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Abstract: The growth of the gardening kit market could result in the increased wasting of nursery
pots, which are usually made of plastic. Replacing these pots with biodegradable pots made from
green waste could have benefits for climate mitigation, the circular economy, and the greenness
of gardening. To address this, we introduce a prototype recycled waste leaf litter (RWLL) nursery
pot. Via an incubation experiment over 90 d, we examined their biodegradability and effects on
microbial enzyme activity and inorganic nitrogen concentration, comparing them with commercially
available biodegradable pots, namely peat–paper mixture pots (also known as Jiffypots®) and coco-
coir pots. The effects of pot thickness were tested. Based on mass loss during incubation and on
soil CO2 efflux, the RWLL pots exhibited excellent biodegradability, regardless of their thickness,
with decomposition rates and soil CO2 efflux 1.5–6 times greater than other biodegradable pots.
Biodegradability, extracellular enzyme activity, and soil inorganic nitrogen content were not affected
by RWLL pot thickness or by the presence or absence of a plant in the soil. Unlike in natural
ecosystems, leaf litter is treated as waste in urban green spaces, and its decomposition into soil
organic matter is prevented. Creating plant pots from leaf litter enhances soil quality, reduces
atmospheric carbon emissions, and satisfies the desire of gardeners for greenness.

Keywords: biodegradable pot; climate mitigation; coco coir; extracellular enzyme acidity; Jiffypot®;
green waste management

1. Introduction

Gardeners who try to grow plants indoors or in the garden often fail at this because of
improper plant selection or a lack of experience in plant care [1]. Gardening kits, which
include seedlings, pots, soil, and gravel, are an attractive solution for beginner gardeners.
Gardening kits also function as symbols of greenness, ecological soundness, and sustainabil-
ity. Gardening kits are in demand for extracurricular activities in childhood education, as
well as in horticulture therapy, public programs, and by a variety of individuals [2,3]. Their
importance as a tool against social distancing increased during the COVID-19 pandemic [4].
For example, the pandemic introduced 18.3 million new gardeners in the USA, according to
the 2021 National Gardening Survey [5], and increased the gardening retail sales revenue
from approximately 5% for 2014–2019 to 8.79% in 2020, according to the Advance Monthly
Retail Trade Survey of the United States Census Bureau [6]. In South Korea, the per capita
flower consumption increased by 6.1% in 2021, which contrasts with the steady annual
decline of 3.5% observed for 2005–2020 [7].
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Nonetheless, gardening kits that are sold online incur the unexpected problem of
creating packaging waste [8]. In particular, nursery plant pots, which are usually made
from plastic, are disposed of immediately after the seedling has been transplanted into
a plant pot, contributing to waste and increasing the carbon footprint. To address this
situation, the amount of waste associated with gardening kits should be minimized [9].

Biodegradable pots are a sustainable and environmentally friendly alternative to
plastic pots because they reduce plastic waste and environmental pollution [10]. Despite
the energy requirements and costs involved in their manufacturing, they can be considered
eco-friendly both because they utilize waste resources and because they are compostable.
Furthermore, the seedling does not need to be removed from the pot for transplanting.

Biodegradable pots have been created from various types of organic waste (Table 1),
including tomato and hemp fiber [11], textile and paper waste [12], cattle manure and wood
waste [13], cassava starch containing various agro-industrial residues [14], banana peels
combined with biomaterials [15], paddy straw and starch [16], and agro-industrial wastes
combined with byproducts [17]. Despite the considerable public interest in biodegradable
pots, few studies have examined their biodegradability.

Table 1. Prior studies examining biodegradable nursery pots.

Source Pot Materials Measured Variables Key Findings

Schettini et al. [11] Recycled residues of
tomato and hemp fibers

- Physical properties: density, porosity,
water uptake, water absorption

- Scanning electron microscopy (SEM)
- Mechanical properties: flexural and

tensile strength
- CO2 production
- Plant seedling height and

root development

The pots degraded
completely within 16 d of
transplanting, allowing
the passage of the roots

through the
container walls.

Juanga-Labayen and
Yuan [12]

Textile waste (cotton and
polycotton) blended with

paper substrates
(newspaper and

corrugated cardboard)

- Mechanical properties: tensile and
bending strength

- Degradability of pots: anaerobic
assay–specific CH4 yield, biogas yield,
% COD reduction, % volatile solids
reduction; % weight loss of soil
buried pots

- Seed germination

The pots degraded faster
than Jiffypots® during a

120 d soil burial test.

