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Abstract: Pepper (Capsicum annuum L.) is one of the most widely grown vegetable crops in China,
with widespread cultivation worldwide. Fruit weight (size) is a complex trait controlled by multiple
factors and is an essential determinant of pepper yield. In this study, we analyzed the transcriptome
of two pepper recombinant lines with different fruit weights, ‘B302’ and ‘B400’, at five developmental
stages to reveal some of the differentially expressed genes and mechanisms controlling fruit weight.
The results showed that 21,878 differential genes were identified between the two specimens. Further
analysis of the differentially expressed genes revealed that Boron transporter 4 was significantly highly
expressed in the large-fruited pepper and almost not expressed at all in the small-fruited pepper.
CaAUX1, CaAUX/IAA, CaGH3, CaSAUR, and other related genes in the Auxin signal transduction
pathway were highly expressed in the large-fruited pepper but significantly reduced in the small-
fruited pepper. In addition, a comparison of differentially expressed transcription factors at different
times revealed that transcription factors such as CaMADS3, CaAGL8, CaATHB13, and CaATHB-40
were highly differentially expressed in the large-fruited pepper, and these transcription factors may be
related to pepper fruit expansion. Through weighted gene co-expression network analysis (WGCNA),
the MEorangered4 module was shown to have a highly significant correlation with fruit weight, and
the key modules were analyzed by constructing the hub core gene network interactions map and
core genes regulating fruit weight such as APETALA 2 were found. In conclusion, we find that the
expression of relevant genes at different developmental stages was different in ‘B302’ and ‘B400’,
and it was hypothesized that these genes play essential roles in the development of fruit size and
that the interactions occurring between transcription factors and phytohormones may regulate the
development of fruit size.

Keywords: pepper; fruit size; transcriptome; auxin; transcription factor

1. Introduction

Pepper is a crop of the Solanaceae family, which originated in the South American
region more than 6000 years ago [1]. As a globally important vegetable crop, pepper is in
demand in food, medicine, and industrial production. The global pepper cultivation area
in 2020 was 31,049,900 acres and production was 36,137,000 tons (https://www.fao.org/
faostat/en/#data/FBS (accessed on 5 July 2023)). Different pepper varieties are adapted
to different processing as food, such as the small-fruited pod pepper being suitable for
producing dried pepper [2]. In addition, market preference is an essential factor influencing
the fruit size of selected peppers due to different consumption habits of people. Fruit size
is a complex trait controlled by a combination of factors, both by cultivation conditions
and the external environment, but it is also still determined by genetic traits [3,4]. The cells
actively divide from the start of ovule development to fruiting and continue until the fruit
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reaches maturity [5]. Moreover, cell expansion begins at the fruit set and is accompanied
by cell division until fruit formation of final size [6]. Thus, the more active the cell division,
the more rapid the increase in cells within the fruit, and the larger the fruit [5]. Several
genes associated with promoting cell enlargement and proliferation have been reported to
regulate the growth and size of plant organs, such as EBP1, AtTOR, and the growth hormone
response factor ARF2 [7–10]. Current research has also revealed that phytohormones are
widely involved in the regulation of various aspects of plant growth, development, and
environmental stress [11–13]. In particular, growth hormones are essential for plants as a
central and most common plant growth regulator.

Transcription factors can regulate gene expression, MADS-box and HD-ZIP can in-
teract with YABBY to regulate plant organ development, BHLH can regulate target gene
expression, and has phytohormone biosynthesis function [14]. MADS-box is essential in
floral organ formation and fruit size development [15–18]. AGAMOUS (AG), an influential
factor of the MADS-box family, was first found to be necessary for the development of
reproductive organs, and the loss of AG does not enable the formation of complete floral
organs [19]. AG is also an indispensable regulatory gene for the control of floral meristem
organization [20]. Flower organ development is mainly related to auxin, which is necessary
for the initial development of the floral primordium, and it has been revealed that the
AG gene (RhAGL24) can affect floral development through the regulation of auxin-related
genes (RhARF18) [21]. In addition, FUL, a more studied MADS-box gene, can regulate cell
differentiation in fruit development, and the mutation of this gene caused abnormal fruit
dehiscence due to the inability of fruit to grow normally, presumably due to the variation in
the FUL gene that prevents the outer wall cells from expansion and differentiation [22,23].
Recently, PFAG1 and PFAG2, two genes of the MADS-box, were found to have multiple
functions in flower and fruit development, but their roles in fruit size development need
further validation [24]. Plants develop in response to changing environmental conditions,
and the HD-Zip family can regulate plant development in response to environmental stim-
uli; HD-Zip I and HD-Zip II transcription factors regulate maturation and organ adaptation
by inhibiting or promoting cell proliferation, differentiation, and amplification [25,26]. In
addition, members of the HD-ZIP transcriptional family play a regulatory function in the
regulatory network of proximal–distal polarity in lateralized plant organs, such as the
carpels, leaves, and ovules [27–29]. A range of genes are required to regulate development
from flower to fruit formation, and they all influence the final fruit size.

