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Abstract: Global warming has led to irregular precipitation patterns and various abiotic and biotic
stresses, resulting in unforeseen consequences for wildlife. Plant species are particularly vulnerable
to these global climate changes, struggling to adapt to the increasing stressors. Urban environments
exacerbate these challenges, further hindering plant survival and growth. The declining number of
climate- and urban-tolerant plant species is a direct consequence of escalating stresses. However, resistance
breeding approaches coupled with environmentally friendly technologies like biostimulants offer hope by
expanding the pool of adaptable species. Urban vegetation plays a vital role in mitigating the urban heat
island effect, supporting mental well-being among residents, and preserving biodiversity. In this study,
we comprehensively review recent research findings on these topics with a focus on publications from the
past 5 years. Emphasizing stress-tolerant ornamental urban plants including trees and herbaceous species
becomes crucial for establishing sustainable living practices. By incorporating resilient plant varieties
into urban landscapes, we can enhance ecological balance while improving the overall quality of urban
environments for both human inhabitants and wildlife populations.
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1. Introduction

Global climate change presents a significant threat to the survival of natural ecosys-
tems, which are dynamic and intricate systems influenced by various changes in envi-
ronmental conditions. It profoundly impacts both abiotic and biotic factors, leading to
alterations in elements such as heat waves, precipitation intensity, CO2 concentration, and
temperature. Over time, these changes contribute to the proliferation of new pests, weeds,
and pathogens [1], imposing both biotic and abiotic stresses on plants. Urban plants offer
a unique opportunity for studying plant physiology [2]. Moreover, urban agriculture is
increasingly acknowledged as a vital and sustainable approach for adapting and mitigating
climate change while also promoting mental well-being [3] (Figure 1).

Ornamental plants offer a multitude of ecosystem services crucial for the well-being
of the population. They play a significant role in fostering and preserving biodiversity [4],
while also enhancing the aesthetic appeal of both indoor and outdoor environments [5–7].
Urban green areas, in particular, represent a unique and valuable reservoir of biological
diversity [8]. The presence of healthy urban vegetation greatly contributes to environmental
improvement, leading to decreased temperatures and the sequestration of pollutants,
thereby positively impacting human health [9,10]. Moreover, in the context of climate
change, it is crucial to consider the urban heat island effect, a phenomenon where urban
areas experience higher temperatures than their surrounding rural counterparts [11,12].
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This effect significantly affects the quality of life for city dwellers [13] and exacerbates
overall climate warming [14]. Additionally, it leads to an increased incidence of heat-related
illnesses [11]. Interestingly, Meineke et al. [15] revealed that the intensity of the urban heat
island effect varies within cities. Warmer urban centers experience more significant stress
on trees, resulting in higher susceptibility to pests and diseases.
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Urban plants play a crucial role in safeguarding the mental health of the population.
Establishing a connection with nature offers a wide range of physical, emotional, and social
cognitive benefits, effectively reducing stress levels [16]. This positive impact is not limited
to outdoor settings alone; even indoor plants contribute to enhancing mental well-being [17].
To ensure that this role is optimally fulfilled, the proper planting and placement of plants are
essential. Barewise et al. [18] emphasized that choosing suitable locations is vital. For instance,
in larger and deeper street bends, green walls are recommended, while shallow areas are better
suited for open-crowned tree species. Interestingly, Wang et al. [13] found that for urban tree
species during summer and autumn, the average width of the canopy positively correlates
with the cooling range, while during winter, the density of green surface tree cover is negatively
correlated with the cooling range. The cooling effects of urban green areas, particularly those
filled with trees, are influenced by various factors such as plant type, canopy density, and park
layout [19]. Understanding these elements allows urban planners to strategically design green
spaces that not only enhance mental well-being but also contribute significantly to cooling the
urban environment.

In recent decades, rapid urbanization has resulted in a concerning disconnection
between people and nature, leading to various mental and physical health issues. The
deterioration of air quality, accompanied by airborne dust pollution, poses a significant
threat to human well-being and has even been linked to carcinogenic effects [20]. More-
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over, the global prevalence of anxiety and depression has surged by 25% following the
COVID-19 pandemic, making mental health a pressing public health concern in numerous
countries [21]. In response to these challenges, there has been a growing focus on iden-
tifying green spaces that can have a positive impact on mental health. Hoyle et al. [22]
demonstrated that residents tend to favor biodiverse and natural urban environments
over regular, geometric shapes and meticulously tidy surfaces. Furthermore, research into
ground-dwelling animals in urban green spaces managed in a close-to-nature manner
reveals that such areas are better suited for creating a sustainable cityscape [23].

The visual characteristics of ornamental plants have a significant beneficial effect on
human well-being [13], such as reducing blood pressure [24,25]. As urbanization contin-
ues to rise globally, it is accompanied by a surge in serious health issues like diabetes, high
blood pressure, and depression. Consequently, optimizing the urban living environment
becomes essential for city dwellers to combat the emergence of various physiological
and psychological diseases [26,27]. Research has shown that flowering plants are partic-
ularly attractive to the population, with red emerging as the most popular color in two
settlements in Iran. Blue and orange colors are also well-liked. Among the preferred taxa,
tulips, roses, lilies, nettles, and crotons rank highly [28]. Furthermore, ornamental plants
with colorful foliage, such as bamboo, have a significant stress-reducing effect, with
colored varieties being more favored than green ones [13]. In the case of Primula vulgaris,
bred varieties that exhibit greater phenotypic similarity to the base species (‘Cottage
Dream’) were found to be more resilient to abiotic stress compared to highly distinct
variants [29]. Surveys focusing on edible plants in the urban environment revealed that
the most popular colors were polychromatic, followed by green and red. Participants
in the survey showed a preference for salad and strawberries. These findings hold im-
portance for future urban vegetation planning [30]. Biodiversity has been identified as
playing a crucial role in enhancing mental health in urban forests. Given the significant
impact urban landscape architecture has on the health of the population, including the
alleviation of respiratory diseases, it has become increasingly important to consider these
aspects [31]. Kończak et al. [20] demonstrated that leaves accumulate many pollutants,
including Ti, Mn, Ba, Zn, Cr, and rare earth metals, through transport. Certain species
like Perthenocissus quinquefolia, Forsythia x intermedia, Betula pendula ‘Youngii’, Quercus
rubra, Crataegus monogyna, Tilia cordata, and Acer pseudoplatanus or Platanus orientalis have
proven to be highly effective in phytoremediation processes.