Manafi-Dastjerdi
et al. [13]

Cattle manure and
sawdust with natural
binders (cornstarch,

sheep’s wool)

- Physical properties: water absorption,
thickness swelling

- Mechanical properties: rupture load,
internal bonding strength

- Decomposition periods
- Plant root and stem length

Pots containing sheep’s
wool decomposed in 33 d,

while the control pots
decomposed in 51 d.

Ferreira et al. [14]

Cassava starch containing
agro-industrial residues

(sugarcane bagasse,
cornhusk, malt bagasse,

and orange bagasse)

- Physical properties: thickness, density,
water absorption capacity

- Fourier-transform infrared
spectroscopy (FTIR), SEM

- Mechanical properties: tensile strength,
elongation

- Mass loss of buried tray

After 60 d, only those
trays containing 20–30%

orange bagasse were
completely degraded.
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Table 1. Cont.

Source Pot Materials Measured Variables Key Findings

Mohd Rafee et al. [15]
Biomaterials (tapioca

starch, water, vinegar, and
glycerol) and banana peels

- Decomposition rate: weight loss
percentage of pots

Weight loss during
decomposition varied

significantly between the
different types of

biodegradable pots, and
was affected by the ratio of

banana peels.

Pratibha et al. [16]

Paddy straw as the filler
(untreated, alkali-treated,

or alkali-treated and
autoclaved) with six

different biocomposites:
corn starch (native or

cross-linked using boric
acid) as the matrix, and
glycerol as a plasticizer

- Physical properties: % water uptake, %
disintegration in aqueous medium,
porosity %, and density

- Mechanical properties: tensile strengths
- SEM
- Macro- and micro-nutrients of different

biocomposites
- Antimicrobial activity
- Biodegradation: CO2 emission, %

weight loss, cultivable method for soil
bacteria and fungi, and FDA
hydrolysis assay

- Plant growth, visible pot degradation,
and root penetration

Cucumber plants along
with their biodegradable
pots were transplanted

into fields. Both types of
pots disintegrated within

10–20 d after
transplantation, allowing
the passage of the roots

through the
container walls.

Fuentes et al. [17]

Agro-industrial wastes
and byproducts: gelatin,

wheat–waste flour,
corn-waste flour, cellulose

paper, sunflower seed
husks, rice husks, and

yerba mate waste

- C/N ratio of biocomposites
- Physical properties: density, solubility,

water absorption
- Mechanical properties: tensile and

flexural strength
- Mass loss of buried pots
- Plant growth rate

The gelatin-based
biocomposite pot showed
the highest decomposition
rate (62%) while the others
showed rates <28% during

a 24 d experiment.

In urban environments, green spaces are beneficial for maintaining the climate (e.g., lo-
cal temperature, CO2, and hydrology), supporting biodiversity, providing recreational
opportunities, enhancing landscape aesthetics, and thus improving quality of life [18–20].
In these environments, natural processes (including autumn leaf fall and tree mortality)
and maintenance practices (such as pruning, weeding, and mowing) generate significant
amounts of green waste, comprising woody debris, fallen leaf litter, pruned branches, and
weeds [21–23]. Attempts have been made to recycle green waste via composting [24], as
a source of bioenergy [25], as biochar [26], and for material utilization [27] in terms of
the circular economy [28,29]. Biodegradable pots have been constructed from waste plant
materials such as coffee and coco coir. Recycling leaf litter to create biodegradable pots,
therefore, presents an attractive way of utilizing urban green waste.

To address this need, we developed a recycled waste leaf litter (RWLL) nursery pot for
indoor gardening using gardening kits (Figure 1). We aimed to investigate the biodegrad-
ability of RWLL pots in comparison with other commercially available biodegradable pots
and to test their effects on soil microbial activity and nutrient levels.
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Figure 1. Development of a recycled waste leaf litter pot for environmentally friendly gardening 
kits, minimizing the use of disposable products. 

2. Materials and Methods 
2.1. Experimental Design 

We designed the incubation experiment to address three research objectives (Figure 
2). First, we compared the performance of RWLL pots with that of commercially available 
biodegradable pots (see research question [RQ] 1 in Figure 2). To investigate this, peat–
paper and coco-coir pots were tested together with an RWLL pot. Second, we tested 
whether RWLL pot thickness affected biodegradability, soil microbial activity, and nutri-
ent content (see RQ2 in Figure 2). To examine this, two pot thicknesses were compared. 
Third, we examined whether plant roots affected pot decomposition, soil microbial activ-
ity, and nutrient content (see RQ3 in Figure 2). To address this, we incubated the pots with 
soil only or with soil and plants.  

