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Abstract: Given the importance of olive sprouts, it is crucial to explore their potential as an innovative
source of bioactive and nutritive compounds through research. Here, we aimed at investigating
the potential role of benzylaminopurine (BAP) in improving the tissue chemical composition and
bioactivity of olive sprouts. To this end, seeds of two olive varieties (Olea europaea L. vr. Kroniaki
and Coratina) were primed with BAP at 25 µM. A substantial enhancement was observed in biomass
accumulation by 35% and 30% in Kroniaki and Coratina varieties, respectively. Likewise, the photo-
synthetic pigments (total chlorophyll, α- and β-carotene, lutein and β-cryptoxanthin) in both varieties
were increased, mainly in Coratina. At primary metabolic level, BAP priming improved sprout
lipid composition, particularly in Coratina variety. At antioxidant level, BAP priming improved
lipid antioxidants (α-, β- and γ-tocopherols) and water-soluble antioxidants (phenols, flavonoids,
ascorbate, glutathione and anthocyanins) in both olive varieties. At the anthocyanins level, their
precursors (phenylalanine, cinnamic acid, coumaric acid and naringenin) and key biosynthetic en-
zyme activity (phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), coenzyme A ligase
(4CL) and cinnamate 4-hydroxylase (C4H)) were improved in olive varieties, but to a greater extent
in Coratina variety. Overall, the sprouts of BAP-primed olive seeds could potentially enhance their
nutritional value, suggesting that the sprouts of BAP-primed olive seeds can be used as a food
ingredient and additives.

Keywords: Seed priming; 6-benzylaminopurine; Olea europeae sprouts; phytochemicals; antioxidant
activity
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1. Introduction

Olive (Olea europeae) is an evergreen tree or shrub native to Mediterranean Europe,
Asia and Africa from ancient times. Olive is adapted to a wide agroecological zone, but
nowadays there is increased degradation of olive groves [1]. The seeds of olives are a
by-product of the pitted table olive industry [2]. To improve seed oil [3], several uses for
this by-product have been researched, including fractionation, combustion, production
of activated carbon, furfural, bio-oil, and resins, and extraction of phenolics and other
phytochemicals [2]. Moreover, several studies have shown that sprouting seeds of several
herbaceous species considerably improves their phytochemical content when compared to
seeds. For example, sprouts are rich in bioactive compounds [4], thus they are considered a
good source of minerals, vitamins, unsaturated fatty acids, antioxidants, essential amino
acids and other nutrients that promote their biological function.

Other than the seed coat, endosperm and embryo itself, the stony endocarp of seeds
is the major barrier to olive seed germination [1]. In this context, the endocarp and en-
dosperm are responsible for 56% and 28% of the dormancy of olive seeds, respectively.
In actuality, dormancy affects olive seeds and must be broken with specialized methods
such as chemical scarification [5] or cold stratification [6]. To overcome physical barriers
of seed dormancy and improve seed germination, seed priming is widely used. In this
context, numerous priming techniques have successfully [7] improved seed germination
and emergence of seedlings. Seed priming has been shown to induce biochemical changes
in seeds, leading to improved germination rates, faster and more uniform emergence, and
enhanced seedling vigor crops [8]. Priming can not only improve the seed germination,
but it can also increase seedling quality and accumulation of bioactive metabolites [9].
Some of the common compounds used for seed priming include plant hormones (such as
gibberellic acid or cytokinins), antioxidants, osmoprotectants (such as polyethylene glycol
or mannitol) and beneficial microorganisms. For instance, priming of seeds with hormones
such as 6-benzylaminopurine (BAP) can facilitate the processes of seed germination and
seedling emergence [10]. It improved minerals and bioactive secondary metabolite accumu-
lation [10]. Thus, olive sprouts can also be utilized as additives in various food products.
They can be processed into powders, extracts or oils to impart their flavor and nutritional
benefits to a wide range of food items.