In light of the aforementioned points, our objective was to conduct a comprehensive
review study focusing on the examination of abiotic stress effects on urban ornamental
plants. This study aims to provide an overview of the existing literature findings from
the past five years, specifically highlighting the results achieved thus far. Additionally,
we summarize the breeding objectives that have been pursued in this area, primarily
concerning ornamental plants.

It is worth noting that the body of research dedicated to ornamental plants, particularly
in relation to abiotic stress, is relatively limited when compared to other sectors within
horticulture. Therefore, this study seeks to address this gap, providing valuable insights
and filling a crucial void in the field of ornamental plant breeding, particularly in relation
to climate change considerations.

2. Effects of Climate Change on Plant Development

Climate change has various suboptimal impacts on urban vegetation, particularly
evident in the modification of plant phenological patterns. Urbanized environments, such
as Beijing, have experienced phenological changes in species like Prunus davidiana, Hibiscus
syriacus, and Cercis chinensis, with earlier spring phenophases and delayed autumn ones due
to warming [32]. This acceleration of phenological phases has been observed in 385 plant
species in Great Britain over the last decade, advancing by 4.5 days. Moreover, a global
study by Pretsch et al. [33] highlighted faster growth rates in urban trees compared to rural
ones. While climate change has not reduced biomass yield in in situ grasslands over the last
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35 years, it has increased grain yield due to earlier phenological phases and faster growth
rates, contributing to development. The accelerated phenological phases also lead to earlier
seed harvest, proving significant and effective for seed production in drier years. However,
the examination of phenological phases must account for the effects of stress on plants.
Climate-change-induced growth in trees comes at a cost, as their lifespan decreases [33].
Assessing drought tolerance involves a critical examination of the root system [34] since
roots are more exposed to multiple abiotic stresses than above-ground plant parts. Under
abiotic stress, shifts in metabolite proportions occur between above- and below-ground
plant parts. Decreased sunlight or nutrient excess leads to greater root development than
shoot development. Various hormones and biochemical processes, including ethylene, ROS,
and abscisic acid (ABA), are involved in regulating root growth under abiotic stress [35–37].
Understanding these complex interactions is vital for comprehending the full impact of
climate change on urban vegetation and planning suitable strategies for resilience and
adaptation.

According to the findings of Giordano et al. [38], it has been discovered that both sensi-
tive and tolerant plants possess an inherent defense mechanism against abiotic stress. This
defense mechanism encompasses various morphological changes, including an increase in
leaf thickness and a decrease in stomatal density and growth. Additionally, physiological
changes play a crucial role, such as the restoration of osmotic balance, stomatal closure,
and the synthesis of antioxidant molecules and enzymes.

Furthermore, a multitude of studies have been conducted to explore the tolerance of
ornamental plants towards abiotic stress. These studies have yielded significant results,
shedding light on the capacity of ornamental plants to withstand and adapt to adverse
environmental conditions. Tagetes patula, a widely recognized ornamental plant, exhibits
adaptability to various climatic conditions. However, the shifting climate poses challenges,
leading to significant deterioration in germination, growth, and the quality of essential
oil when temperatures exceed 35 ◦C. To cope with abiotic stress, Tagetes deploys several
mechanisms, such as increased antioxidant activity, cell redox to maintain homeostasis,
and elevated lipid peroxidation of the cell membrane to preserve cell wall structure [39].

In the herbaceous species Echinacea purpurea, it was observed that the chlorophyll
content exhibited a significant decrease of up to 37.3% compared to the control plants.
Conversely, the carotenoid levels demonstrated a remarkable increase of up to 83%. This
rise in carotenoids plays a vital role in mitigating oxidative stress by preventing the pro-
duction of singlet oxygen, thereby minimizing the damage caused by this radical [40]. On
the other hand, in the case of Nerium oleander, water stress induced an increase in the
levels of ascorbate peroxidase and glutathione reductase enzymes. However, no significant
activation of other tested antioxidant enzymes, such as SOD and CAT, was observed. These
findings suggest that the latter enzymes are not directly involved in the plant’s defense
mechanism against water stress [41]. The impact of climate change is not limited to the
phenological phases of mature plants but extends to those of juvenile ones, including ger-
mination, growth, and reproduction [42,43]. Abiotic stress inhibits essential physiological
reactions in plants [44], and suboptimal temperature and water levels can disrupt vital life
processes [45], potentially affecting fruit set. Prolonged high temperatures can also alter
metabolic processes and induce cell disorganization [46]. Interestingly, mild stress can have
a positive impact on fruit quality, activating the phenylpropanoid pathway and increasing
the accumulation of bioactive compounds, thus enhancing crop quality [47]. Additionally,
the microclimate surrounding plants undergoes modifications due to climate change [48].
Furthermore, climate change poses a threat to the genetic stock and in situ conservation of
heritage ornamental plant varieties. Many species used in urban green spaces have low
stress tolerance, such as certain rose varieties. However, for less frost-tolerant varieties,
the warming climate may have positive effects [49]. The evolving climate highlights the
importance of understanding and mitigating the effects of abiotic stress on ornamental
and agricultural plants alike. Developing strategies to support resilience and preserve
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biodiversity, as well as adapting urban green areas to changing conditions, will be essential
in sustaining the beauty and health of our landscapes amidst ongoing climate shifts.