In previous studies, SUN, SlKLUH, Ovate, LC, FAS, and many QTL loci have been
investigated in tomatoes to control fruit shape or size [30–34]. Since pepper and tomato be-
long to the same genus Solanum and have high genetic similarity, comparisons revealed the
presence of genes in pepper that are homologous to tomato and regulate fruit shape, such
as CaOvate, which negatively regulates fruit length [35,36]. Similarly, Chunthawodtiporn
et al. identified candidate genes (Big Brother, Ovate, and KLUH/CYP78A5) in chromosomes
1, 2, and 3 of pepper that control the fruit shape [37]. CaPOS1 in pepper, a direct homolog
of trichomes POS1, has been shown to control fruit size, and this function is achieved by
positively regulating cell size [38]. However, fewer genes have been identified in pepper
than in other crops to control fruit size, and there are many genes whose functions have
been shown in other crops but have yet to be reported in pepper, as well as there being no
transparent molecular regulatory network. Therefore, in this study, we chose two pepper
recombinant lines with different fruit sizes as specimens, and analyzed the changes in gene
transcription levels in fruit development using RNA-seq.

2. Materials and Methods
2.1. Plant Materials

Two pepper recombinant lines, ‘B302’ and ‘B400’, selected by the College of Horti-
culture, Hunan Agricultural University were used as the specimens. Spring sowing was
carried out in the greenhouse of Hunan Agricultural University with conventional water
management and fertilizer in March 2022. The bloom period was in 4 May. Pepper is
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a self-pollinating plant, so we collected at 0 days after pollination of the flowers (5 May
2022, 0 DAP), 15 days after pollination (20 May 2022, 15 DAP), 20 days after pollination
(25 May 2022, 20 DAP), 30 days after pollination (30 May 2022, 30 DAP), and 40 days after
pollination (9 June 2022, 40 DAP). There were three replicates per group and samples were
frozen at −80 ◦C for RNA extraction.

2.2. Fruit Development Investigation

The fruits were sampled to measure the growth index. Three fruits with similar nodal
position and consistency were randomly selected at different time intervals according to the
developmental stages: 15 DAP, 20 DAP, 30 DAP, and 40 DAP, and photographs were taken
to record the phenotypes. The weight of the fruit was measured using an electronic balance,
and vernier calipers were used to measure the transverse and longitudinal diameters
of the fruit, flesh thickness, shoulder width, and tip width, which were recorded and
averaged separately.

2.3. Histological Sections of the Fruit

The paraffin sections were used to observe the tissue structure at five growth periods:
0 DAP, 15 DAP, 20 DAP, 30 DAP, and 40 DAP. Ovaries or fruits collected at each developmental
stage were cut into small pieces and fixed with FAA fixative. Tissue sections of the material
were sequentially washed with xylene, anhydrous ethanol with 75% alcohol in dewaxed water,
dehydrated, then stained with toluidine blue. Finally, the tissue sections were sealed after
the steps of wax dipping, embedding, and paraffin removal. Paraffin blocks were sectioned
with a slicer RM2016 (Leica, Wetzlar, Germany). Anatomical images of tissue sections were
observed using a microscope, the ECLIPSE E100 (Nikon, Tokyo, Japan).

2.4. RNA Extraction, Library Preparation, and Sequencing

A total of 30 samples were sequenced from 0 DAP ovaries, 15 DAP, 20 DAP, 30 DAP,
and 40 DAP fruits of “B302” and “B400”. The total RNA of all samples was extracted and
tested for RNA quality by spectrophotometer and Agient2100; the qualified samples were
enriched for eukaryotic mRNA by magnetic beads with Oligo (dT), and the mRNA was
randomly interrupted by adding fragmentation buffer; the mRNA was used as a template
for synthesizing the first and second strand of cDNA and purifying it; and the first cDNA
was then synthesized and sequenced in the second strand. The first cDNA strand and the
second strand were synthesized and purified using mRNA as a template; then, end repair
was performed, A-tail was added, sequencing junctions were connected, and the fragment
size was selected by AMPure XP beads; finally, the cDNA library was enriched by PCR.
After the library was constructed, the Qubit 3.0 fluorescence quantification instrument,
Qsep400 high-throughput analysis system, and Q-PCR method were used for the quality
control of the library, and the PE150 mode sequencing was carried out using the Illumina
NovaSeq6000 sequencing platform after passing the qualification.