While there are numerous studies available on the application of BAP to enhance
plant bioactivity, as far as we know, the impact of BAP on enhancing the sprouting of
olive seeds and the accumulation of bioactive metabolites has not been investigated yet.
Only a few studies have shown that BAP priming improved sprouting and significantly
enhanced the phytochemical content compared to their seeds. Hence, the aim of this work
was to study the effect of hormonal (BAP) priming on enhancing the sprouting process by
inducing accumulation of bioactive compounds in spouts of two olive varieties: Kroniaki
and Coratina. Coratina is characterized by early production and its adaptability to different
soils and climates. It is primarily used for olive oil production and is known for its robust
flavor profile, as well as its high oil and polyphenol content [11]. Kroniaki is also known
for high oil production and is rich in bioactive compounds such as polyphenols, terpenic
acids and unsaturated fatty acids [12]. Thus, olive sprouts could be exploited more readily
for food supplementation and pharmaceutics. We hypothesize that BAP will not only
improve olive sprout growth, but will also improve its nutritive and health-promoting
values of olive sprouts from two olive varieties. Moreover, our study introduces the sprouts
of BAP-primed olive seeds as a food ingredient and additive.

2. Materials and Methods
2.1. Sprout Production

After collecting olive seeds of Kroniaki and Coratina varieties from whole stones,
seeds were sterilized with sodium hypochlorite (2.7%) for 4 min. Then, seeds were treated
for 30 days for stratification in the dark (at 15 ◦C) in plastic trays. The trays contained sterile
peat wetted with distilled water and were moved to a growth cabinet under controlled
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conditions (21/18 ◦C over a 16/8 h day/night photoperiod, 150 µmol PAR m−2 s−1,
with 60% humidity). BAP priming at a concentration of 25 µM was applied to seeds for
8 h [13,14]. Control seeds were hydro primed for 8 h. The BAP concentration of 25 µM
was selected by preliminary sprouting experiments, where various concentrations (ranging
from 0 to 50 µM) were assessed for their effects on the growth (fresh weight) and total
antioxidant capacity (evaluated using the ferric reducing antioxidant power (FRAP) assay)
of olive sprouts. The sprouts of olive seed primed with 25 µM BAP showed the highest
growth and antioxidant capacity, therefore, it was selected. During seed germination,
plants were watered twice per week and Hoagland nutrient solution was provided at the
commencement of the experiment. After 10 days of germination, the fresh weight of the
olive sprouts was measured and then sprout tissues were stored (−80 ◦C) for biochemical
analyses. For each measurement, we utilized 6 biological replicates, with each replicate
consisting of 15 sprouts.

2.2. Analysis of Pigment Profile

For pigment analysis, about 200 mg of fresh olive sprouts was ground in liquid nitro-
gen and homogenized for 30 s in 5 mL of 95.5% acetone using MagNALyser
(Roche, Vilvoorde, Belgium) for 1 min, 7000 rpm. After homogenization and centrifugation
for 20 min (14,000× g, 4 ◦C) [15], the sample’s clear supernatant was filtered through
an Acrodisc GHP filter with a 0.45 m pore size. With the help of high-performance
liquid chromatography (HPLC, Shimadzu SIL10-ADVP), reversed phase at 4 ◦C, pig-
ments such as chlorophylls, α-carotene, β-carotene, lutein and β-cryptoxanthin were
analyzed. The pigments were fractionated on a silica-based C18 column. The mobile
phase consisted of a mixture of acetonitrile, methanol and water (81:9:10, solvent A),
along with methanol and ethyl acetate (68:32, solvent B). The mobile phase was injected
at the rate of 1.0 mL/min at room temperature. Subsequently, pigments were identified
with the assistance of a diode array detector, and Shimadzu Lab Solutions Lite software
(Shimadzu UV-1800 series, software UV probe version 2.42, Tokyo, Japan) was employed
for quantifying pigment concentrations.