3. Stress Effects Caused by Climate Change

Climate change is a complex and dynamic system of environmental changes that im-
pact both abiotic and biotic factors [44,50]. Abiotic stress effects can significantly alter plant
growth and viability indicators [51]. As plants constantly experience changing environ-
ments, they are exposed to various biotic and abiotic stresses (Figure 2) [52], necessitating
adaptive responses [53] and the development of diverse coping strategies [54]. Adaptation
to these stressors requires stress response mechanisms. Abiotic stress encompasses heat
stress, drought, flooding, salt stress, nutrient deficiency, and UV stress, often affecting cur-
rent urban vegetation in cities simultaneously [47]. In urban and peri-urban areas, abiotic
stress emerges as the main limiting factor for plants [55,56], inducing various physiological
and biochemical changes that jeopardize osmotic adaptation [57,58]. To combat abiotic
stress in agriculture, advanced biotechnological methods and breeding approaches are
essential. Abiotic stress can lead to crop yield reduction, with estimates ranging from
50% [47] to 70% [59]. Such yield reduction alters biochemical, morphological, and physi-
ological processes in plants, serving as an adaptive survival mechanism [53,60]. Abiotic
stress response is a multigenic trait, unlike biotic stress response, which is controlled by
monogenic factors, making abiotic stress management more challenging in plants [61]. Suc-
cessful plant breeding requires an understanding of the cellular, biochemical, and molecular
changes occurring during stress [62]. In urban environments, plants respond to heat stress
by upregulating the expression of genes encoding heat shock proteins (HSPs) through heat
shock transcription factor (HSF) activation [63]. HSPs mainly regulate protein folding and
facilitate the degradation of unfolded and denatured proteins, playing a prominent role
in the abiotic stress response pathway [63,64]. Both abiotic and biotic stress result in the
production of reactive oxygen species (ROS) in plant cells [65]. ROS have a dual function in
abiotic stress response, as they can be toxic to cells while also acting as molecular signal
transducers that trigger stress response [66]. Plants synthesize substances to neutralize
ROS [67]. Antibiotic resistance is increasingly important, offering an essential approach to
mitigating plant protection problems [68]. Substances such as nitrogen, potassium, calcium,
and magnesium can reduce ROS toxicity by increasing the concentration of catalase, super-
oxide dismutase, and peroxidase in plant cells [69]. Understanding these stress responses
and mechanisms is crucial for developing sustainable strategies to mitigate the adverse
effects of climate change on plant health and agricultural productivity.

3.1. Air Pollution

Cities are major contributors to global carbon dioxide emissions, accounting for over
70% of the world’s total. Research highlights the beneficial effects of increased carbon
dioxide levels on climate change, including the promotion of biomass, leaf area, and dry
mass growth [70].

Urban vegetation displays varying levels of tolerance towards pollutant gases. A study
conducted by Barwise et al. [18] revealed that the presence of small-leaf species, trichomes,
and furrows may indicate a higher degree of urban tolerance. However, Przybysz et al. [71]
found no significant influence of trichomes and leaf size on the accumulation of bound dust
in herbaceous plants. Hence, the selection of appropriate plant species becomes crucial
in minimizing pollen emission and mitigating the impact of air pollutants on ecosystems.
Among the harmful pollutants in urban environments, tropospheric ozone and nitrogen
oxide pose particular threats to both the environment and human populations [72]. Urban
trees and forests play a significant role as biological filters, effectively combating airborne
dust particles (PM). This becomes especially important in densely populated urban areas.
Studies conducted by Zhang et al. [73] and Dadkhah-Aghdash et al. [74] highlight the
critical need for biological filtration provided by urban trees and forests in mitigating air
pollution.
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Physiological aspects: Elevated carbon dioxide levels can lead to higher levels of
phenols and ascorbic acid, which are instrumental in mitigating the impact of reactive
oxygen species (ROS) [67,75]. Additionally, increased carbon dioxide levels influence
arbuscular and ectomycorrhizal fungi, enhancing nutrient and water supply to plants and
facilitating the functioning of plant-growth-promoting bacteria (PGPB) [76].

Urban aspects: These trees are recognized as eco-sustainable tools for monitoring
and reducing air pollution [77]. Besides trees, urban herbaceous species also play a sig-
nificant role in filtering harmful substances from the air. Species like Achillea millefolium,
Chenopodium album, Echium vulgare, Convolvulus arvensis, and Centaurea scabiosa have proven
effective in this regard [71]. Hubai et al. [78] investigated the toxicity of tomato plants
in a simulated urban environment, revealing that the nutrient content increased at lower
concentrations of chemical substances found in cities, with a decrease observed only at
higher doses. Understanding the responses and adaptations of urban vegetation to var-
ious environmental stressors is critical for implementing effective strategies to promote
sustainable urban development and enhance the quality of life for city dwellers. Incorpo-
rating nature-based solutions, such as planting appropriate vegetation, can significantly
contribute to improving the air quality and overall environmental health in urban areas.

3.2. Drought

Among various abiotic stressors, drought stands out as having the most significant
impact on soil fauna and plants [79–82]. Drought not only leads to reduced yields and
metabolic distortions [83] but also has significant consequences on urban vegetation, affect-
ing its growth and altering the composition of urban forests [84]. Forecasts suggest that the
mortality of trees due to drought will continue to rise globally, posing health risks to urban
trees and reducing ecosystem services, resulting in increased financial costs [85,86]. By
2070, climate change is projected to decrease the climatically suitable areas for 73% of the
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studied species in urban areas, with 18% of them experiencing a reduction by more than
half [87]. Drought impacts the phenological phases of plants, leading to shortened phases
and reduced carbon dioxide assimilation, ultimately affecting yields [88–90]. Perennials
rely heavily on their ability to adapt to drought stress, showing morphological adaptations
in the roots, stems, and leaves, as well as variations in water potential and absorption
capacity [91–93].

