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Abstract: Fruit trees are perennial crops that grow in one place for their whole lives, which leads to
the deterioration of the soil as well as a decline in fruit quality and yield. Microbial diversity and
community structure are important soil factors affecting stress resistance and the quality of fruit trees.
Additionally, biogas fertilizer also plays an important role in improving fruit quality. Whether biogas
fertilizer can improve continuous cropping barriers by affecting microbial diversity and community
structure remains to be further investigated. Therefore, 7-year-old Fuji apples were used as material,
and biogas fertilizer was applied continuously for three years. The results show that the contents
of soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), and soil porosity
(SP) increased by 0.712, 0.217, 1.089, and 0.401 after applying biogas fertilizer, respectively. The
concentrations of vitamin C, titratable acid, and soluble solids also significantly increased. We also
found that the relative abundance of dominant soil flora significantly increased, such as Sphingomonas
(g_Sphingomonas), Chlamydomonas (g_Chlamydomonas), and Stachybotry (g_Stachybotry), while the
relative abundance of inferior flora significantly decreased, such as Cryptococcus (g_Cryptococcus) and
Alternaria (g_Alternaria). In summary, biogas fertilizer can improve the physicochemical properties
of the soil as well as the structure and diversity of the microbial communities in rainfed orchards,
resulting in higher fruit quality.

Keywords: microbial diversity; microbial community structure; biogas fertilizer; soil physicochemical
properties

1. Introduction

Continuous monoculture, known as replanting disease or continuous cropping ob-
stacles, can inhibit plant growth and exacerbate soil-borne diseases [1]. It is reported that
crop replanting disorder is a common agricultural problem that can affect the yield and
quality of plants [2]. Fruit trees are perennial plants, so monoculture is a huge problem
they are facing at present. It was found that the growth and development of apples were
affected [3] and the yield significantly decreased during continuous monoculture [4]. There-
fore, studying the mechanism of continuous cropping and how to solve the problem of
apple monoculture is the focus of current research.

Soil is a complex and dynamic ecosystem, which is estimated to contain billions of
microorganisms [5]. As a key driver of soil biochemical processes, soil microorganisms
play an important role in maintaining the stability and ecological functions of terrestrial
ecosystems [6]. When a crop is monoculture, it produces different microbial communities
that tend to have different effects on the host plant. For example, Dickeya (Enterobacteriaceae)
is a well-known pathogen with a broad host range and is widespread in monocultures [7]. A
wide range of plant hosts worldwide are affected by members of the genus Dickeya, particu-
larly Musa nana Lour, Chrysanthemum spp, Dianthus spp, Zea mays L, Solanum tuberosum L, and
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Solanum lycopersicum L, which can survive in soil for more than 12 months and adversely
affect plants [8]. It has been found that many microorganisms belonging to the genera Bacil-
lus (g_Bacillus), Burkholderia (g_Burkholderia), Pseudomonas (g_Pseudomonas), and Penicillium
(g_Penicillium) have the ability to solubilize phosphorus [9]. These root-associated microor-
ganisms can increase the availability of phosphorus in the soil by releasing phosphate from
the soil through the secretion of organic acids or phosphatases [10] The dominant genus
Variovorax (g_Variovorax) can improve replanting barriers by controlling plant hormone
levels to balance the influence of microbial communities on root growth [11]. Therefore, it
is essential to study microbial community structures for plant growth status.

Biogas is an important part of renewable energy [12], and it is increasingly used
as fertilizer produced via anaerobic fermentation [13]. It has been widely reported that
biogas fertilizer has positive effects on plant yield and soil properties [14]. The purpose of
biogas fertilizer is not only to improve soil fertility and achieve sustainable agriculture [15]
but also to provide readily available carbon compounds and nutrients, thereby reducing
nutrient losses due to leaching or gas loss [16]. In addition, it can also increase the stability
of soil and reduce the content of dispersive clay in soil [17]. A large number of studies
have reported strong positive relationships between biogas fertilizer application and plant
growth. At the same time, subsurface carbon input from root secretions and root turnover
is also increased, thus stimulating rhizosphere fungi and bacteria [18,19]. On the other
hand, biogas slurries contain less organic C due to anaerobic fermentation, which may
have a negative effect on the soil’s organic matter content [20]. There are few studies on the
effects of biogas fertilizer application on microbial diversity and structure. Therefore, it is
crucial to study the effects of these organic additives on microbial diversity.