2.3. Determination of Fatty Acid Levels

Fatty acid levels in olive sprouts were quantified by GC/MS (MSD 5975-mass spec-
trometer) [16]. Methanol (100%) was applied to extract fatty acids from 250 mg of fresh
olive sprouts at 24 ◦C. The internal standards (nonadecanoic acids) were added dur-
ing extractions. GC-MS analysis was conducted using a Hewlett Packard 6890 coupled
with an MSD 5975. Fatty acids were separated on an HP-5 MS column with a length of
30 m, an internal diameter of 0.32 mm and a film thickness of 0.25 µm. To identify the
fatty acids, both the NIST 05 database and the Golm Metabolome Database, accessible
at http://gmd.mpimp-golm.mpg.de (accessed on 5 March 2023), were employed. The
concentration of each molecule was calculated by comparing the peak area of each chemical
to a calibration curve of the pertinent standard.

2.4. Quantification of Lipid Antioxidant Metabolites

Tocopherols were quantified by using HPLC (normal phase conditions, Particle Pac
5 µm column material) [17]. Tocopherols were extracted from 0.2 g of fresh sprouts using
5 mL of hexane, followed by centrifugation at 13,500× g for 27 min. The resulting extracts
were then dehydrated using a CentriVap concentrator (Labconco in Kansas, MO, USA), and
subsequently reconstituted in hexane. The quantification of tocopherols was performed
through HPLC using a Shimadzu instrument located in Hertogenbosch, The Netherlands,
under normal phase conditions. Separation was achieved using a Particle Pac 5 mm column
with dimensions of 220 mm in length and 4.5 mm in inner diameter. Dimethyl tocol (DMT)
was employed as an internal standard at 5 ppm.

http://gmd.mpimp-golm.mpg.de


Horticulturae 2023, 9, 1055 4 of 13

2.5. Quantification of Water-Soluble Antioxidant Metabolites

The total phenols and flavonoids were also extracted from 100 mg of fresh sprouts
in 80% ethanol to assess their total concentration. The Folin–Ciocalteu assay and Al (III)-
flavonoid complex colorimetric method were used to quantify the phenolic content and
flavonoid content, respectively. Gallic acid was employed as a standard for quantifying
total phenolic content, and the results were reported as µmol GAE/g FW. As for flavonoids,
the color produced was measured at 417 nm, and the findings were expressed as µmol
QE/g FW.

For ascorbic acid (ASC) and glutathione (GSH) measurements, fresh sprouts were ex-
tracted in meta-phosphoric acid (6%, w/v). These antioxidants were measured by a reversed
phase of HPLC analysis (Shimadzu, Hertogenbosch, The Netherlands) after separation on
a C18-A column (Polaris C18-A 100 mm length × 4.6 mm internal diameter) using diode
array detector (DAD) [18]. The components were quantified utilizing a bespoke electro-
chemical detector and the total GSH and ASC measured after reduction with dithiothreitol
(0.04 M).

2.6. Determination of Anthocyanin Content, Percussors and the Activity of Related
Biosynthetic Enzymes

Anthocyanins were obtained through extraction using methanol:HCl in a 99:1 (v/v).
Following this, the homogenate of fresh sprouts was placed in darkness and incubated at
24 ◦C for 22 h, after which it underwent centrifugation at 3500× g for 15 min. To determine
the anthocyanin content of the extract, its absorbance at 545 nm was measured, and the [19]
phenylalanine ammonia-lyase (PAL) extraction was performed [19]. Sample preparation
involved grinding one gram of fresh sprout tissue with a pestle and mortar using liquid N,
followed by the addition of 12 mL of acetone. This mixture was then placed at −20 ◦C for
12 min, filtered, washed twice with cold acetone, and dried at 24 ◦C. The activity of PAL
was monitored by measuring the absorbance of trans-cinnamic acid at 290 nm. To assay
4-coumarate: coenzyme A ligase (4CL) activity, the increase in coumarate was measured at
333 nm. Fresh samples were extracted in Tris-HCL buffer (pH = 8.9), and the activity was
monitored by measuring the absorbance of the product, 4-hydroxy-trans-cinnamic acid.
Protein content was determined using the Folin–Lowry method, where 0.2 g of frozen olive
sprouts was homogenized in a chloroform/methanol (2:1, v/v) solution and centrifuged at
3000× g for 15 min to measure the total protein content [19].