Physiological aspects: Drought stress also affects leaf stomata functioning, resulting in
reduced photosynthetic capacity and inefficient water use [94,95]. Elevated levels of reactive
oxygen species (ROS) occur during stress, leading to oxidative damage and disruption of
the antioxidant defense system in plants [95–99].

Urban aspects: In light of increasingly prolonged droughts due to climate change,
afforestation becomes challenging as selecting appropriate seed sources based on current
climate conditions becomes more difficult [100]. Ornamental plants employ specific adap-
tive mechanisms to cope with drought stress, including adjusting the root/shoot ratios,
altering the leaf anatomy, reducing height, and limiting water loss [101]. The selection
for abiotic stress resistance is vital for urban species [102]. Monitoring plant performance
through hyperspectral imaging can aid in selecting more resilient and climate-resistant
plants [103]. Drought stress can also impact the secondary metabolism of ornamental
plants, such as Lavandula angustifolia and Silybum marianum, influencing the production of
essential oils and other beneficial compounds [104,105].

In a study conducted by Asrar et al. [106], it was discovered that the inoculation of
Antirrhinum majus seeds with mycorrhizal fungi resulted in an enhanced tolerance to
drought stress. This finding highlights the beneficial role of mycorrhizal fungi in promoting
drought resistance in plants. Similarly, Battacharyya et al. [107] observed a similar effect
in plants such as Petunia spp., Viola tricolor, and Cosmos spp. when treated with extracts
derived from Ascophyllum nodosum. The application of these extracts was shown to lead
to an improvement in the drought stress tolerance of the aforementioned plant species.
These studies underscore the potential of using mycorrhizal fungi and Ascophyllum nodosum
extracts as strategies to enhance drought stress tolerance in various plant species. Under-
standing and promoting these adaptive strategies can play a significant role in developing
more resilient and drought-tolerant urban vegetation, mitigating the adverse effects of
climate change on city landscapes.

3.3. High Temperature

A considerable amount of research is currently dedicated to studying urban heat
islands, high temperatures, and their impact on the viability of urban vegetation in set-
tlements, leading to abiotic changes in the urban environment [108,109] highlighted that
the frequency of heatwaves poses a stronger constraint on the optimal development of
urban vegetation compared to the intensity of the heatwaves. High temperatures have
detrimental effects on plants and ecosystems, with each Celsius degree increase causing
yield reductions of up to 17%.

Physiological aspects: Heat stress leads to a decrease in plant growth rate and alters
metabolic regulation [110]. During heat stress, cereal crops experience reductions in chloro-
phyll and grain-filling mechanisms; thus, preserving grain mass under heat stress can be
indicative of heat tolerance [90]. The plant’s response to heat stress includes an increase
in carotenoid content, which acts as protection for chlorophyll against damage [74]. Heat
stress triggers the production of phenolic compounds that can cause damage to cellular
structures, affecting chloroplast shape, stromal lamellae swelling, and vacuole weight [69].
Many genes are activated, and specific metabolites play crucial roles in protecting against
heat stress [62]. Incorporating these metabolites into plant development represents a sig-
nificant solution for increasing salt stress tolerance (ascorbic acid, citric acid, glutathione,
and melatonin) [37,111]. Heat stress can lead to protein denaturation, enzyme inactivation,
increased fluidity of membrane lipids, and the generation of reactive oxygen species (ROS),
while metabolites can form chelates with metals, providing protection against these dam-
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ages [69,74]. To assess the damage caused by drought and heat stress, Aishwarya et al. [112]
evaluated 36 plant species and observed that the combination of both stressors resulted in
the most significant damage, followed by drought stress and then heat stress.

Urban aspects: Understanding the impact of these stressors on urban vegetation is
crucial for developing strategies to mitigate their negative effects and ensure the survival
of plant species in the face of global warming [113].

In Mediterranean environments, the selection of suitable plant species for urban
vegetation in settlements affected by high temperatures in the future is of great importance.
Feyisa et al. [114] conducted a study and identified Olea europea, Robinia pseudoacacia, and
Eucalyptus spp. as suitable species for this purpose. By contrast, Cupressus and Grevillea
species were found to be less suitable. These findings provide valuable insights into the
choice of plant species for urban greening in high-temperature environments. Heat stress
tolerance in ornamental peppers can be enhanced through the application of exogenous
abscisic acid. Zhang et al. [115] demonstrated that the treatment with abscisic acid resulted
in increased resistance to heat stress, accompanied by an elevation in chlorophyll content.
This increase in chlorophyll content contributes to greater vitality and stress resistance in
plants. Jiang et al. [116] investigated the role of the heat shock protein gene RcHSP70 in
the heat tolerance of Rosa hybrida L. and Nicotiana spp. By introducing this gene into these
species, the photosynthetic activity, which plays a crucial role in abiotic stress tolerance, was
enhanced. Similarly, the insertion of the CmDREB6 gene into Chrysanthemum sp. led to
increased heat tolerance in different varieties of the plant [117]. These studies highlight the
significance of genetic modification and breeding techniques in enhancing heat tolerance
in urban plants. Furthermore, Wang et al. [118] discovered the FaHsfA2c gene, which is
associated with temperature tolerance, in Festuca arundinacea, a species commonly used
as an ornamental plant. This finding underscores the importance of understanding the
genetic mechanisms underlying temperature tolerance in urban plant breeding. Overall,
the selection and breeding of plant species with high temperature tolerance has gained
importance in recent years, particularly for urban environments. These advancements
contribute to the development of resilient and thriving urban vegetation in the face of rising
temperatures.

3.4. High Salt Concentration

Salt stress is a critical issue closely related to the harmful effects of climate change,
leading to growth retardation and various physiological disorders in plants. An increase
in the concentration of Na and Cl ions disrupts osmotic functions, mainly responsible for
plant [119]).