2.5. Identification and Functional Annotation of Differentially Expressed Genes (DEGs)

Zunla-1_v2.0 was used as the reference genome to uncover new transcripts and genes
of the species by using Hisat 2 software for comparison, StringTie to assemble the reads
on the comparison, and comparing with the original genome to find the unannotated
transcribed regions [39]. The RNA-seq sequencing results were the sequence fragments
of expressed transcripts, and the expression level of the gene was calculated based on
the sequencing reads ratio to the number in each transcript, and FPKM was used as a
measure of the expression level of the transcript or gene. Differential expression in the gene
expression data was determined using DESeq 2, and the resulting p-values were adjusted
using the Benjamini and Hochberg algorithm, with Fold Change ≥ 2 and FDR < 0.01 as the
DEGs’ screening criteria [40]. Gene function was annotated by sequence comparison based
on the following databases: nr, p fam, KOG/COG, Swiss-Prot, KO, and GO.
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2.6. WGCNA Analysis

WGCNA is a method that aggregates gene expression data into co-expression mod-
ules and is able to identify core genes associated with phenotypes in key modules [41].
Taking each node as a gene, we considered genes with expression commonality in different
samples as being in the same gene network, and the expression correlation coefficient
metric between genes in the same gene network indicated their co-expression relationship.
WGCNA was analyzed on the Beamac Cloud Platform (www.biocloud.net (accessed on
1 October 2022)). WGCNA is a method for aggregating gene expression data into co-
expression modules, thereby exploring the association relationship between the modules
and the target phenotype and identifying core genes within key modules associated with
the phenotype [41]. With each node as a gene, we consider genes with expression common-
ality in different samples to be in the same gene network, and the expression correlation
coefficient measure between them indicates the co-expression relationship between the
genes. In addition, there was a high degree of co-expression of genes within modules
and a low degree of co-expression of genes belonging to different modules. WGCNA was
analyzed on the Bemac Cloud Platform (www.biocloud.net (accessed on 1 October 2022)).

2.7. Expression Analysis of Quantitative Real-Time PCR

A total of 30 samples were subjected to qRT-PCR on 0 DAP ovaries, 15 DAP, 20 DAP,
30 DAP and 40 DAP fruits of ‘B302’ and ‘B400’. The qRT-PCR method was referenced by
Taylor et al. [42]. The cDNA was used as a template for qRT-PCR validation using the
Vazyme fluorescence quantification kit (ChamQTM SYBR ® qPCR Master Mix, Jiangsu,
China). Gene-specific primers for qPCR were designed according to the sequences selected
in the RNA-seq (Table S1). Relative gene expression was normalized using the 2–∆∆Ct

method [43].

2.8. Statistical Analysis

One-way analysis of variance (ANOVA) was carried out using IBM SPSS Statistics
22.0 software to analyze the significance analysis [44]. Microsoft Excel 2010, Originpro 2018,
and Adobe Photoshop 2020 were used to make charts. Three biological replicates were
used for each sample in transcriptome sequencing and qRT-PCR.

3. Results
3.1. Physiological Investigation of Fruit Development in Pepper

Large-fruited ‘B400’ and small-fruited ‘B302’ generally mature 30–45 days after flowering.
To study the fruit growth characteristics of pepper of different sizes, the physiological character-
istics of the fruits of the two specimens at different developmental stages within 40 DAP were
measured, and their flowers, ovaries, and seeds were also compared (Figure 1A). The results
showed that the phenotypes of flowers, ovaries, and seeds of the large-fruited and small-fruited
pepper were significantly different, and the two specimens had significant differences in six
traits, namely, single fruit weight, flesh thickness, transverse diameter, longitudinal meridian,
shoulder width, and tip width. Fruit weight was the most different between the two specimens,
with ‘B302’ having a mature single fruit weight of 10.35 g and ‘B400’ having a mature single
fruit weight of 37.05 g (Figure 1B). In addition, except for the fruit longitudinal, which was
significantly greater in ‘B302’ than in ‘B400’, ‘B400’ was considerably higher than ‘B302’ in the
other five traits; the phenotypic values of B400 reached a high level of significance at each
developmental stage in relation to that of the small-fruited pepper (Figure 1B–G).

Cell tissue were stained in paraffin of ovaries and fruits at different developmental
stages of the two specimens to study the role of cell expansion and proliferation in fruit size
(Figure 2). At 0 DAP, the exocarp and mesocarp cells in the ovaries of both specimens were
similar in size and nearly round in shape. Moreover, there was no significant difference in
cell size between the two specimens except for the apparent difference in ovule size and
number. During the fruit development stage, the fruit cells of ‘B302’ compared with those
of ‘B400’ were relatively compact and neatly arranged. Still, the two specimens had no
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significant difference in cell size. In addition, cell expansion was apparent from 15 DAP to
20 DAP, indicating that fruit growth was accompanied by cell expansion and proliferation.
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(E) 40 DAP Fruit tissue imaging.