2.7. Total Antioxidant Capacity

The total antioxidant capacity was extracted from 100 mg olive sprouts in 80% ethanol
solution by shaking. After centrifugation (14,000× g, 4 ºC, 25 min). The total antioxidant
capacity was performed by using FRAP assay using reaction buffer containing 0.3 M acetate
buffer (pH 3.6), 0.01 mM TPTZ in HCl (0.04 mM) and 0.02 M FeCl3. Trolox was applied
as a standard [20,21]. The values were expressed as µmol Trolox equivalents/g of plant
extract using the standard curve established previously. Extract supernatants were also
mixed with DPPH reagent to measure total antioxidant capacity as DPPH at 517 nm using
the spectrometric method [22].

2.8. Statistical Analyses

One-way analysis (ANOVA) was carried out using SPSS v25.0 (SPSS, Inc., Chicago, IL, USA).
Tukey’s test (p < 0.05) was used. Data normality was checked by using Levene’s test.
Data were also checked by a Bartlett’s test for equal variances. Six biological replicates
(n = 6) were conducted.

3. Results
3.1. BAP Improved Biomass Accumulation in Kroniaki and Coratina Varieties

The effect of BAP treatment on the biomass accumulation of Kroniaki variety and
Coratina variety sprouts (Figure 1). The fresh (FW) and dry weight (DW) of sprouts were
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significantly increased by BAP priming. The highest increase was recorded for the sprouts
of BAP-primed seeds of Kroniaki variety (35%) as compared to the sprouts of BAP-primed
olive seeds of Coratina variety (30%). Overall, this indicated that BAP priming equally
increased the growth of the two sprout varieties.
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Figure 1. Effect of BAP priming (25 µM, 8 h) on growth parameters including fresh weight (A)
and dry weight (B) of the two varieties of 10-day-old olive sprouts (Kroniaki and Coratina). Data
are represented by means ± standard errors. Different small letters (a, b, c and d) above bars
indicate significant differences in the two varieties between the means of control and BAP treatments
(p < 0.05).

3.2. BAP Differentially Increased the Photosynthetic Pigments in Kroniaki and Coratina Varieties

Depending on olive varieties, differential increases in the pigment’s levels were ob-
served (Figure 2). There were significant (p < 0.05) increases in total chlorophyll, α- and
β-carotene, lutein and β-cryptoxanthin by 33%, 33%, 26%, 35% and 36%, respectively, in
the sprouts of BAP-primed olive seeds of Coratina variety, which exhibited significant
increases in pigment levels but to less extent as compared to the sprouts of BAP-primed
olive seeds of Kroniaki variety.

3.3. BAP Increased Fatty Acids and Lipid Antioxidant Accumulation in Kroniaki and
Coratina Varieties

Saturated and unsaturated fatty acid compositions of the sprouts of BAP-primed
olive seeds were investigated (Table 1). The obtained results showed that Coratina va-
riety showed higher fatty acid levels than Kroniaki variety under both control and BAP
treatment conditions. When exposed to BAP priming, fatty acid levels exhibited distinct
behavior. Compared to the control, the BAP priming treatment resulted in a significant
increase in saturated fatty acids (stearic (C18:0), arachidic (C20:0), docosanoic (C22:0),
tricosanoic (C23:0), pentacosanoic (C25:0)) and unsaturated fatty acids (palmitoleic (C16:1),
heptadecenoic (C17:1), oleic (C18:1) and linoleic (C18:2)) in the sprouts of the varieties. On
the other hand, a significant decrease in arachidic acid (C20:0) and eicosenoic (C20:1) was
observed in the sprouts of BAP-primed olive seeds of the two olive varieties (Table 1).

The lipid antioxidants (tocopherols) contribute to preventing lipid oxidation by scav-
enging free radicals and interacting with singlet oxygen. BAP priming also significantly
increased the content of individual α-, β-, γ- as well as the total tocopherol content in
sprouts of both olive varieties (Table 2). The highest increase was recorded for Coratina va-
riety by 33%, 32%, 16% and 33% in α-, β-, γ- and total tocopherol levels compared to control,
respectively. Similarly, the sprouts of BAP-primed olive seeds of Kroniaki variety exhibited
significant increases in tocopherol levels but to less extent than the Coratina variety.
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Figure 2. Effect of BAP priming (25 µM, 8 h) on leaf pigments including (A) total pigments, (B) α-
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small letters (a, b, c and d) above bars indicate significant differences in the two varieties between the
means of control and BAP treatments (p < 0.05).