Physiological aspects: With the expansion of salinized soils, the breeding of varieties
tolerant or resistant to salt stress becomes increasingly urgent. Genome editing technologies
offer promising opportunities for enhancing the salt tolerance of high-value ornamental
crops like roses, gerberas, carnations, and chrysanthemums [120]. In the context of or-
namental sunflowers, the use of Strigolactone (GR24) has been found to be effective in
protecting against salt stress. It reduces the photosynthetic damage caused by salt stress, en-
hances biomass, and increases the leaf’s osmotic and turgor potential [121]. Plants respond
to salt and heavy metal stress by activating plasma-membrane- and vacuolar-membrane-
localized transporters that import toxic elements into vacuoles and translocate into root tips
and shoots. By contrast, under drought, cold, and heat stress, these transporters increase
water and sugar levels in all plant organs [122]. Calcineurin B-like protein-interacting
protein kinases (CIPKs) are involved in the formation of stress responses in plants.

Urban aspects: Many ornamental plants, which are also suitable for urban conditions,
have a high salt tolerance or different mechanisms for salt stress tolerance. In the case
of Lagerstroemia indica, the gene LiCIPK30 from Arabidopsis thaliana has been shown
to enhance salt stress resistance, which suggests the potential for further investigation
of the LiCIPK gene family to breed Lagerstroemia indica species suitable for saline and
alkaline coastal areas [123]. As the area of salinized soils continues to expand, it is crucial
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to explore these genetic mechanisms to develop resilient plants for sustainable ornamental
horticulture.

In the case of Lobularia maritima, it has been observed that even at a concentration as
high as 100 mM NaCl, the root system and foliage development remain unaffected [124].
Similarly, Wang et al. [125] found that Panicum virgatum L. ‘Northwind’ also exhibits no
adverse effects on its root system when exposed to NaCl. Álvarez and Sanchez-Blan [126]
proposed a hypothesis regarding Callistemon laevis, suggesting that increased salt concen-
tration does not allow salt ions to reach the above-ground parts of the plant from the roots.
This mechanism may contribute to the plant’s ability to cope with high salt concentrations.
In the case of Pelargonium hortorum, Breś et al. [127] demonstrated that a high salt concen-
tration of 130 mM does not significantly impact the chlorophyll content. However, it does
lead to a notable increase in proline and anthocyanin content. These findings are consis-
tent with observations in other species, where elevated levels of proline and anthocyanin
are commonly associated with salt stress. These studies highlight the varying responses
of different plant species to salt stress. While some species, such as Lobularia maritima
and Panicum virgatum, exhibit resilience and are unaffected by high salt concentrations,
others, like Callistemon laevis and Pelargonium hortorum, employ different mechanisms to
mitigate the effects of salt stress. Understanding these species-specific responses is crucial
for developing strategies to enhance salt tolerance in plants.

3.5. High Heavy Metal Concentration

The term “heavy metal” is used as an umbrella term, and the specific elements included
under this category are determined based on their toxicological, physical, and biological
effects [128]. Heavy metals pose a significant environmental problem due to their toxic
nature and inability to biodegrade [129]. To address this issue, utilizing plants that have
the ability to absorb and remove heavy metals from urban environments is crucial. Urban
ornamental plants are particularly well-suited for this purpose, including various species
of shrubs [130], herbs [131] and tree species [132].

Physiological aspects: From a physiological perspective, heavy metal stress can
have negative effects on all stages of plant growth, ranging from seed germination
to seed production [133]. Various strategies have been identified to enhance plant
tolerance to heavy metal pollution, such as chelation, enzymatic defense systems
(including phenols, flavonoids, essential oils, and alkaloids), and the regeneration
of damaged proteins [134,135]. Additionally, ornamental plants can be suitable for
phytoremediation, which involves utilizing plants to mitigate radiation contamination.
These mechanisms play a vital role in maintaining the redox balance and stress toler-
ance in heavy metal-contaminated ornamental plants, underscoring the importance
of comprehensively understanding these processes. However, it is worth noting that
certain interactions between ornamental plants and heavy metals may lead to plant
growth reduction and biomass reduction [133]. Thus, careful consideration of these
factors is necessary when utilizing ornamental plants for heavy metal remediation
purposes. Heavy metal pollution is a significant influencing factor for urban vegetation.
Species like Agrostis stolonifera and Chrysanthemum carinatum are popular in urban
lawns, but their copper tolerance is crucial due to the harmful effects of heavy metal
exposure. Gladkov et al. [136] demonstrated the production of copper-tolerant types
through cell selection, highlighting its importance as a method in resistance breeding.
Moreover, genomic methods are also contributing to the development of more precise
breeding techniques. Techniques such as transcriptomics, TILLING, homologous re-
combination (HR), allele research, and association mapping can be used to identify
functional markers [137]. Incorporating miRNA, such as OsmiR393a from Begonia x
tuberhybrida, has shown promising results in enhancing flower lifespan and improving
water stress tolerance in transgenic lines [138]. These innovative genetic approaches
offer valuable tools for developing urban vegetation that can withstand the challenges
posed by heavy metal pollution and other environmental stresses. By employing these
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methods, urban landscapes can be enriched with resilient and aesthetically pleasing
plant varieties.