We hypothesized that the application of biogas fertilizer might affect soil microbial
diversity and community structure by improving soil physicochemical properties, thereby
alleviating soil succession barriers, promoting fruit tree growth, and improving fruit quality.
Therefore, this paper conducted a study on the effect of biogas fertilizer on the soil microbial
community structure of apple orchards in dry rainfed areas.

2. Materials and Methods
2.1. Site Description and Sample Collection

This experiment was conducted (2019–2021) in a 10-year-old ‘Huimin Short Branch
Fuji’ orchard in Zhuhe Village, Zhudian Town, Zhuanglang County, Pingliang City, Gansu
Province (35◦8′33′′ N, 105◦58′13 E), where the weather conditions are characterized by
an average annual rainfall of 510 mm, an average annual temperature of 8.1 ◦C, a frost-
free period of 159 days, and an average annual sunshine time of 2179 h [21]. The soil
texture of the sampled apple orchard was loamy, with a row spacing of 3.5 m × 4.5 m at a
planting density of 635 plants/hm2. The fruit type is a short-branched Fuji apple (rootstock
of Malus robustaRehd, tree shape of the delayed happy type). Twelve apple trees with
similar growth and no pests or diseases were selected for treatment, and the experiment
was set up with two treatments, no biogas application (CK) and biogas application (T),
with six replications for each treatment. The application time of biogas was based on the
water and fertilizer demand characteristics of different growth stages in the annual growth
cycle of fruit trees and the distribution pattern of local rainfall, and it was scheduled to be
applied once during the fruiting period of the fruit trees and once after harvesting. The
production of the fertilizers was based on pig manure and crop residues, and the amount
of fertilizer produced was 60 kg per plant (with a 4-fold dilution of biogas). Starting in
2019, three radial fertilization trenches, 25 cm wide × 100 cm long, were opened outward
at the midpoint of the canopy projection radius with the trunk as the center, and the biogas
slurry was uniformly injected as a continuous supply for three years. Soil was sampled
at 0–0.2 m at six points during both treatments and sent to Shanghai Ouyi Biological for
sequencing. Each soil sample was divided into two subsamples: One was brought to the
laboratory on dry ice and stored at −80 ◦C for downstream applications (DNA extraction).
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The remainder of the sample was air-dried to determine the soil characteristics (organic
matter, pH, available nitrogen, available phosphorus, and available potassium).

2.2. Determination of Soil Physical and Chemical Properties and Fruit Quality

Soil pH was measured using a soil pH meter (FE28, Mettler Toledo, Zurich, Switzer-
land) with a soil–water ratio of 1:2.5 (w/v). Soil organic matter (SOM) was determined
using the K2Cr2O7 redox titration method. Available phosphorus was extracted with a
0.5 mol/L NaHCO3 solution (the Olsen method). Available potassium was extracted using
the flame photometric method via digestion with NH4OAC. Available nitrogen (AN) was
determined using the alkali-hydrolyzed diffusion method. Soil bulk density was measured
using the ring knife method [22].

Fruit weight was measured with a 1% balance. The longitudinal diameter and trans-
verse diameter of fruits were measured with a digital display vernier caliper, and the fruit
shape index was obtained as = longitudinal diameter/transverse diameter. The hardness
was measured with a GY-1 hardness tester. Soluble solids were determined with a PAL-1
digital sugar meter. The concentration of vitamin C was determined using molybdenum
blue colorimetry [23]. The content of soluble sugar was determined using the anthrone
reagent method [24]. The titratable acidity content was determined using standard NaOH
solution titration [25].