3.4. The Sprouts of BAP-Primed Olive Seeds Accumulated High Level of Water-Soluble
Antioxidants

A plant extracts as an antioxidant are significantly reflected by the levels of water-
soluble phenolics and flavonoids. The current findings showed that phenolic components
in sprouts of both olive varieties were altered in the sprouts of BAP-primed olive seeds
(Figure 3). It significantly (p < 0.05) increased total phenolic and flavonoid contents. For
instance, total phenolic and flavonoid contents were increased in the sprouts of Kroniaki
variety by 31% and 35%, respectively. Additionally, a significant (p < 0.05) increase in the
total phenolic and flavonoid contents was observed in Coratina variety, where they were
increased by about 32% and 31%, respectively (Figure 3).
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Table 1. Effect of 6-benzylaminopurine (BAP) priming (25 µM, 8 h) on fatty acid profile of the two
varieties of 10-day-old olive sprouts (Kroniaki and Coratina).

Varieties Kroniaki Coratina

mg.g−1 FW Control BAP Control BAP

Myristic (C14:0) 1.08 ± 0.07 c 1.64 ± 0.04 b 1.69 ± 0.22 b 2.06 ± 0.04 a
Palmitic (C16:0) 15.13 ± 5.11 b 27.23 ± 5.02 a 17.28 ± 8.26 b 25.92 ± 4.98 a
Heptadecanoic (C17:0) 0.07 ± 0.01 b 0.07 ± 0.01 b 0.14 ± 0.01 a 0.14 ± 0.01 a
Stearic (C18:0) 2.97 ± 0.05 b 4.3 ± 0.32 a 3.59 ± 0.52 a 6.00 ± 0.83 a
Arachidic (C20:0) 1.56 ± 0.29 b 1.71 ± 0.12 ab 20.4 ± 0.3 ab 2.24 ± 0.13 a
Docosanoic (C22:0) 0.86 ± 0.06 b 1.15 ± 0.08 a 0.82 ± 0.03 b 1.47 ± 0.19a
Tricosanoic (C23:0) 0.06 ± 0.02 b 0.04 ± 0.01 b 0.12 ± 0.01 a 0.04 ± 0.01 b
Pentacosanoic (C25:0) 0.01 ± 0.00 a 0.00 ± 0.00 b 0.01 ± 0.00 a 0.01 ± 0.00 a
Palmitoleic (C16:1) 0.13 ± 0.01 b 0.12 ± 0.03 b 0.26 ± 0.07 a 0.26 ± 0.07 a
Heptadecenoic (C17:1) 0.34 ± 0.12 b 0.44 ± 0.10 a 0.29 ± 0.03 b 0.48 ± 0.19 a
Oleic (C18:1) 68.2 ± 2 c 101.7 ± 4 b 82.8 ± 4 b 128.2 ± 19 a
Linoleic (C18:2) 11.7 ± 1.38 b 19.04 ± 0.51 ab 11.33 ± 1.15 b 19.18 ± 1.24 a
Linolenic (C18:3ω−3) 1.13 ± 0.13 a 0.05 ± 0.02 c 1.17 ± 0.26 a 0.77 ± 0.09 b
Arachidonic (C20:4) ND ND 1.11 ± 0.44 b 2.01 ± 0.32 a
Eicosenoic (C20:1) 0.51 ± 0.05 a 0.22 ± 0.05 b ND ND

Data are represented by means ± standard errors. Different small letters (a, b, c) in the same row indicate
significant differences between the control and BAP treatment in the two varieties (p < 0.05). Data were statistically
analyzed by one-way ANOVA followed by Tukey’s post hoc test.

Table 2. Effect of 6-benzylaminopurine (BAP) priming (25 µM, 8 h) on alpha (α), beta (β) and gamma
(γ) tocopherol levels of the two varieties of 10-day-old olive sprouts (Kroniaki and Coratina).