4. Urban Biodiversity in the Light of Climate Change

With the rapid acceleration of urbanization, understanding how cities contribute to
the preservation of biodiversity has become increasingly urgent [139]. Urban areas, being
diverse and often alien to the ecosphere, expand rapidly, accommodating both modern
ornamental plant varieties and original vegetation, which may include endangered plant
species [139,140]. Herbaceous species also play a significant role in the urban ecosystem,
and native species are found on urban brownfields, despite their aesthetic value sometimes
being overlooked by city dwellers [141]. Urban vegetation faces various stress conditions,
such as heat and drought [15], leading to the development of specific flora and fauna that
can disrupt the ecological balance [140]. For example, higher microclimate temperatures
near buildings can increase the survival rate of certain arthropod species, resulting in more
damage in the following year [142]. The presence of exotic species in green areas may
reduce arthropod diversity compared to native species [108]. Changes in microclimate due
to drought also affect the composition of arthropod communities near trees [108]. Urban-
ization also impacts nocturnal insect populations due to increased artificial light, leading
to ecological imbalances [143]. Preserving native plant species in urban environments can
support the presence of insects, such as butterflies, and contribute to maintaining biodiver-
sity. However, the trade in ornamental plants often focuses on novelty and exotic species,
necessitating careful consideration of their stress resistance before introduction [144]. Ur-
ban plants provide crucial ecosystem services, including microclimate modification, flood
and pollution mitigation, and biodiversity support [145]. They play significant roles in
municipal, ecological, and social systems, though attention should be paid to selecting
species that can withstand the urban climate [87,146]. In response to climate change, new or-
namental plant species with higher stress tolerance are emerging, such as non-psychoactive
decorative varieties of Cannabis [147]. Differences in urban stress tolerance exist among
tree species, with some species, like Acer campestre, showing better adaptation to urban
conditions than others [148]. In urban tolerance experiments, Morus alba exhibited medium
tolerance, while Salix babylonica and Ailanthus altissima showed low stress tolerance in
Tehran [74]. Overall, understanding and preserving biodiversity in urban environments is
essential for promoting resilient and sustainable urban ecosystems in the face of ongoing
urbanization and climate change challenges (Table 1).

Table 1. Advantages and disadvantages for the plants under study in an urban environment.

Plant Species Advantages and Disadvantages in
Urban Environments References

Acer campestre L. Great urban stress tolerance Stratópoulos et al. [148]
Achillea millefolium L. Filtering harmful substances from the air Przybysz et al. [71]

Ailanthus altissima (Mill.) Swingle Low urban stress tolerance Dadkhah-Agdash et al. [74]

Antirrhinum majus L. Increasing drought stress tolerance with
mycorrhizal fungi Asrar et al. [106]

Centaurea scabiosa L. Filtering harmful substances from the air Przybysz et al. [71]

Cercis chinensis Bunge Earlier spring and delayed autumn
phenophases Luo et al. [32]

Chenopodium album L. Filtering harmful substances from the air Przybysz et al. [71]
Chrysanthemum carinatum Sch.Bip. Low copper and heavy metal tolerance Gladkov et al. [107]

Convulvulus arvensis L. Filtering harmful substances from the air Przybysz et al. [71]

Cosmos spp. Increased drought stress tolerance using
Ascophyllum nodosum extract Battacharyya et al. [107]

Echium vulgare L. Filtering harmful substances from the air Przybysz et al. [71]
Eucaliptus sp. L’Hér. High temperature tolerance Feyisa et al. [114]

Hibiscus syriacus L. Earlier spring and delayed autumn
phenophases Luo et al. [32]
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Table 1. Cont.

Plant Species Advantages and Disadvantages in
Urban Environments References

Lavendula angustifolia Mill. Negatively affects the essential oil content Saunier et al. [104], Zahir et al. [105]
Lobularia maritima (L.) Desv. High salt stress tolerance Hsouna et al. [124]

Morus alba L. Medium urban stress tolerance Dadkhah-Agdash et al. [74]
Olea europea L. High temperature tolerance Feyisa et al. [114]

Panicum virgatum L. ‘Northwind’ High salt stress tolerance Wang et al. [125]

Petunia spp. Juss. Increased drought stress tolerance using
Ascophyllum nodosum extract Battacharyya et al. [107]

Prunus davidiana Carrière Earlier spring and delayed autumn
phenophases Luo et al. [32]

Robinia pseudoacacia L. High temperature tolerance Feyisa et al. [114]
Salix babylonica L. Low urban stress tolerance Dadkhah-Agdash et al. [74]

Silybum marianum (L.) Gaertn. Negatively affects the essential oil content Saunier et al. [104], Zahir et al. [105]

Tagetes patula L. Deterioration in germination, growth,
and the quality of essential oil over 35 ◦C Kumar et al. [39]

Viola tricolor L. Increased drought stress tolerance using
Ascophyllum nodosum extract Battacharyya et al. [107]

5. Stress Resistance Breeding for Urban Climate

According to a report by Boutigny et al. [149] there are around 166 publications
in the international literature related to the genetic modification of ornamental plants,
with 15 of these publications specifically focusing on the stress resistance breeding of
commercially important ornamental plants. Various breeding techniques, such as inter-
and intraspecific crossing, mutagenesis, and in vitro mutagenesis and selection, have
emerged in the field of ornamental plant breeding [150,151]. Identifying and utilizing
ornamental plants tolerant to abiotic stress can reduce management costs in urban green
areas while enhancing their aesthetic value [55,56]. Genetic markers, such as random
amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers, are used
to detect genetic variations related to stress tolerance. QTL research on stress-related genes
also contributes to the field of science and promotes the process of resistance breeding
for improved abiotic stress tolerance [152]. High-throughput genotyping approaches,
like genotyping-by-sequencing (GBS), are also effective tools in resistance breeding. For
example, orchids are continuously bred for their phenotypic properties and stress tolerance
using GBS to identify SNP alleles [153,154]. Additionally, DNA methylation and microRNA
research, related to epigenetics, are of great importance in understanding stress responses.
MicroRNAs are small regulatory RNAs that negatively affect gene expression at the post-
transcriptional level and play a significant role in stress-related gene regulation [155,156].