Five replicates were used for each set of incubation experiments. All of the pot types 
were subjected to soil-only or soil-with-plant incubation. Three blanks (soil but no biode-
gradable pot) were subjected to the same incubation treatments (Figure 2).  

 

Figure 1. Development of a recycled waste leaf litter pot for environmentally friendly gardening kits,
minimizing the use of disposable products.

2. Materials and Methods
2.1. Experimental Design

We designed the incubation experiment to address three research objectives (Figure 2).
First, we compared the performance of RWLL pots with that of commercially available
biodegradable pots (see research question [RQ] 1 in Figure 2). To investigate this, peat–
paper and coco-coir pots were tested together with an RWLL pot. Second, we tested
whether RWLL pot thickness affected biodegradability, soil microbial activity, and nutrient
content (see RQ2 in Figure 2). To examine this, two pot thicknesses were compared. Third,
we examined whether plant roots affected pot decomposition, soil microbial activity, and
nutrient content (see RQ3 in Figure 2). To address this, we incubated the pots with soil only
or with soil and plants.
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Figure 2. Design of and measures taken during the incubation experiment for testing the biodegrad-
ability of recycled waste leaf litter (RWLL) pots. RQ1–3 refers to the three research questions described
in Section 2.1. The blank pots comprise controls, that is, soil in clay pots. In all other cases, soil was
placed inside the biodegradable nursery pot located within a plant pot made of clay.
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Five replicates were used for each set of incubation experiments. All of the pot
types were subjected to soil-only or soil-with-plant incubation. Three blanks (soil but no
biodegradable pot) were subjected to the same incubation treatments (Figure 2).

2.2. Soil and Plant Preparation

The soil used in our experiment was commercially available JiffySubstrates® (Jiffy
Products International BV, Zwijndrecht, The Netherlands) in a peat-based growth medium.
The pH, total carbon, and nitrogen content were 5.9, 43.77%, and 0.93%, respectively. The
dwarf umbrella tree (Heptapleurum arboricola Hayata), an evergreen shrub that is commonly
grown as both a houseplant and a garden plant, was used in this study.

2.3. Greenhouse Incubation

Fallen leaf litter, mostly from broad-leaved trees, was collected from local greenspaces
in Wonju City, South Korea. To produce the RWLL pots, the leaves were washed, ster-
ilized, crushed, mixed with starch, molded, and oven-dried for several days before the
incubation experiment. Commercially available Jiffypots® (Jiffy Products International BV,
Zwijndrecht, The Netherlands) made from peat–paper mixture [12,30] were obtained, and
coco-coir pots were prepared.

The biodegradable plant-material pots were incubated for 92 d (22 July to 21 October
2022) in a local greenhouse. Each biodegradable pot was placed inside a clay pot and was
filled with 330 g of soil for soil-only incubation or 280 g of soil for with-plant incubation.
For the with-plant incubation, a seedling of a dwarf umbrella tree (ca. 20 cm in height)
was planted in each pot. The daytime temperature and humidity in the greenhouse were
maintained at 25–30 ◦C and 30–80%, respectively. Sufficient water was provided via regular
watering, as per standard horticultural practices.

2.4. Field and Laboratory Measurements

Soil CO2 efflux (i.e., soil respiration) was determined at 46 and 92 d after the start of
incubation as an indicator of microbial activity during pot decomposition. A closed chamber
(1254 cm2) was placed on the soil surface of each clay pot, and a portable infrared gas
analyzer (GMP252, Vaisala, Sweden) was used to detect an increase in CO2 concentration
inside the chamber for at least 5 min. The soil CO2 efflux was measured only for the soil-only
pots because of the difficulty in separating the CO2 flux of the microbial pot’s decomposition
from that of plant metabolism, including photosynthesis and autotrophic respiration.

Pot decomposition rates were determined based on mass loss during incubation.
Before incubation, the biodegradable pots were oven-dried at 65 ◦C for 48 h, and their
constant weight was recorded. At the end of the incubation period (after 92 d), the incubated
pots were excavated, the soil was carefully removed, the pots were oven-dried, and the
weight was measured again. The change in the mass of the pot during incubation was
assumed to indicate decomposition.