Varieties Kroniaki Coratina

mg.g−1 FW Control BAP Control BAP

α-tocopherol 1.93 ± 0.44 b 2.87 ± 0.21 a 2.32 ± 0.15 b 3.39 ± 0.41 a
β-tocopherol 0.29 ± 0.02 b 0.49 ± 0.04 b 0.37 ± 0.02 b 0.60 ± 0.04 a
γ-tocopherol 0.09 ± 0.02 c 0.08 ± 0.01 c 0.10 ± 0.00 b 0.15 ± 0.04 a
Total tocopherols 1.89 ± 0.20 c 3.42 ± 0.25 a 2.47 ± 0.27 c 3.68 ± 0.38 a

Data are represented by means ± standard errors. Different small letters (a, b, c) in the same row indicate
significant differences between the control and BAP treatment of the two varieties (p < 0.05). Data were statistically
analyzed by one-way ANOVA followed by Tukey’s post hoc test.

Similar to the increases in phenolic and flavonoid levels, ASC and GSH accumulations
were also observed. Likewise, a significant increase in total ASC and GSH was recorded
in both varieties of olive sprouts (p < 0.05) (Figure 4). This indicated that BAP priming
improved the redox status in the sprouts of both olive varieties.

3.5. Anthocyanin Metabolism Induction in the Sprouts of BAP-Primed Olive Seeds

Anthocyanins are well known as antioxidants and nutritive metabolites. BAP priming
significantly improved anthocyanin accumulation in the sprouts of both olive varieties, but
to a greater extent in the Coratina variety (Table 3). BAP priming treatments led to increased
levels of anthocyanin biosynthetic precursors (phenylalanine, coumaric, cinnamic acid and
naringenin). At anthocyanin metabolism, the anthocyanin percussor (L-phenylalanine)
levels were significantly increased (p < 0.05) in the sprouts of both olive varieties. Pheny-
lalanine increased in the sprouts of BAP-primed olive seeds of both olive varieties by
88% in Kroniaki variety and by 52% in Coratina variety compared to control (Table 3).
Cinnamic acid was considerably (p < 0.05) greater in the sprouts of BAP-primed olive seeds
of Kroniaki variety and Coratina variety (Table 3). Regarding biosynthetic enzymes, we
also measured the enzymatic activities that are involved in anthocyanin biosynthesis to
better explain these results. PAL enzyme activity was significantly (p < 0.05) increased in
sprouts of both olive varieties after BAP priming treatment. However, this effect of BAP
priming on PAL enzyme had a substantial (p < 0.05) impact on the Coratina variety. Sprouts
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of both olive varieties showed considerable (p < 0.05) increase in the 4CL enzymatic activity.
On the other hand, the sprouts of BAP-primed olive seeds of Coratina variety showed a
significant (p < 0.05) increase in C4H enzymatic activity.
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± standard errors. Different small letters (a, b, c and d) above bars indicate significant differences in
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Table 3. Effect of 6-benzylaminopurine (BAP) priming (25 µM, 8 h) on anthocyanin metabolism of
the two varieties of 10-day-old olive sprouts (Kroniaki and Coratina).

Varieties Kroniaki Coratina

Control BAP Control BAP

Metabolite level (mg. g−1 FW)
Anthocyanin 1.04 ± 0.39 c 2.50 ± 0.28 c 3.29 ± 1.23 b 6.19 ± 0.13 a

Phenylalanine 1.04 ± 0.12 c 1.68 ± 0.16 a 1.30 ± 0.17 b 1.96 ± 0.24 a
Cinnamic acid 6.04 ± 0.51 b 9.59 ± 1.23 a 8.12 ± 1.05 b 11.44 ± 0.59 a
Coumaric acid 1.89 ± 0.23 b 1.71 ± 0.17 b 3.74 ± 0.84 a 3.63 ± 0.47 a

Naringenin 6.41 ± 0.86 c 5.38 ± 0.8 b 9.9 ± 0.54 ab 9.32 ± 0.41 a
Enzyme activity (µmol. mg−1 protein. g−1 FW)
Phenylalanine ammonia lyase 2.81 ± 0.22 b 1.97 ± 0.5 b 2.70 ± 0.41 a 3.22 ± 0.74 a