Amplified fragment length polymorphism (AFLP) in lavender species has shown
potential for detecting similarities between cytogenetic properties and can be used to
enhance stress tolerance in hybrids between species [157]. Similarly, significant cytogenetic
and molecular studies have been conducted in the resistance breeding of geophytes among
ornamental plants. The rapidly changing climate necessitates the creation of new stress-
tolerant varieties, and advancements in cisgenesis and genome editing techniques have
already facilitated progress in this direction [158]. Polyploidization is another effective
breeding method to increase stress resistance in ornamental plants. Numerous studies have
demonstrated that polyploid plants often exhibit greater vitality and abiotic stress resistance
compared to non-polyploids [159]. Additionally, polyploidization can influence external
properties such as flower size, color, cell size, and fragrance [160]. Colchicine treatment
is a common and successful method for producing polyploids. Somatic cell induction
is primarily used for polyploidy induction, but chimeras can also be created using this
approach. Artificial chromosome duplication (ACD) is another promising technique for
breeding ornamental and medicinal plants. Successful ACD protocols require careful
consideration of various parameters, including genetic characteristics and the type of
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antimitotic agent (AMA) used [160]. These advanced breeding methods open up exciting
possibilities for creating stress-tolerant and visually appealing ornamental plant varieties
to adapt to the challenges posed by climate change.

Stress response in plants involves complex genetic and epigenetic regulatory mechanisms.
Epigenetic mechanisms have been shown to play a crucial role in plant response to abiotic stress,
with numerous components under epigenetic regulation [161]. RNA silencing mediated by
small RNAs, such as miRNAs, also contributes significantly to the abiotic stress response [162].
miRNAs are small RNA molecules that regulate gene expression by forming a miRNA-induced
silencing complex (MIRISC) and inhibiting translation [163]. Some miRNAs, like miRNA-169,
miRNA-396, miRNA-159, and miRNA-393, have been found to play key roles in mitigating
climate-change-related stress effects [164]. Protein ubiquitination, a post-translational modifica-
tion, is another important mechanism involved in plant stress response and resistance [165].
Phytohormones, such as ABA, play significant roles in stress avoidance and adaptation by
inducing stomatal closure and promoting root growth [37,166,167]. Additionally, nitration has
been implicated in stress responses, warranting further research into NO signaling [168]. To
enhance stress tolerance in ornamental plants, various breeding methods and genetic tests
are available, including marker-assisted selection (MAS), hormones, osmoprotectants, marker-
assisted backcrossing, haplotype-based breeding, and genomic forecasting approaches [79,169].
High-throughput technologies like phenotyping, genomics, proteomics, and metabolomics
provide valuable insights into plant–environment interactions and the mechanisms responsible
for resistance to biotic and abiotic stresses [170]. Furthermore, specific stress responses and
resistance mechanisms may vary within species [171,172]. Understanding stress responses can
be particularly useful for agriculture, as it can improve the taste and quality of fruit-bearing
plants by enhancing secondary metabolic products [173]. Plant hormones, including jasmonic
acid (JA), abscisic acid (ABA), ethylene, and salicylic acid, play vital roles in plant responses
to biotic and abiotic stress and have been the subjects of extensive research [36,174]. With the
advancement of nanotechnology, plant responses and defenses may be further improved, par-
ticularly with the use of JA as a stress control agent [175]. In addition to JA, abscisic acid (ABA),
ethylene, and salicylic acid also play prominent roles in stimulating ion channels [97]. Collec-
tively, understanding these complex regulatory mechanisms can help in developing transgenic
abiotic-stress-resistant, high-quality, and high-yielding plants for the urban environment and
agriculture.

6. In Addition to Breeding, There Are Other Possible Solutions for Increasing Urban
Tolerance

In addition to resistance breeding, several other solutions can be employed to increase
the stress tolerance of urban plants. One important approach is the management of urban
green spaces, which can significantly impact the soil microbiome and biodiversity [176,177].
The use of plant-growth-promoting microbes (PGPM) and mycorrhizal fungi has been
shown to enhance the growth and development of plants under stress conditions [178],
making them valuable for nurseries and green roof vegetation. Seed treatment with these
beneficial microorganisms is also a common practice [119]. Fungal species, in particular,
have proven to be more effective than bacteria in alleviating stress in plants, especially un-
der abiotic stress conditions. Endophytic bacteria have shown significant stress-alleviating
effects, while epiphytic bacteria have a lesser impact [178]. Certain strains of plant-growth-
promoting rhizobacteria (PGPR), such as Pseudomonas poae 29G9 and Pseudomonas florescens
90F12-2, have beneficial effects on ornamental plants, enhancing their quality and perfor-
mance under drought stress and low nutrient conditions [179]. Therefore, these strains
can be utilized to improve the stress tolerance of cultivated ornamental plants in urban
environments. The rhizosphere, the region surrounding the plant roots, plays a vital role in
defense against drought stress. Hormonal regulation, reactive oxygen species (ROS) sig-
naling, osmoregulation, and induced systemic tolerance (IST) are among the mechanisms
involved in stress responses in the rhizosphere [79]. ROS overproduction is a common
occurrence in plants under stress conditions [67]. Biostimulants have also emerged as
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effective tools for addressing environmental challenges and promoting sustainable agri-
culture [180]. Companies are actively investing in the development of new biostimulant
products and identifying bioactive molecules capable of inducing specific plant responses
to abiotic stresses. These compounds, though often not fully characterized, are classified
based on their role in plants [181]. Biostimulants have shown potential in increasing stress
tolerance, as seen in the case of boric acid application at low temperatures, which enhances
cold tolerance in sunflowers [80]. In the future, biostimulators will play an important
role in plant cultivation in the context of climate change, as they strengthen the defense
against abiotic stress effects and aid in plant protection against stress [182,183]. Apart from
biostimulants, agronomic strategies like mulching and suitable plant associations can also
be useful solutions to mitigate abiotic stress in urban environments [56]. These approaches
collectively contribute to enhancing the stress tolerance of urban plants and promoting a
sustainable and resilient urban green space.