At the end of the incubation period, two sets of soil samples were collected from
each pot. The sample for microbial analyses was stored in a sterilized polyethylene sam-
ple bag and was frozen at −20 ◦C without air-drying. The other sample was air-dried
and pretreated.

Fluorometric assays using methylumbelliferone (MUB)-linked substrates were per-
formed to determine the microbial community’s metabolism. We determined the activity
of five extracellular enzymes (cellobiohydrolase [CBH], β-1,4-glucosidase, β-1,4-xylosidase,
β-1,4-N-acetylglucosaminidase, and acid phosphatase [AP]) that are involved in C, N, and
P cycling in the soil [31,32]. Briefly, the soil slurry made using sodium acetate buffer was
transferred to a 96-well black microplate. Plates containing all five enzymes were incubated
at room temperature for 2 h. Fluorescence was measured using a Synergy HT Multi-Mode
Microplate Reader (BioTek Instruments Inc., Winooski, VT, USA); excitation energy was
set at 360 nm, and the emission energy was measured at 460 nm. Enzyme activity was
expressed as nmol 4-MUB g−1 h−1.
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Colorimetric assays were performed to determine the inorganic N content. Five
grams of soil was extracted using 2 M of potassium chloride (KCl). The KCl extracts were
transferred to a 96-well clear microplate, and the ammonium (NH4

+) and nitrate (NO3
−)

concentrations were determined colorimetrically using the salicylate–nitroprusside and
vanadium(III) reduction methods, respectively [33–35]. Absorbance was measured using a
Synergy HT Multi-Mode Microplate Reader, with absorbance set at 650 nm for NH4

+ and
540 nm for NO3

−.

2.5. Statistical Analyses

Two-way ANOVA was performed to test the effects of using different types of biodegra-
dable pots and of soil-only vs. with-plant incubation. The interaction terms were not
significant in the preliminary analysis and were, therefore, excluded from ANOVA testing.
For significant effects, Tukey’s honest significant difference post hoc testing was performed.
Data analysis was performed using R 4.2.2 [36].

3. Results
3.1. Pot Biodegradability

Decomposition rates differed significantly among the pots (p < 0.001) but not between
the with-plant and soil-only treatments (p = 0.21) (Figure 3). RWLL pot thickness did not
affect the decomposition rate. Under soil-only incubation, both the thick and thin RWLL
pots decomposed by ca. 70%, which is much more than the other pot types (Jiffy, 23%;
coco-coir, 12%). For the thick RWLL pots, the decomposition rate was 16% lower in the
with-plant group than in the soil-only group (Figure 3).
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Figure 3. Decomposition rates of biodegradable pots incubated in a greenhouse for 92 d. Error bars
indicate the standard error of the mean (N = 5). Differences in decomposition rate were significant
among the biodegradable pots (p < 0.001), not between the soil-only and with-plant treatments
(p = 0.21; two-way ANOVA). Lowercase letters above the bars identify groups of pot types that
differed significantly (Tukey’s HSD; p < 0.05).
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Based on a visual inspection of the extracted pots at the end of the 92 d incubation
period, the Jiffy and coco-coir pots retained their original shape. By contrast, the RWLL pots
had decomposed considerably and were physicochemically mixed with the soil, making it
difficult to retain their original shape (Figure 3).

Soil CO2 efflux due to microbial metabolism differed significantly among the biodegrad-
able pots at day 46 of incubation (p < 0.001) but not at day 92 (p = 0.14) (Figure 4). At day 46,
the CO2 efflux (in mg C m−2 h−1) was 4.5 for the blanks, 9.1 for Jiffy pots, 25.8 for coco-coir
pots, 56.3 for thick RWLL pots, and 37.1 for thin RWLL pots. The thick and thin RWLL
pots emitted 1.5–6.0 times more CO2 than the Jiffy and coco-coir pots. However, the overall
CO2 efflux and the differences among the biodegradable pots in CO2 efflux were limited at
day 90 of incubation. At day 92, CO2 efflux was 3.3 for the blanks, 3.3 for Jiffy pots, 8.2 for
coco-coir pots, 13.3 for thick RWLL pots, and −2.8 for thin RWLL pots (Figure 4).
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3.2. Extracellular Enzyme Activity and Soil Chemical Properties

Among the five soil extracellular enzymes tested, CBH and AP exhibited significantly
different activity among the pot types (p < 0.01) (Table 2) for the soil-only and with-plant
incubation treatments, respectively. Compared to the blanks and thick RWLL pots, the
activity of CBH was significantly higher in the coco-coir pots (p < 0.01). In the with-plant
treatment, AP activity was significantly higher in the Jiffy pots than in the coco-coir pots
and thick and thin RWLL pots (p < 0.01).