3.2. Overview of RNA-Sequence Results and Analysis of Differentially Expressed Genes (DEGs)

By sequencing the eukaryotic reference transcriptome of ‘B302’ and ‘B400’ specimens
of five developmental stages, the RNA-seq analysis of 30 samples was completed, and a
total of 229.89 Gb of lean data were obtained. The clean data of each piece reached 6.28 Gb,
the percentage of Q30 bases was 91.59% and above, and the GC content was 42.48% and
above. The clean reads of each sample were compared with the pepper genome (Zunla-1),
and the comparison efficiency ranged from 90.06% to 95.07%. These results indicate that
the RNA-seq results are of high quality and provide a basis for the reliability of subsequent
data analysis. Based on the results, 50,020 genes were identified, 14,684 novel genes were
placed, and 7721 were functionally annotated.

To investigate DEGs associated with the development of pepper fruit size, fold change
≥ 2 and FDR < 0.01 were used as the DEGs screening criteria to analyze the DEGs, and
a total of 21,878 DEGs were obtained in this study. To find the DEGs related to fruit size
development in different developmental stages, five comparison groups (0 DAP, 15 DAP,
20 DAP, 30 DAP, 40 DAP) were constructed according to the ‘B302’ vs. ‘B400’ model for
different developmental stages, and a total of 11,028 DEGs were obtained, of which 519 DEGs
were identified in all five developmental stages (Figure 3A,B). The analysis revealed that
the two specimens had the least number of DEGs at 20 DAP, with a total of 2658 DEGs
obtained, including 1377 up-regulated genes and 1281 down-regulated genes; and the highest
number of DEGs was obtained at 40 DAP, with 6577 DEGs obtained, including 3841 up-
regulated genes and 2736 down-expressed genes. The above data showed that both the
small-fruited material ‘B302’ and the large-fruited material ‘B400’ had more DEGs at different
developmental stages. In addition, Boron transporter 4 (Capana03g000352), Zinc finger BED
domain-containing protein RICESLEEPER 1 (newGene_2736), Fasciclin-like arabinogalactan protein
11 (Capana10g001842, FLA11), and F-box/kelch-repeat protein At1g80440 (Capana03g00-0318)
were significantly differentially expressed at different times in the two specimens (Table
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S2). Except for the Capana03g000318, the other genes were significantly highly expressed in
large-fruited pepper. In contrast, Boron transporter 4, Zinc finger BED domain-containing protein
RICESLEEPER 1, FLA11, and At1g80440 were all essential in plant growth and development.
Therefore, they may positively or negatively regulate the development of pepper fruit size.
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stages: (A) histogram of up-regulated and down-regulated DEGs in the comparison groups at
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3.3. GO Enrichment Analysis of DEGs

GO enrichment allows functional annotation and enrichment analysis of DEGs and
analyzes the function of DEGs by annotating DEGs into branches under three significant
functions: cellular components, molecular functions, and biological processes. GO func-
tional enrichment analyses were performed on 11,028 DEGs from the five comparison
groups. The results showed that 7312 genes were annotated to GO functions, and these
genes were enriched in 50 GO terms for cellular components, biological processes, and
molecular functions. The analysis of the top 40 items with the highest enrichment of DEGs
revealed that the primary molecular functions were catalytic activity, binding, transporter
activity, nucleic acid-binding transcription factor activity, a regulator of molecular function,
and antioxidant activity (Figure 4). Among the molecular functions, the DEGs in catalytic
activity, binding, and transport activities were the most aggregated. They aggregated to
2135, 2065, and 240 at 40 DAP, which was up to twice as many as the comparison group
at other stages, indicating that the catalytic activity, the binding effect, and the transport
activity were highly significant at the late stage of fruit growth; in biological processes,
the GO items with the most DEGs enriched were metabolic processes, cellular processes,
single organism processes, biological regulation; DEGs in cellular fractions were mainly
enriched in membranes, membrane fractions, cells, cellular fractions. Thus, DEGs may be
associated with catalytic activity, metabolic processes, and membrane occurrence with fruit
enlargement during fruit development.
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‘B302’/’B400’.