7. Conclusions and Future Prospectus

Our modern world is facing numerous stressors that affect not only people and ani-
mals but also flora. Climate change, rising temperatures, droughts resulting from uneven
precipitation distribution, and salt stress present significant challenges to global vegetation.
The area and planning methods of urban green spaces have a direct impact on the health
and comfort of urban populations. With increasing urbanization and shrinking living
spaces, there is often a lack of sufficient urban vegetation, leading to detrimental effects
such as the urban heat island effect. To ad184dress these challenges, understanding how
plants cope with stress becomes crucial for developing modern agriculture. The genetic
adaptation of plants has become increasingly important in light of climate change impacts
on high-value species like grapes. Plant breeding plays a vital role in selecting applicable
species with high tolerance and resistance to abiotic and biotic stresses suitable for urban
planting. However, achieving harmony between agriculture and the environment requires
collaboration among plant breeders, urban planners, and political decision-makers. Despite
the progress made with initiatives such as urban gardens or green roofs aiming at ecological
sustainability, their adoption rate remains low. Factors shaping the urban landscape will
ultimately impact people’s lives through plants. Developing climate change adaptation
plans focused on enhancing resilience becomes essential. Climate change responses differ
between temperate species, which shift phenological phases, and tropical species, which
respond by spatial shifts. In future breeding efforts, landscape varieties may become signif-
icant in developing climate-resistant plant varieties. Further research should investigate
interactions between ornamental plants in urban environments under abiotic stress influ-
ences to better understand their responses within this context. Environmentally friendly
methods like using plant-growth-promoting microorganisms (PGPM) or biostimulators can
strengthen plant organisms’ resilience while improving plant–microbiome relationships,
which increase stress tolerance levels. Optimizing microbiome levels and its relationship
with flora can contribute to increased biodiversity—an essential aspect for establishing sus-
tainability and creating a balanced ecosystem. Breeding species suitable for urban life and
the use of environmentally friendly biostimulators can greatly reduce the harmful effects of
environmental pollution and increase urban green areas in an energy- and cost-effective
manner by better integrating them into the concept of green cities. Pesticides, especially
insecticides and herbicides, greatly reduce the creation of a biodiverse cityscape. The use of
species and varieties resistant to a changing climate can also increase biodiversity, especially
if these species are considered to be bee pastures. It is worth considering this aspect in
connection with breeding. The protection of animals and the appropriate design of their
habitat can also be important. The presence of vertebrates and invertebrates brings with
it the presence of pollinating insects. Therefore, the flowering of lawn surfaces and the
use of biodiverse beds could be the initial step in the process. Furthermore, maintaining
well-designed green spaces in urban environments can contribute to the mental health of
the population. This, in turn, has economic implications as increased work efficiency can
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improve GDP. Vegetation plays a crucial role in creating a mentally healthier human world,
which is increasingly needed. Thus, urban vegetation and green areas have the potential to
mitigate climate change effects and create more livable cities. In conclusion, by recognizing
the importance of plants in mitigating stressors on both ecological and human levels, we
can strive towards a more sustainable future that prioritizes harmony between nature and
urban development. The investigation of urban ornamental plants and abiotic stress effects
in cities is a topic that can be continuously researched, and our goal is to continue exploring
this topic in the future.
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Griżuk, K.; Sokalski-Wieczorek, J.; et al. Where trees cannot grow—Particulate matter accumulation by urban meadows. Sci.
Total. Environ. 2021, 785, 147310. [CrossRef] [PubMed]

https://doi.org/10.1007/s00299-021-02759-5
https://doi.org/10.1016/j.wace.2015.08.001
https://doi.org/10.3390/horticulturae5040067
https://doi.org/10.1098/rspb.2016.1574
https://www.ncbi.nlm.nih.gov/pubmed/27708149
https://doi.org/10.3390/app12094259
https://doi.org/10.1016/j.micres.2017.11.004
https://www.ncbi.nlm.nih.gov/pubmed/29458867
https://doi.org/10.1016/j.envexpbot.2011.07.009
https://doi.org/10.1111/ppl.13151
https://doi.org/10.3389/fpls.2018.00393
https://doi.org/10.3390/earth3040071
https://doi.org/10.3390/plants12102022
https://doi.org/10.1111/ppl.13297
https://www.ncbi.nlm.nih.gov/pubmed/33280137
https://doi.org/10.1126/science.1186834
https://www.ncbi.nlm.nih.gov/pubmed/20150494
https://doi.org/10.1007/s10529-017-2302-9
https://www.ncbi.nlm.nih.gov/pubmed/28238061
https://doi.org/10.1016/j.copbio.2005.02.001
https://www.ncbi.nlm.nih.gov/pubmed/15831376
https://doi.org/10.1007/s00299-007-0474-9
https://doi.org/10.1007/s00438-011-0638-8
https://www.ncbi.nlm.nih.gov/pubmed/21792744
https://doi.org/10.1038/srep32641
https://www.ncbi.nlm.nih.gov/pubmed/27586959
https://doi.org/10.3389/fpls.2016.00700
https://doi.org/10.3390/ijms21155208
https://doi.org/10.1016/j.crmicr.2021.100030
https://www.ncbi.nlm.nih.gov/pubmed/34841321
https://doi.org/10.2478/intag-2013-0017
https://doi.org/10.1038/525179a
https://www.ncbi.nlm.nih.gov/pubmed/26354467
https://doi.org/10.1016/j.scitotenv.2021.147310
https://www.ncbi.nlm.nih.gov/pubmed/33932673


Horticulturae 2023, 9, 1051 17 of 21

72. Oksanen, E.; Kontunen-Soppela, S. Plants have different strategies to defend against air pollutants. Curr. Opin. Environ. Sci.
Health 2021, 19, 100222. [CrossRef]

73. Zhang, L.; Zhang, Z.; Chen, L.; McNulty, S. An investigation on the leaf accumulation-removal efficiency of atmospheric
particulate matter for five urban plant species under different rainfall regimes. Atmos. Environ. 2019, 208, 123–132. [CrossRef]

74. Dadkhah-Aghdash, H.; Rasouli, M.; Rasouli, K.; Salimi, A. Detection of urban trees sensitivity to air pollution using physiological
and biochemical leaf traits in Tehran, Iran. Sci. Rep. 2022, 12, 15398. [CrossRef] [PubMed]
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