2.3. DNA Extraction

Soil DNA was extracted using a DNeasy PowerSoil Kit (QIAGEN, Dusseldorf, Germany)
following the manufacturer’s instructions. The purity and quality of the genomic DNA
samples were checked using 0.8% agarose gel electrophoresis, and the concentrations were
measured using a NanoDrop 2000 (Thermo Fisher, Waltham, MA, USA).

2.4. PCR Amplification and High-Throughput Sequencing Using Illumina Miseq

The diluted DNA was used as a template for the PCR amplification of bacterial 16S
rRNA genes and fungal ITS1 genes. In the analysis of bacterial diversity, the V3-V4 variable
regions of 16S rRNA genes were amplified with the universal primers 343F (343F-5′-
TACGGRAGGCAGCAG-3′) and 798R (798R-5′-AGGGTATCTAATCCT-3′). For fungi, the
primers ITS1 (5′-CTTGGTCATTTAGGAAGGAAGTAA-3′) and ITS2 (5-GCTGCGTTCTT-
CATCGATGC-3′) were used. PCR was carried out with a Bio-rad using a 30 µL reaction
volume containing 15 µL of 2 × Gflex PCR buffer, 0.6 µL of Tks Gflex DNA Polymerase
(1.25 U/µL), 2 µL of the primers (5 pmol/µL), 1 µL of the template DNA, and 11.4 µL of
dd H2O. The cycling parameters were 94 ◦C for 5 min, followed by 26 cycles at 94 ◦C for
30 s, 56 ◦C for 30 s, and 72 ◦C for 20 s, with a final extension at 72 ◦C for 5 min. Three
PCR products per sample were pooled to mitigate reaction-level PCR biases. The PCR
products were purified using a QIAquick Gel Extraction Kit (QIAGEN) and quantified
using real-time PCR. Deep sequencing was performed on the Illumina Miseq platform at
Ouyi Biomedical Technology Co., Ltd. (Shanghai, China).

2.5. Processing of Sequencing Data

The raw data were first screened, and sequences were removed from consideration if
they were shorter than 200 bp, had a low quality score (≤20), contained ambiguous bases,
or did not exactly match the primer sequences and barcode tags. The software package
UCHIME (version 8.1) was then used to further filter out sequences that were erroneous or
chimeric. Finally, the quality sequences obtained from QC were classified by operational
taxonomic unit (OTU) at 97% similarity using Vsearch v2.4.2 software [26]. The taxonomy
of ITS sequences was analyzed against the UNITE database. The rarefaction curves, alpha
diversity index with CHAO1, Good’s coverage, and Shannon and Simpson indices were
calculated using the software MOTHUR.

To compare the community characteristics in greater detail, heat maps at the genus
level were constructed, and Venn diagrams at the OTU level were created with the R
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package. Linear discriminant analysis effect size (LEfSe) analysis was performed to identify
significantly important microbial taxa. Finally, KEGG function prediction analysis was
carried out with the R package. A redundancy analysis (RDA) was performed based on
fungal abundance at the OTU level and physicochemical parameters using the R package.

2.6. Statistical Analysis

Microsoft Office Excel 2019 and Origin 8.0 were used for the data processing and
mapping, and SPSS 22.0 was used for the analysis of variance and correlation analysis. The
LSD of single-factor ANOVA was used for the statistical analysis to compare the significant
differences between the treatments (α = 0.05).

3. Results
3.1. Physicochemical Properties of Soil and Fruit Quality

The changes in physicochemical properties of the soil and fruit quality under different
treatments are shown in Tables 1 and 2. After the application of biogas fertilizer, the
soil pH, bulk density, and organic matter, available nitrogen, available phosphorus, and
available potassium contents significantly increased (Table 1). The fruit quality, hardness,
vitamin C (VC) concentration, titratable acid content, and soluble solids content were
significantly increased compared with the unapplied biogas fertilizer treatment (CK). The
largest increases were in vitamin C concentration and titratable acid, which increased by
0.939 and 0.444, respectively (Table 2).