3.4. KEGG Pathway Analysis of DEGs

The KEGG pathway reveals the function of DEGs that may be related to fruit size
development in pepper. KEGG analysis was performed on the comparison group at
different developmental stages, and 134 KEGG pathways were enriched. We mapped and
analyzed the top 20 pathways screened for the highest enrichment of DEGs (Figure 5A). The
results showed that DEGs were significantly enriched in plant hormone signal transduction,
MAPK signaling pathway-plant, starch, and sucrose metabolism pathways. Among them,
more genes were enriched in the plant hormone signal transduction pathway, accounting
for 9.22% of the total DEGs in all the pathways. It was also found that among the top three
pathways that were most enriched in DEGs, the number of DEGs was the lowest at 20 DAP,
while the number of DEGs was the highest in 40 DAP fruits, with a 2-3-fold difference
between the two. These data suggest that differences in fruit size become more pronounced
later in fruit development, when the number of DEGs increases.
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In the “Plant hormone signal transduction” pathway, ten genes encoding six proteins
of the Auxin signal transduction pathway were significantly differentially expressed in
the large-fruited pepper and small-fruited pepper at different times (Figure 5B). Among
these genes, we found that the expression of CaAUX1 (Capana04g001744), CaGH3 (Ca-
pana08g002278), and CaSAUR (Capana06g001979) was significantly elevated in the large-
fruited pepper at the time of the ovary stage and was 2.87-fold, 2.44-fold, and 2.84-fold
higher compared with that of the small-fruited pepper, respectively. In addition, the expres-
sion of CaAUX/IAA (Capana09g000285) was higher in the large-fruited pepper than in the
small-fruited pepper at all five developmental stages and was significantly up-regulated
at 20 DAP and 40 DAP. The expression of CaTIR1 (Capana06g-000011), CaAUX/IAA (Ca-
pana08g001238), and CaSAUR (Capana03g001921) was significantly higher in the large-
fruited pepper than in the small-fruited pepper at the later developmental stages of the
fruit (30 DAP, 40 DAP).

3.5. Weighted Gene Co-Expression Network Analysis(WGCNA)

To screen gene modules related to the development of pepper fruit size, explore the
co-expression network of fruit size-related genes based on expression patterns, and filter
the core genes in the fundamental modules, WGCNA analyzed 21,878 DEGs. The results
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showed that the TOM dendrogram and heatmap of correlation between genes and samples
were clustered in a cluster dendrogram divided into 16 co-expression modules (Figure 6A).
Among them, the most significant number of genes was pressed in the MEbrown module,
which was 3680; and the smallest number was in the MEsaddlebrown module, which was
77. Module-trait correlation heat maps were analyzed after correlating the co-expression
network with the statistical values of weight traits of samples from different developmental
stages of the two fruit specimens (Figure 6B). The results showed that the MEorangered4
module was highly significantly and positively correlated with the weight trait of pepper
fruits with a correlation coefficient of 0.93, and 140 genes were highly accumulated in this
module (Figure 6C; Table S3). Secondly, 1107 genes in the MEcyan module and 458 genes
in the MEblack module were also positively correlated with the fruit weight trait, with
correlation coefficients of 0.71 and 0.67, respectively. In contrast, the MEmidnightblue
module was negatively associated with the fruit weight trait.
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The analysis revealed that the MEorangered4 module had the most significant positive
correlation with fruit weight. To screen the core genes within the fundamental modules, Cy-
toscape software was used to filter the core genes and visualize their interaction networks.
The results showed that Floral homeotic protein APETALA 2 (Capana04g-002188), Nuclear
transcription factor Y subunit C-2 (Capana11g000869), Eukaryotic translation initiation factor
isoform 4G-1 (newGene_16303), Fasciclin-like arabinogalactan protein 9 (Capana07g001777),
Serine/threonine-protein kinase PBS1 (Capana02g003676) are core genes within the MEoran-
gered4 module. Core genes such as APETALA 2, EIF4G1, and NF-Y C-2 have been found
to play roles in flower development, mitosis, and plant growth and development. All
these genes were significantly elevated in the large-fruited pepper in this study, so it is
hypothesized that they also contribute to fruit size.

3.6. Expression Analysis of DEGs Associated with Fruit Weight in Pepper (Capsicum annuum)
3.6.1. Genes Associated with Cell Division, Changes in Cell Cycle Control, and Cell Wall