The inorganic N content differed significantly among the biodegradable pots (p < 0.01)
(Figure 5). The NO3

− content differed significantly between the pot types for both the soil-
only and with-plant treatments, whereas the NH4

+ content differed significantly among
the pot types only for the with-plant treatment. For the blank, the soil inorganic N content
was significantly higher under the soil-only treatment than under the with-plant treatment
(p < 0.05), whereas for both the thick and thin RWLL pots, the soil inorganic N content
was significantly higher under the with-plant treatment than under the soil-only treatment.
For the blank and Jiffy pots, soil NO3

− content was significantly higher in the soil-only
treatment than in the plant-only treatment (p < 0.05). The soil NH4

+ content for both the
thick and thin RWLL pots was significantly higher in the with-plant treatment than in the
soil-only treatment. Soil pH, total carbon, and nitrogen content did not differ significantly
among the biodegradable pots.
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Table 2. Soil extracellular enzyme activity in the biodegradable pots incubated for 92 d in a
greenhouse.

Enzyme Activity (nmol 4-MUB g−1 h−1)

CBH BG BX NAG AP

Blank
Soil-only 9.23 ± 1.83 b 101.03 ± 13.30 4.45 ± 0.50 99.90 ± 9.98 217.61 ± 23.94

With-plant 20.89 ± 4.87 94.73 ± 9.99 4.58 ± 0.63 71.31 ± 5.59 169.03 ± 21.37 ab

Jiffy Soil-only 12.73 ± 1.79 ab 98.28 ± 5.76 5.27 ± 0.85 112.79 ± 8.28 235.88 ± 3.10
With-plant 19.82 ± 2.59 113.86 ± 7.27 5.29 ± 0.74 97.45 ± 12.84 237.03 ± 20.58 a

Coco coir
Soil-only 18.84 ± 1.28 a 130.96 ± 8.89 4.72 ± 0.34 116.57 ± 9.37 231.13 ± 13.68

With-plant 18.27 ± 3.78 111.87 ± 6.89 4.58 ± 0.31 83.85 ± 7.44 162.85 ± 7.09 b

RWLL-Thick
Soil-only 11.88 ± 1.89 b 116.19 ± 14.41 4.24 ± 0.70 128.31 ± 17.90 210.06 ± 17.94

With-plant 17.87 ± 2.23 126.24 ± 18.68 4.71 ± 0.97 153.24 ± 42.17 160.98 ± 26.00 b

RWLL-Thin
Soil-only 15.82 ± 1.20 ab 114.56 ± 11.40 4.51 ± 0.43 113.60 ± 10.06 177.63 ± 12.52

With-plant 12.78 ± 1.74 107.57 ± 16.63 3.41 ± 0.26 66.50 ± 7.27 109.79 ± 7.50 b

Values are expressed as mean ± standard error (N = 10). The lowercase letters identify groups of pots that differed
significantly (Tukey’s HSD; p < 0.05). CBH: cellobiohydrolase; BG: β-1,4-glucosidase; BX: β-1,4-xylosidase; NAG:
β-1,4-N-acetylglucosaminidase; AP: acid phosphatase.
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4. Discussion
4.1. Biodegradabilty, Microbial Activity, and Nitrogen Availability under Experimental Treatments

Our findings reveal that RWLL pots exhibited substantially better biodegradability
than commercially available biodegradable pots. Regardless of thickness, the RWLL pots
decomposed by >50% in soil with or without a plant present (Figure 3). They exhibited
higher CO2 efflux, supporting their excellent biodegradability (Figure 4). The activity of
CBH for blanks, the Jiffy pots, and coco-coir pots showed a similar tendency for the soil
CO2 efflux at day 46, but not in the RWLL pots, and this suggests that C-cycling enzymes
other than those analyzed in this study also mediate the decomposition process that leads
to CO2 efflux. Meanwhile, AP activity differed significantly among the different pots that
had with-plant treatment. A significant decrease in soil NO3

− content in biodegradable
pots was observed compared to the blanks (Figure 5), and this implies that nitrate may be
absorbed by biodegradable pots. In particular, nitrate content was the lowest for both thick
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and thin RWLL pots (Figure 5a), and thus, these pots may release a higher level of nitrogen
during their degradation in soils while functioning as nursery pots.