Table 1. Effect of fertilization on main soil properties.

Treatment pH
Organic
Matter

(g·kg−1)

Available
Nitrogen

(mg·kg−1)

Available
Phosphorus
(mg·kg−1)

Available
Potassium
(mg·kg−1)

Bulk
Density
(g·m−3)

Soil Porosity
(%)

T 7.46 ± 0.05 12.72 ± 0.30 a 72.00 ± 0.77 a 24.71 ± 0.45 a 251.32 ± 1.31 1.69 ± 0.06 64.00 ± 0.07 a
CK 7.14 ± 0.03 7.43 ± 0.22 b 59.16 ± 1.71 b 8.00 ± 0.94 b 236.16 ± 3.25 1.44 ± 0.05 45.67 ± 0.05 b

Mean ± SE of six replicates. Lowercase letters exhibit significant differences (p < 0.05) according to LSD test.

Table 2. Effect of fertilization on main fruit quality.

Treatment Fruit Weight
(g)

Hardness
(kg·cm−2)

Fruit Shape
Index

Vc Concen-
tration

(mg·100 g−1)

Soluble
Sugar

(%)

Titratable
Acidity

(%)

Soluble
Solids

Content (%)

T 248.74 ± 5.64 7.26 ± 0.34 a 0.89 ± 0.02 3.49 ± 0.38 a 12.75 ± 0.65 0.13 ± 0.01 a 15.03 ± 0.41 a
CK 236.85 ± 4.52 6.44 ± 0.36 b 0.85 ± 0.03 1.80 ± 0.21 b 11.16 ± 0.72 0.09 ± 0.02 b 13.88 ± 0.27 b

Mean ± SE of six replicates. Lowercase letters exhibit significant differences (p < 0.05) according to LSD test.

3.2. Quality of Soil Microorganism Diversity

To investigate the diversity and structure of microbial communities in the apple
rhizosphere, we sequenced the 16S rRNA gene and the ITS1 gene. After filtering low-
quality reads and trimming adapters and barcodes, 55,551–62,245 and 68,054–75,994 high-
quality reads were obtained from bacteria and fungi, respectively. The bacteria and fungi
of 3525–4544 and 334–543 OTUs were identified, and the sequence similarity reached 97%.

Microorganism diversity was measured based on OTUs. The bacterial OTU distri-
bution Venn analysis demonstrated that there were a total of 6256 OTUs, with 1460 and
1661 unique OTUs in T and CK, respectively (Figure 1a). The fungal OTU distribution
Venn analysis demonstrated that there were a total of 713 OTUs, with 314 and 478 unique
OTUs in T and CK, respectively (Figure 1b). The Shannon–Wiener analysis (Figure 1c) and
Good’s coverage analysis (Figure 1d), which were used in this analysis, also indicated that
the sequence amount was enough to represent the true microbes in the sample and that the
deeper sequencing identification was successful.
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3.3. Overall Structural Changes in Microorganism Communities after Applying Biogas Fertilizer

Alpha diversity indices were evaluated based on OTUs. As can be seen in Table 3,
after applying biogas fertilizer, the Shannon index of bacteria increased compared with CK,
the choa1 index was lower than the CK index, and the Simpson index remained unchanged.
In addition, the diversity index of fungi was lower than that of the CK group. However,
there was little difference in the microbial diversity index between T and CK (Table 3).

Table 3. Diversity indices of bacteria and fungi in different treatments.

Treatment Choa1 Index Shannon Index Simpson Index

Bacteria
T 4982.218 9.81 1

CK 5005.635 9.754 1

Fungi T 396.709 2.34 0.51
CK 427.371 4.4423 0.87

The OUT-based PCA successfully represented the sample data. The results show
that the bacterial samples were grouped based on the different treatments. The first
principal component axis (PC1), which contributed 0.397 of the total variation, and the
second component axis (PC2), which contributed 0.258 of the variation, explained 0.655 of
the variation (Figure 2a). The PCA analysis of the fungal community displayed that the
contribution of PC1 was 0.448 and that of PC2 was 0.197 (Figure 2b). The results show that
the repetitions of T and CK were separated and that the repetition of T was more similar
than that of CK. In summary, the application of biogas fertilizer in continuous monoculture
soil can change the structure of the soil microbial community.
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3.4. Taxonomic Distributions of Microbes Enriched in the Soil with Application of Biogas Fertilizer