In ALL DEGs, genes with unknown function and low expression were identified by
first deleting genes with unknown function and that were low regulated, then excluding
genes not related to plant growth and development by annotation, and searching for genes
related to fruit expansion. The results revealed eight DEGs, specifically in cell division
and cell cycle control, and six genes related to cell walls, membranes, and envelopes
(Figure 7). Among them, CaCullin-1 (Capana11g002239), CaSKD1 (Protein SUPPRESSOR
OF K(+) TRANSPORT GROWTH DEFECT 1, Capana00g004069), and Cwf15/Cwc15 cell
cycle control protein (Capana01g001023) were significantly up-regulated throughout the
developmental stage from ovary stage to fruit ripening in large-fruited pepper, and their
expression differed considerably from that in small-fruited pepper, where CaSKD1 was also
annotated to be associated with the cell wall; putative RING-H2 finger protein ATL71-like
(Capana00g004824) gene was significantly elevated at 30 DAP in large-fruited pepper and
was higher but not up-regulated compared to small-fruited pepper in other developmental
stages; L-ascorbate oxidase (Capana12g001690) was significantly up-regulated at 0 DAP,
15 DAP, and 30 DAP in large-fruited pepper, and the expression of these was 6-0-8.6-fold
higher in 15 DAP and 30 DAP compared to small fruits; presumably, these genes all play a
role in promoting cell division. In addition, we found that three genes, Sucrose synthase 2
(Capana03g003656), CaExpansin-A1 (Capana04g000153), and Probable arabinosyltransferase
ARAD1 (Capana11g002074), were highly expressed in the whole developmental stage
(0DAP to 40DAP) of the small-fruited pepper. They were significantly higher in the small-
fruited pepper, except for CaExpansin-A1 (Capana04g000153), which showed no difference
between the large-fruited pepper and small-fruited pepper at 0 DAP. In contrast, CDT1-like
protein a (Capana01g001717) was significantly down-regulated in expression throughout
the developmental stages (0 DAP to 40 DAP) in large-fruited pepper compared to small-
fruited pepper. In addition, the expression of putative glycine-rich cell wall structural protein
1 (Capana03g002560), Pistil-specific extensin-like protein (Capana02g001935), and Fasciclin-
like arabinogalactan protein 1 (Capana10g000176) were three genes whose expression was
significantly elevated in large-fruited pepper.
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3.6.2. Transcription Factors Associated with Fruit Size Regulation

Transcription factors are a class of proteins that regulate gene expression, and transcrip-
tion families such as MADS-box, BHLH, and HD-ZIP have been shown to play essential
roles in plant growth and development by previous studies [14,17,45]. In our research,
transcription factor analysis using ALL DEGs from different developmental stages of large-
and small-fruited pepper revealed a total of 1758 differentially expressed transcription
factors, and the most representative and gene-rich TF families were MYB, AP2, BHLH,
C2H2, MADS, WRKY, GRAS, HB-HD-ZIP, and OFP, with 189, 162, 131, 120, 109, 69, 58, 38,
and 24 genes (Table S4).

Through gene annotation and expression screening, 11 significantly specifically ex-
pressed transcription factors were identified in three transcription families, MADS-box,
BHLH, and HD-ZIP (Figure 8). Among them, five transcription factors were signifi-
cantly differentially expressed in the pepper ovary stage: CaATHB-40 (Capana02g002657),
CaATHB-16 (Capana04g000966), Agamous-like MADS-box protein MADS3 (Capana01g-
001334), CabHLH137 (Capana03g001619), and CabHLH62 (Capana06g000216), and they
were significantly up-regulated in the large-fruited pepper compared to small-fruited
pepper, whereas they were under-expressed or non-expressed at all other developmental
stages, which is hypothesized that these genes regulate fruit expansion at the time of ovary
stage. During the fruit development stages, CabHLH35 (Capana01g000441), CaMYC1 (Ca-
pana01g004352), CaPRE6 (newGene_4731), CaATHB-13 (Capana11g001647), and CaHAT22
(Capana02g002922) were highly expressed in large-fruited pepper along with the Agamous-
like MADS-box protein AGL8 homolog (Capana00g004709) were highly regulated in large
fruits, in which newGene_4731 was significantly up-regulated in large-fruited pepper of
30 DAP and 40 DAP, with higher regulation than that in small-fruited pepper by over
4.3-fold. And two genes, Capana11g001647 and Capana00g004709, were highly regu-
lated in the entire developmental stage of large-fruited pepper, ‘B400’. Among them, the
CaATHB-13 (Capana11g001647) gene expression was slightly higher in ‘B302’ than in ‘B400’
at 15 DAP but not yet to a significantly up-regulated level. Still, it reached a considerable
level in all other developmental stages.
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3.7. Verification of Gene Expression Pattern by qRT-PCR

Based on the sequencing results of the transcriptome, we validated the qRT-PCR
for nine significantly differentially regulated genes. The results are shown in Figure 9.
By detecting the expression levels of these genes, it was found that the (FPKM) results
obtained from their transcriptome sequencing in different developmental stages of large-
and small-fruited pepper were consistent with the results of the fluorescence qRT-PCR
trend, which indicated that the results of the data in this study were reliable.
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4. Discussion

