then, DyCl3·6H2O (38 mg, 0.1 mmol) dissolved in MeOH
(5 mL) and added to the above ligand solution. The solution formed an intense yellow mixture and it
was stirred for another 3 h. The solution was filtered off and the filtrate was left in open atmosphere for
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slow evaporation which gives large X-ray quality yellow crystals of [Dy2(L)3(H2O) (MeOH)] (MeOH)4

(H2O) (2) after 5 days. The crystals were separated and washed with cold water and Et2O; yield (65%).
Anal. Calcd for C74H80Dy2N15O19: C, 49.15; H, 4.46; N, 11.62%. Found: C, 49.24; H, 4.34; N, 11.69%.
Selected IR data (KBr pellet, 4000–400 cm−1) ν/cm−1: 3430, 3221, 1642, 1583, 1020, 819.

Intensity data were collected on a Brüker (Mumbai, India) APEX-II CCD diffractometer using
a graphite monochromated Mo-Kα radiation (α = 0.71073 Å). Data collection was performed using
φ and ω scan. Direct methods were used for the solution of crystals using SHELXTL followed by
full matric least square refinements against F2 [50]. The positions of the remaining non-hydrogen
atoms were found by using difference Fourier synthesis and least square refinements. The exact
crystal system, cell dimensions and orientation matrix were determined by the reported procedure
followed by multi-scan absorption correction and Lorentx polarization. All H-atoms were calculated
geometrically and refined using riding model. The non-hydrogen atoms were refined with anisotropic
displacement parameters. SHELXL 97 [51], PLATON 99 [52] and WinGXsystemVer-1.64 [53] were used
for the refinement and calculations. The details of collection of data and their refinement parameters
are included in Table 1.

4. Conclusions

Two important dinuclear dysprosium based complexes have been synthesized and characterized.
Both the complexes exhibit single-molecule magnet (SMM) like behavior. It has been observed
that a minor difference in the coordination surroundings around the DyIII center affected the
relaxation dynamics of the complexes. Therefore, the overall studies propose the importance of
the coordination environment around DyIII centers in describing and distinguishing their magnetic
properties. Further studies along similar lines are in progress.

Supplementary Materials: The following are available online at www.mdpi.com/2312-7481/2/3/35/s1.
Coordination polyhedral, SHAPE analysis table, magnetic plots, PXRD, bond length and bond distances tables
and hydrogen bonding tables.
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