From the data, it can be seen that among bacteria, the most abundant phyla were
p_Proteobacteria (0.364–0.372), p_Bacteroidetes (0.169–0.219), p_Gemmatimonadetes (0.133–0.154),
p_Actinobacteria (0.095–0.166), p_Acidobacteria (0.037–0.051), p_Nitrospirae (0.028–0.034), and
p_Verrucomicrobia (0.019–0.035), which accounted for more than 90% of sequences among all
groups (Figure 3a). Proteobacteria dominated the apple rhizosphere, making up 0.364–0.372
of all sequences.

At the phylum level, there were seven species with significant differences. Among
them, Actinobacteria were significantly abundant (p < 0.05) in soil samples from the groups.
In contrast, a significant decrease (p < 0.05) was observed in the relative abundances
of Verrucomicrobia, Elusimicrobia (p_Elusimicrobia), Dependentiae (p_Dependentiae), Defer-
ribacteres (p_Deferribacteres), Omnitrophicaeota (p_Omnitrophicaeota), and Margulisbacteria
(p_Margulisbacteria) in T soils.

Among the sequences identified at the genus level, the relative abundances of 22 gen-
era were significantly higher (p < 0.05) in the CK group than in the T group (Figure 4a).
Conversely, the relative abundances of 26 genera in the rhizosphere soils of the continu-
ous replanting orchard were significantly higher (p < 0.05) than those in the CK group,
and the relative abundances of Dongia, Gaiella (g_Gaiella), Steroidobacter (g_Steroidobacter),
and Nordella (g_Nordella) in the T group were significantly higher than those in the CK
group among the top 30 genera. In contrast, the relative abundances of Is-44 (g_Is-44) and
Polyclovorans (g_Polyclovorans) in the CK group were significantly higher than those in the
T group.

For the fungal community, the rhizosphere of the T group contained 7 bacterial
phyla, 28 classes, 73 orders, 136 families, and 254 genera. The phylum Ascomycota
(p_Ascomycota) was the most abundant across all samples, followed by Basidiomycota
(p_Basidiomycota), Mucoromycota (p_Mucoromycota), Glomeromycota (p_Glomeromycota),
Chytridiomycota (p_Chytridiomycota), Cercozoa (p_Cercozoa), and Rozellomycot (p_Rozellomycot)
(Figure 3b). The relative abundance of Basidiomycota in the rhizosphere of the T group was
higher than that in the CK group. In contrast, the other fungal communities were lower
than those in the CK group. Among the sequences identified at the genus level, the relative
abundances of Diversisporales and Chaetomium in the T group were significantly lower than
those in the CK group (Figure 4b).

In order to further clarify the possible interactions between bacterial dependencies
in the rhizosphere soil, the biomarkers of different species were quantitatively analyzed
using linear discriminant analysis (LDA) and effect quantity analysis (Figure 5a). A total
of five biomarkers were identified from all rhizosphere soil samples, as shown in the
branch diagram. In the soil bacterial community of the experimental group, there was
only one different phylum at the phylum classification level, which was Actinobacteria
(p_Actinobacteria). There was a difference at the class level. At the order level, there was a
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different order, Gaillales (o_Gaillales). In the soil bacterial community of the CK group, there
was a different order, Chitinophagales (o_Chitinophagales), at the order level and a different
family, Chitinophagaceae (f_Chitinophagaceae), at the family level.
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species.