Currently, there are fewer studies on the molecular regulation of pepper fruit size
formation and no complete regulatory mechanism has been developed. In this study,
a total of 11,028 DEGs obtained by transcriptome sequencing were used to investigate
the regulatory mechanisms controlling fruit weight in pepper. Boron is a micronutrient
required for plant growth, development and yield enhancement, and its deficiency during
the reproductive period can lead to poor fruit growth. [46–48]. Boron uptake from the soil
into the roots occurs mainly through several proteins that form boric acid channels [49,50].
BOR1 is an efflux boron transporter protein necessary for efficient loading of B xylem,
and in Arabidopsis, the overexpression of BOR1 acts to increase seed yield when boron is
deficient [51]. BOR2 is also an efflux boron transporter protein, and cell elongation in BOR2
mutant roots is inhibited under low boron conditions [52]. Boron functional genes have
been studied more, but mostly in relation to plant growth, especially flower development,
while less research exists in relation to fruit weight. Recently, a spike development-deficient
mutant, sibor1, was identified in wheat, and sibor1 has a reduced spike weight per kernel
compared to the wild type [53]. In our study, Boron transporter 4 (Capana03g000352) was
highly expressed throughout the developmental stages of item ‘b400’. In contrast, it was
hardly expressed in ‘B302’, suggesting that boron transporter 4 promotes the development
of ‘B400’. Therefore, it is speculated that Boron Transporter 4 has the function of making
fruit enlargement based on the function of boron, but further verification is needed.
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Fruit development is controlled by cell division and cell proliferation, and the cell wall
also stretches as the pulp increases in size. Cheniclet found that the temporal and spatial
coordination of cell division and amplification and the onset, rate, and duration of their
occurrence in tomatoes constitute the final fruit size [54]. Cullin proteins can assemble
into different Cullin-RING ubiquitin ligases (CRL) complexes. CRLs have been found to
influence many biological processes involved in cell growth and development and signal
transduction [55]. For example, in human cells, overexpression of Cullin-1 significantly
increases cell growth rate and increases tumor size and weight, and it has been presumed
that Cullin-1 acts by promoting cell proliferation [56]. L-ascorbate oxidase (AO) acts as
an inducer of cell proliferation in pea root cells [57]. Recently, significant reductions in
fruit weight and size were found after silencing AO in melon, suggesting that AO can
positively regulate fruit weight or size [58]. In our study, the expression of CaCullin-1
(Capana11g002239) and L-ascorbate oxidase (Capana12g001690) was significantly higher
in ‘B400’ than in ‘B302’. Therefore, it is speculated that CaCullin-1 and L-ascorbate oxidase
positively regulate the size of the fruits in the growth of plants such as pepper. This effect
is most likely achieved by promoting cell proliferation and expansion.

Growth hormone is a significant coordinating signal for phytohormones, which can be
involved in cell division, elongation, and differentiation and interact with other signaling
pathways in plant development. In plant hormone signal transduction, the process of
growth hormone signal transduction is divided into two steps, firstly, the tryptophan
metabolism pathway synthesizes AUX1 and activates the transport inhibitor response
protein (TIR1); then, the transport inhibitor response protein mediates ubiquitylation and
inhibits the growth hormone response factor ARF, which is released from the dissociation
of AUX/IAA, to activate the transcription process [59,60]. Growth hormone acts as a
“molecular glue” that enhances the interaction of Aux/IAA with TIR1 [61]. TIR1 recog-
nizes and is induced by AUX1 [62]. It has been demonstrated that in Arabidopsis root
systems, TIR1-mediated processes cause growth hormone inhibition [63,64]. ARF is the
last key step in the AUX1 transcriptional system, which determines the ability of Aux/IAA
to regulate transcription by interacting with the AREs, in order to regulate gene expres-
sion [59]. In our study, two genes of CaAUX1, Capana04g001744 and Capana00g003418,
were expressed in all five developmental stages of pepper, suggesting that in pepper, the
fruits’ tryptophan (Trp) can synthesize relatively sufficient AUX1 and activate transcription.
In addition, the expression of Capana04g001744 was significantly higher in the 0 DAP,
20 DAP, and 40 DAP stages in the large-fruited pepper. In contrast, the expression level
was lower in the small-fruited pepper, suggesting that the transcriptional level of CaAUX1
was enhanced in large-fruited pepper. The expression of CaAUX/IAA (Capana09g000285,
Capana08g001238) and CaARF (Capana00g000130, Capana04g000259) was elevated in the
large-fruited pepper in the ovary stage, and the expression of CaGH3 (Capana08g002278)
and CaSAUR (Capana06g001979, Capana03g001921) was significantly up-regulated in
large-fruited pepper. It indicates that ARF activates three response factors, CaSAUR (Ca-
pana06g001979, Capana03g001921), CaAUX/IAA (Capana09g000285, Capana08g-001238),
and CaGH3 (Capana08g002278), through the interaction of DNA. SAUR has been shown to
be a positive regulator of cell expansion in a variety of plants. For example, in Arabidopsis,
over-repression of SAUR19 in Arabidopsis lines results in cell expansion [65]. In our study,
two genes of CaSAUR (Capana06g001979, Capana03g001921), had elevated expression in
the large-fruited pepper compared to small-fruited pepper for almost all the developmental
stages. Meanwhile, SAUR, AUX/IAA, and GH3 ultimately led to cell enlargement and plant
growth. In addition, most of the genes in the Auxin signal transduction pathway were highly
expressed in the large-fruited pepper, suggesting that the growth hormone pathway genes
may have an effect on fruit size.