Chalcone synthase 0.83 ± 0.14 c 1.09 ± 0.14 a 1.04 ± 0.14 b 2.01 ± 0.22 c
Cinnamate 4-hydroxylase 2.75 ± 0.37 b 4.32 ± 0.25 b 2.10 ± 0.11 b 1.23 ± 0.31 a

Coenzyme A ligase 0.40 ± 0.07 b 0.37 ± 0.08 a 1.06 ± 0.06 a 1.48 ± 0.19 b

Data are represented by means ± standard errors. Different small letters (a, b, c) in the same row indicate
significant differences between the control and BAP treatment in the two varieties (p < 0.05). Data were statistically
analyzed by one-way ANOVA followed by Tukey’s post hoc test.

3.6. BAP Priming Effect on Antioxidant Capacity of Olive Sprouts

The current investigation also revealed considerable increases in the total antioxidant
capacities of olive sprouts, as indicated by DPPH and FRAP scavenging potentials (Figure 5).
BAP priming enhanced FRAP (35%, 30% in Kroniaki and Coratina, respectively) and DPPH
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(38%, 42% in Kroniaki and Coratina, respectively) radical scavenging activities as compared
to control.
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4. Discussion
4.1. BAP Priming Improved Sprouting Growth

Seed priming triggered the growth and activation of metabolic processes inherent to
seeds. For instance, it enhanced seed germination, improved seedling vigor and provided
better protection against environmental stresses [8]. Seeds priming with phytohormones
is a widely practiced technique employed to improve seed germination and metabolic
processes. In this regard, BAP is a synthetic cytokinin plant growth regulator commonly
used in plant tissue culture and some agricultural practices. Here, BAP priming improved
biomass accumulation in olive sprouts. In line with our results, seed priming with BAP
improved seed germination [8] and growth parameters of linseed sprouts [20]. According
to our results, BAP priming-induced growth improvement was dependent on olive variety.
For instance, compared to Coratina variety, Kroniaki variety showed higher biomass
accumulation. In this regard, research studies on Medicago sprouts showed variations in
emergence and growth among different plant varieties [21]. Furthermore, increased leaf
pigments can explain the improvement in growth metrics of the sprouts of BAP-primed
olive seeds. Here, the BAP priming improved the total chlorophyll as well as carotenoids,
including α-carotene and β-carotene and xanthophyll, like lutein and β-cryptoxanthin.
Similar to BAP treatment, cytokinin application improved photosynthetic pigments [22,23].
Furthermore, it is widely recognized that the external application of BAP elevates cytokinin
levels, subsequently fostering germination [24,25].

4.2. BAP Priming Improved the Nutritional Values of Olive Sprouts

The subsequent mobilization of the major seed storage reserves is associated with
improved sprout germination [24]. Therefore, it is important to delve into the underly-
ing biochemical bases that drive these processes, including the activation of metabolic
activities [25]. In this context, it is worth noting that the metabolic processes, such as
bioactive metabolite accumulation induced by BAP, may have a direct correlation with the
enhancement of the nutritive values of olive sprouts. In the present investigation, BAP
priming improved the accumulation of primary and secondary metabolites and induced
the antioxidant activity of olive variety sprouts. As the primary metabolites, olive oils
encompass increased levels of several unsaturated fatty acids, which indicates enhanced
biological benefits. This qualitative pattern showed resemblance with that found in olive
seeds [8]. It is also likely that hormones boosted overall capacity of the cells for biosyn-
thesis of active primary metabolites [26]. BAP priming enhanced the accumulation of six
fatty acids in the sprouts of both olive varieties. Interestingly, oleic acid is the primary
monounsaturated fatty acid generated and exported by plastids, the predominance of oleic
acid in the sprouts of both olive varieties [27,28]. Additionally, our findings demonstrated
that BAP priming increased the production of linolenic acid. The increased oleic acid
concentration in sprouts as a result of BAP priming suggested an increase in diene and
triene fatty acid biosynthesis [29]. This was most likely caused by cytokinin’s capacity to
promote photosynthesis-induced primary metabolism [30].