Cladograms obtained from the LEfSe analysis provided a deep insight into the
changes in identified fungi accumulated in the rhizosphere soil under different treatments
(Figure 5b). Firstly, there were many unidentified fungi in the CK group. Guehomyces,
which are a part of the phylum Basidiomycota (p_Basidiomycota), preferentially colonized
the T group. The genus Botrytis (g_Botrytis) also preferentially colonized it. The order
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Diversisporales (o_Diversisporales) and its families Diversisporaceae (f_Diversisporaceae) and
Diversispora were previously planted in the CK group. In the dominant family Togniniaceae
(f_Togniniaceae) of the order Diaporthales, the most abundant genus was Phaeoacremonium
(g_Phaeoacremonium), which preferentially colonized the CK group. The family Bionectriaceae
(f_Bionectriaceae) was dominant in the CK group.
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3.5. Prediction of Bacterial Functions

PICRUST was applied to predict the abundances of different metabolic pathways
based on the 16S rRNA sequencing data. Overall, six pathways with significant enrich-
ment of differentially expressed genes were found in the predicted pathway (Figure 6).
The results show that basic metabolic pathways dominated, including human diseases,
environmental information, processing organismal systems, metabolism, and genetic in-
formation processing. Among these pathways, environmental information processing,
organism systems, and metabolism in the T group were significantly higher than those in
the CK group.
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3.6. Links between Microbial Community and Soil Physicochemical Properties

Soil physicochemical properties significantly changed with the application of biogas
fertilizer (Table 1). The RDA model was applied to investigate the relationships between
these soil parameters and the microbial community compositions (Figure 7). Associations
between the bacterial and fungal groups and soil physicochemical properties were evalu-
ated using the soil parameter data as the explanatory matrix. For bacteria, RDA1 and RDA2
explained 0.929 of the total variance. Except for Chloroflexi bacteria, other bacteria were
closely related to the soil’s physicochemical properties, and Bacteroidetes was inversely
proportional to all soil physical and chemical properties. For fungi, RDA1 and RDA2
explained 0.995 of the total variance. Regarding phyla, Ascomycota, Basidiomycota, and
Zygomycota were closely related to these soil parameters. On the contrary, Glomeromycota,
Chytridiomycota, Cercozoa, and Rozellomycota were not closely related to soil physicochemi-
cal properties.
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4. Discussion

Biogas projects are considered to be effective methods for the anaerobic digestion of
animal manure or crop residues and have been widely used. Biogas fertilizer is rich in
organic matter, and increasing the application of biogas fertilizer is an important means
to increase the content of soil organic matter and can also increase the number of soil
microorganisms and regulate the balance between microbial populations [27]. With the
application of biogas fertilizer in crop production, the activity of root microorganisms can
be effectively increased, the root epidermis is more capable of absorbing nutrients from the
soil, and the activity of soil enzymes is improved [28]. A study by Xu et al. (2020) found
that after years of biogas fertilizer application, soil nutrient content, pH, total nitrogen, and
other physicochemical properties significantly increased, and the soil microbial community
structure and diversity significantly changed [6]. In terms of improving the quality of
crops, the application of biogas fertilizer not only has a significant enhancing effect on the
vitamin C, protein, amino acid, and sugar contents in crops but also reduces the content
of nitrates and nitrites in crops. For example, some studies have shown that the contents
of amino acids, proteins, soluble sugars, and vitamin C in the fruits of tomatoes treated
with biogas fertilizers are significantly increased [29], which is consistent with our findings.
In our study, we found that the application of biogas fertilizer significantly increased the
soil porosity and organic matter, available N, and available P contents in the continuous
cropping soil of apple orchards, and the VC concentration in the fruit increased by 0.938.
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This may be due to the fact that the application of biogas fertilizer provides a variety of
nutrients to plants, improves soil conditions, and creates a suitable soil environment for
the growth of plant roots, which in turn promotes the growth and development of plants to
improve the quality of fruits.