The MADS-box, BHLH, and HD-ZIP transcription families play essential roles in
plant growth and development. In previous studies, MADS-box was first found to have a
regulatory function in plant flowers, and AGAMOUS (AG) was one of the first MADS-box
factors identified [66,67]. In Arabidopsis fruit, AGL23 was found to regulate female gamete
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and embryo formation by controlling organ biosynthesis [68,69]. The basic helix-loop-helix
(bHLH) is one of the most prominent families of transcription factors in Arabidopsis thaliana.
bHLH is usually involved in many physiological processes in plants by regulating the
expression of target genes and has synthetic, metabolic, and transduction functions in
phytohormone [14]. In our study, we found that the transcription factors CaMADS3 (Ca-
pana01g001334), CaAGL8 (Capana00g004709), CaATHB13 (Capana11g001647), CaATHB-40
(Capana02g002657), CaATHB-16 (Capana04g000966), and transcription factor PRE6 (new-
Gene_4731) were significantly more highly expressed in the large-fruited pepper compared
to small-fruited pepper. Among them, the MADS-box genes (Capana01g001334 and Ca-
pana00g004709) were highly and consistently expressed in large-fruited pepper at the ovary
stage and at 20 DAP-40 DAP, indicating that the MADS-box acts in fruit from the beginning
of the ovary stage to the subsequent development and positively regulates the size of the
fruit. In conclusion, most of the transcription factors were clearly expressed in large-fruited
pepper, and therefore it is hypothesized that they contribute to some extent to fruit enlarge-
ment. In addition, the analyses revealed that the expression of some of the transcription
factors that were clearly expressed in this study was significantly elevated at the ovary stage.
In contrast, they were barely expressed at other developmental stages, which may also be
related to the organizational and structural differences during ovary and fruit development.
The transcription factors ATHB13, ATHB-40, and ATHB-16 are transcription factors of the
HD-Zip family. In several species of black pepper, AtHB-13 is highly expressed during early
fruit development [70]. In addition, Arabidopsis studies have confirmed that ATHB-13
plays an important role in pollen germination [71]. In tomato, ATHB-40 was found to be
induced by growth factors to be expressed in fruits [72,73]. ATHB-16 regulates Arabidopsis
leaf development and is a negative regulator of leaf cell expansion [74]. At present, except
for ATHB-16, which has not been found to play a role in plant fruits, both ATHB13 and
ATHB-40 have been reported. In our study, CaATHB13 (Capana11g001647), CaATHB-40 (Ca-
pana02g002657), and CaATHB-16 (Capana04g-000966) were consistently highly expressed
in the large-fruited pepper, suggesting that the transcription factors ATHB13, ATHB-40,
and ATHB-16 are essential for fruit expansion and development. In addition to ATHB-
40, which is associated with growth hormone regulation, the transcription factor PRE6
(newGene_4731) was found to be a structural domain protein of HLH (helix-loop-helix
DNA-binding domain) in the BHLH family of transcripts, which has functions related
to cell growth, cell division and growth hormone metabolism [75]. In conclusion, the
transcription factor PRE6 gene, which has a similar role to BHLH, regulates the expression
of target genes by acting as a homodimer or heterodimer during the expression of transcrip-
tion factors and then mediates growth hormone biosynthesis, which occurs through the
induction of a series of genes with CaATHB-40 and other genes and functions, and finally
reveals the phenotype on the plant.

5. Conclusions

In this study, five developmental stages of transcriptome sequencing were performed
using two pepper recombinant lines with different fruit sizes to reveal critical genes and
pathways associated with regulating fruit size. A total of 21,878 DEGs were identified,
and the number of up-regulated genes was more significant than down-regulated genes in
‘B400’ compared to ‘B302’. Functional analysis of these DEGs revealed that the expression
of boron transporter 4 was significantly higher in the large-fruited pepper, and boron genes
play a role in the formation of fruit size.

The genes AUX1, ARF, SAUR, and Aux/IAA in the Auxin signal transduction hor-
mone pathway as well as the transcription factors PRE6, ATHB-40, and AGL8 were sig-
nificantly overexpressed in the large-fruited pepper. Phytohormones, especially auxin,
influence fruit development. Furthermore, it was speculated that transcription factor PRE6
and AGL8 have the functions of mediating growth hormone synthesis and regulating
growth hormone-related genes, whereas ATHB-40 is induced to exercise its function by
growth hormone, suggesting that the interactions between the transcription factors and
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phytohormones regulate the development of the fruit size. The results of this study revealed
transcription factors with the function of synthesizing or regulating phytohormones, which
may induce the function of functional genes by regulating the expression of target genes
and provide a reference value and theoretical basis for clarifying the molecular regulation
mechanism of pepper fruit size.
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