Olive oil is more resistant to heat oxidation during frying in addition to having antiox-
idant potential in biological systems [31]. For instance, oil rich in vitamin E, a fat-soluble
vitamin, supra-nutritional vitamin E levels have been shown to have positive benefits
on conditions like Alzheimer’s, Parkinson’s, cancer and chronic inflammation [8]. Thus,
increased tocopherol levels suggest a high biological activity [31,32]. Among tocopherols,
α-tocopherol is the most prevalent vitamin [33]. It has an antioxidant role that protects
cell membranes from lipid peroxidation and scavenges reactive oxygen species, protecting
tissues from oxidative damage as a result. In our study, α- and γ-tocopherols were the most
prevalent tocopherols in olive sprouts. BAP priming enhanced the accumulation of total
tocopherol, mainly in Coratina variety, and improved the α-, β-, and γ-tocopherol forms
in both olive varieties. Similar results were observed, and this variation in the content of
specific α, β, and γ-tocopherols was also found to be dependent on the type of sprouts
studied [34].



Horticulturae 2023, 9, 1055 11 of 13

In addition, aside from the bioactive functions of lipid antioxidant tocopherols, the
notably high levels of carotenoid and xanthophyll pigments (water-soluble antioxidants)
also indicate an enhanced biological value of the sprouts of BAP-primed olive seeds.
Therefore, we considered their potential roles in disease prevention, as assessed in previous
studies [33]. For instance, lutein has potent anti-inflammatory and antioxidant effects
and is highly effective against liver tumors [35]. As water-soluble antioxidants, the total
phenol and flavonoid contents were improved by BAP priming in both varieties. In the
previous study by Okla et al. [36], BAP priming increased the accumulation of water-soluble
antioxidants [37]. Increased levels of such antioxidant metabolites (phenolic, flavonoids,
ASC, GSH, anthocyanin) can significantly help in free radical scavenging.

It is important to note that the specific effects of seed priming on secondary metabolites
and the overall nutritive value of olive sprouts can vary depending on various factors, in-
cluding the plant varieties [26]. In this context, flavonoids and ASC concentration increased
to a greater extent in the Coratina variety compared to the Kroniaki variety. Furthermore,
the heightened antioxidant activity observed in the Kroniaki variety appeared to be at-
tributed to the accumulation of anthocyanins in response to BAP priming. On the other
hand, Coratina variety of sprouts showed the greatest increase in anthocyanin content,
indicating that BAP was a positive regulator of the pathway involved in producing an-
thocyanins. Regarding anthocyanin synthesis in sprouts, it depends on the specific plant
species and cultivar, while some sprouts exhibit anthocyanin synthesis, such as broccoli
sprouts or cabbage sprouts. Moreover, it is important to note that the anthocyanin content
in sprouts can vary based on growing conditions, harvest time, and plant genetics. These
factors are mediated via a variety of regulatory elements that function at the transcrip-
tional level [38]. Numerous plants, including the carrot, artichoke, Haplopappus gracilis,
garden balsam, rose and grape, have shown that BAP stimulates the accumulation of
anthocyanins [39]. Hence, BAP-induced stimulation of anthocyanin biosynthesis could
serve as a valuable tool in exploring the cytokinin action mechanism. This is facilitated by
the extensive knowledge available regarding the molecular biology and genetics associ-
ated with anthocyanin biosynthesis [40]. Overall, when seeds germinate, they undergo
biochemical changes that result in increased nutrient content compared to the mature plant.
Therefore, sprouts are considered a nutrient-dense food and can be a valuable addition to a
healthy diet.

5. Conclusions

Olive sprouts can be used as ingredients in various food products. When they are
used as ingredients, they contribute to the overall nutritional composition. BAP priming
further improved the nutritive value of olive sprouts. BAP priming increased lipid- and
water-soluble antioxidants and stimulated anthocyanin biosynthesis. This influence of
BAP priming displayed unique responses depending on the variety. The elevated levels
of these bioactive compounds may hold potential benefits in the prevention of various
human diseases.
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