To further understand whether biogas fertilizer affected the structure and diversity of
soil microbial communities, we performed microbial transcriptomic sequencing. We found
that in bacteria, the dominant phyla (average RA > 1%) were Proteobacteria, Bacteroidetes,
Gemmatimonadetes, Actinobacteria, Acidobacteria, Nitrospirae, Verrucomicrobia, and Firmicuteshe.
These phyla were widespread in the soil [30]. Many Betaproteobacteria, Bacteroidetes, and
Actinobacteria are copiotrophic soil bacteria, which become abundant if labile substrates
are available [31]. This successfully explains why Proteobacteria and Actinobacteria were the
most dominant phyla. Among these dominant phyla, Proteobacteria was the most dominant
phylum. Proteobacteria have commonly been reported as the first dominant phylum in
soils [32]. Sphingomonas, which belongs to Proteobacteria, is a plant growth promoter. Some
microorganisms in Sphingomonas can secrete indole-3-acetic acid and other substances,
promote plant growth, and degrade organic matter [33] and have activity in the biological
control of pathogenic bacteria [34]. In this study, we found that the relative abundance
of Actinobacteria increased after applying biogas fertilizer. Similar results have also been
reported, where the relative abundance of Actinomycetes with long-term chemical fertilizer
application was lower than that with organic fertilizer application [35]. As the main phylum
in bacterial groups, Actinomycetes have the ability to resist stress and pathogen infection,
so they may have important potential in fruit trees to adapt to environmental stress [36].
In this study, we also found that after applying biogas fertilizer, the relative abundance of
Chloroflexi increased by 1.360. Most microorganisms in the phylum Chloroflexi are strictly
anaerobic bacteria that can ferment sugars and polysaccharides into organic acids and
hydrogen to accelerate the decomposition of soil organic matter [37]. The dominant phylum
Chloroflexi has been largely reported as a group of bacteria that frequently live in a nutritious
environment, and numerous nutrients are beneficial to their growth and reproduction [38].

For fungi, the most dominant phyla Ascomycota, Basidiomycota, and Mucoromycota,
which frequently occur in nature, were also detected in this study. Among these phyla,
Ascomycota has been found to be associated with a wide range of crop monoculture sys-
tems [39]. The class Sordariomycetes of Ascomycota is the dominant fungus, which is con-
sistent with many studies that found Sordariomycetes to be the most common fungal class
in different agricultural systems, with members being ubiquitous as pathogens and plant
endophytes in almost all ecosystems [40]. The phylum Basidiomycota includes a large and
complicated group of fungi with abundant saprophytic (wood decomposers and litter
decomposers), ectomycorrhizal, and parasitic fungi [41]. Within this phylum, the predom-
inant group is the agaric bacteria that accumulate during treatment and are reported to
be a key decomposer, containing “soft”, “brown”, and “white” decay fungi that produce
hydrogen peroxide and enzymes to degrade complex plant compounds, including cellulose
and lignin [42]. Therefore, this class may have caused the increase in apple soil organic
matter from the constant biogas fertilizer input under long-term continuous culture. The
genera Cryptococcus are oligotrophic organisms and single-celled microorganisms (yeast)
with a wide range of enzymatic activities [43]. This shows that the application of biogas
fertilizer reduces the relative abundance of oligotrophic organisms. Thus, this genus can be
regarded as a fungal indicator for soil nutrient degradation in apple field cropping.

Therefore, we believe that the application of biogas fertilizer can improve the physico-
chemical properties of orchard soil and the structure of the soil microbial community and
thus improve the quality of fruit.

We expect to lay the foundation for orchard production through microbial isolation
and characterization by systematically isolating and identifying dominant microorganisms
in pure cultures, such as Sphingomonas and Chlamydomonas.
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5. Conclusions

The continuous application of biogas fertilizer in dry and rain-fed areas significantly
increased soil physicochemical properties such as soil organic matter, available nitrogen,
available phosphorus, and soil porosity. Additionally, the fruit quality was also significantly
improved, for instance, the contents of vitamin C, titratable acid, and soluble solids in
fruits also significantly increased. Finally, microbiomics also revealed that the application
of biogas fertilizer can increase the relative abundance of dominant floras, such as Sph-
ingomonas, Chlamydomonas, and Stachybotry, which significantly increased and provided
favorable support for orchard production.
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