RWLL pot thickness did not significantly affect biodegradability, soil microbial activity,
or soil inorganic nitrogen content (Figures 3 and 5; Table 2). Only soil CO2 efflux varied
with thickness, probably because the thicker pots contained more decomposable material
(weighing 1.5× as much as the thin pots) rather than because of a qualitative difference
in biodegradability.

The presence of a plant in the soil significantly affected the decomposition rate only for
thick RWLL pots. In other words, for most of the pot types tested, plant root physiological
activity did not promote decomposition. This implies that including a plant to simulate the
actual growing condition is not mandatory for biodegradability testing. The plants reduced
the soil nutrient content by absorbing the nutrients.

4.2. Application of RWLL Pots to Promote Climate-Smart Horticulture

Soil organic matter content, which reflects the ecological function and health of a given
soil [37], depends largely on plant debris, including leaf litter [38]. In natural ecosystems,
the presence of leaf litter and its transformation into soil organic matter fundamentally
regulates the physicochemical and biological characteristics of soils and, consequently,
ecosystem productivity [39,40]. In urban environments such as gardens, parks, and streets,
the natural conversion of leaf litter to soil organic matter is obstructed [41], as leaf litter is
usually collected and treated as waste material. Such clearing results in soil degradation by
reducing organic matter input [42] and increases carbon emissions via waste disposal.

An approach that avoids removing waste leaf litter from natural or artificial environ-
ments could be beneficial for soils, climate, plants, and people. RWLL pots could (1) reduce
carbon emissions by reducing waste disposal, (2) replace plastic pots, which have a higher
carbon footprint [43,44] for nursery pot production, and (3) increase the recycling of waste
materials, thereby supporting climate–smart horticulture [45]. Furthermore, RWLL pots
can be manufactured, transported, and consumed locally, whereas other commercially
available biodegradable pots (such as Jiffy and coco-coir pots) used in South Korea require
cross-country shipping.

4.3. Differences of RWLL Pots Compared to Others

Biodegradable or compostable pots for use in horticulture, floriculture, and agriculture
have been developed worldwide as an alternative to non-renewable petroleum-based
plastic pots over the last few decades. The biodegradability of pots created from various
organic wastes has been experimentally tested in previous studies (Table 1), which have
incorporated materials such as wastes from agriculture, food, paper, textiles, and livestock
industries. In contrast, our study utilized waste leaf litter: a green waste obtained from
urban green spaces. Because the presence of urban green waste affects citizens physically
and psychologically, the introduction of biodegradable RWLL pots may attract considerable
public attention due to their green waste recycling potential.

Although the decomposition of RWLL pots within 92 d was confirmed, some limita-
tions remain. Long-term decomposition patterns of biodegradable pots—which might be
different from short-term patterns—were not assessed. Soil CO2 efflux was only determined
twice at approximately 50-d intervals, which excluded the evaluation of temporal patterns
of early decomposition. Furthermore, the physical properties of RWLL pots (such as me-
chanical stability) were not determined. Further incubation experiments for biodegradable
pots should address these limitations.
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5. Conclusions

The production of plant nursery pots using waste leaf litter offers an environmen-
tally friendly and economical alternative to commonly used plastic pots. RWLL nursery
pots exhibited substantially better biodegradability than the other commercially available
biodegradable pots that we tested. The RWLL pots exhibited high decomposition rates and
CO2 efflux. The inorganic N content, reflecting the nutrients available for plants and soil
microbes, was significantly lower when a plant was present in the soil, mainly reflecting
nutrient uptake by plants rather than by microbes. The activities of soil extracellular en-
zymes, including cellobiohydrolase and acid phosphatase, significantly differed among the
biodegradable pots. Future research needs to determine the mechanical and horticultural
performance of RWLL pots as well as the use of alternative waste materials for manufac-
turing them, such as pruned wood debris, mowed weeds, and processed waste compost
from mushrooms. The manufacture and utilization of RWLL pots align entirely with a
climate–smart strategy. These pots can satisfy the desire of gardeners to support green,
ecological, and sustainable activities. RWLL pots, therefore, hold the promise of attracting
strong social investment and commercial demand.
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