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Abstract: Wild orchids, especially the terrestrial temperate ones are endangered species due to chal-
lenges in their natural habitats. Therefore, there is an urgent need to introduce efficient propagation
methods to overcome the natural reproduction problems of these orchids. In this study, the effects
of different light spectrums, explant types, wounding, and combinations of different plant growth
regulators (PGRs) on direct somatic embryogenesis (DSE) of two species of these endangered orchids
listed in the conservation category, were studied. The highest percentages of DSE formation and
embryo germination were observed in Dactylorhiza umberosa protocorm explants exposed to white
light (400–730 nm) and in Epipactis veratifolia protocorm explants exposed to a combination of red and
far-red spectra (R: FR = 70:30). This occurred while red (610–700) alone and in combination with far-
red (710–730 nm) spectrum induced embryogenesis more than the blue spectrum and dark condition
in E. veratifolia. Thidiazuron (TDZ, 3 mg L−1), produced the highest percentage of protocorm-like
bodies (PLBs) on protocorm explants in both orchids. Kinetin (Kin, 2 mg L−1) and Benzyladenine
(BA 3 mg L−1) had the most effect on the survival and growth of PLBs, respectively, in D. umberosa
and E. veratifolia. Species did not show similar embryogenesis responses under light spectrums.
In a medium containing 3 mg L−1 TDZ, white light and R-FR spectra produced the most PLBs
on wounded protocorm explants of D. umberosa and E. veratifolia respectively. The developmental
stage of apical meristem of PLBs in both species was more advanced under R-B spectra, compared
to others.

Keywords: Epipactis veratifolia; Dactylorhiza umberosa; direct somatic embryogenesis; plant growth
regulator; protocorm-like body; wounding

1. Introduction

Orchids are high-price ornamental crops that have attracted the attention of their pro-
duction as pot plants and cut flowers [1]. Of the wild orchids, native orchids such as saleps
have traditionally been harvested from their natural habitats for their use in the medicinal
and food industries. The tubers of some terrestrial orchids like Orchis mascula, Dactylorhiza
umberosa, and some other species are called salep [2]. Salep also refers to the powder of
dried tubers that are used in the production of ice cream, drinks, medicines, confectionery,
and hot drinks [3]. The scarcity of resources for salep has led to the uncontrolled harvest-
ing of these plants from their natural habitats [4], making them an endangered species.
Epipactis veratrifolia is one of the wild orchids used in traditional medicine and has a high
potential for breeding as an ornamental plant [5]. Low seed germination, slow vegetative
growth, and lack of proper coexistence have sometimes made their propagation by con-
ventional methods impossible [6,7]. To achieve successful regeneration, in vitro techniques
are now efficiently practiced and used for sexual and non-sexual propagation of orchids,
especially for endangered orchid species [8,9]. There are various methods for mass in vitro
culture of orchids such as culture of seeds [10], shoot tip and axillary bud culture [11],
and using protocorm-like bodies (PLBs) [12], and flower buds [13]. Direct and indirect
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somatic embryogenesis (DSE), (ISE) and protocols have been offered for the induction
of protocorm-like bodies (PLBs) in orchids [5–7]. These micropropagation methods have
been used for somatic embryogenesis (SE) in many orchids such as Cymbidium [14], Oncid-
ium [15], Phalaenopsis [1], and Xenikophyton smeeanum [16], however, there is not a wealth
of information for in vitro micropropagation of temperate terrestrial orchids [17]. Explant
type, genotype, medium composition, plant growth regulators (PGRs), and light regime can
be mentioned as factors influencing somatic embryogenesis (SE) in Oncidium orchids [18].
Light is a determinant factor for the tissue culture of plants. Different light spectra have
been used to study their effects on plant growth and organogenesis [19–21]. Light-emitting
diodes (LEDs) have emerged as a new light source for in vitro culture. Different kinds
of artificial light can play a key role in successful in vitro plant production, besides other
factors such as gas exchange in the culture vessel, temperature, and composition of the
culture medium [22]. The effects of the light spectrum have been investigated on the in vitro
growth of many plant species such as Lilium ‘Pesaro’ [23], Dianthus caryophyllus [24], and
Zantedeschia jucunda [25]. The emission of light in LED lighting systems allows the selection
of spectra quality and provides the opportunity for the regulation of photosynthetic and
photomorphogenic reactions required for an in vitro culture of plants [26]. Significant
improvements have been achieved in increasing the fresh and dry weight of shoots and
proliferation rate by changing the photoperiod regime from 16 h to a 4 h photoperiod,
thereby allowing explants to do a better exchange of CO2 [27,28]. Furthermore, the light
has been introduced as one of the important inducers for the generation of SE [29]. Effects
of various spectra of LED lights have been reported in some orchids such as Oncidium [18],
Phalaenopsis [30], and Cymbidium [31], as well as other plant species such as China Rose [32],
and Agave tequilana [33]. The induction of SE and callus was obtained under different light
conditions in different plant species. For instance, red, red + far-red lights in Phalaenop-
sis, red light in Cymbidium, red and white light in Agave tequilana, and red light in Rosa
chinensis [30–33]. PGRs are among the most important factors that influence SE. Auxins
and cytokinins can be mentioned specifically as the most used ones [34]. Applying PGRs
can effectively improve DSE or ISE [24]. Positive effects of PGRs on embryogenesis have
also been reported in plant species such as Phalaenopsis amabilis [34], Anthurium [35], Lilium
ledebourii [36], and Cyclamen [37]. It was reported that wounding of the explants can lead
to faster SE induction in soybeans [38], while there is little information on the effects of
wounding on embryogenesis in plants such as orchids [39]. Most studies have been limited
to tropical orchids, and only a few studies have been conducted on SE and regeneration
in temperate terrestrial orchids. To the best of our knowledge, there are no studies on the
effects of light spectra and wounding on somatic embryogenesis and regeneration in terres-
trial orchids. In the present study, we have successfully established an in vitro propagation
protocol for D. umberosa and E. veratifolia by proliferation through PLBs to facilitate the
conservation, cultivation, and introduction of these plants into future flower markets.

2. Materials and Methods
2.1. Plant Materials and Explant Preparation

In this study, two native Iranian orchids were utilized; namely the rhizomatous species,
E. veratrifolia and the tuberous species D. umberosa. Capsules containing mature brown
seeds of these plants were collected from their natural habitats in the Alborz Mountains.
Capsules were sterilized for 20 min in 20% sodium hypochlorite (NaOCl), followed by
3 rinses with sterilized distilled water; then about 100 tiny, dusty seeds (There are more
than a thousand seeds in each capsule) were cultured on modified FAST (MFAST) as a
basal medium in each Petri dish [40]. Four types of explants were used. Protocorm was the
first kind of explant. At the end of the germination process of orchid seeds, embryos form
small spherical tuber-like bodies referred to as protocorms and were used in two forms:
wounded and non-wounded in both species (Figure 1f). After seedling growth, three other
types of explants were prepared, which included leaf segment (in both species Figure 1d),
single node (in E. veratrifolia-Figure 1e), and crown of the plantlet (in D. umberosa). The
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explants were cultured on a basal medium, containing different concentrations of PGRs
(including TDZ, NAA, BA, and Kin) according to Table 1.
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Figure 1. The seed germination stage of Epipactis veratifolia; kinds of explants and seedlings
(a) cultivated seeds, (b) swelling of the embryos (arrow) in the first stage of germination, (c) rupture
of seed testa by swelled embryos, (d) leaf explant (basal part of leaf), (e) stem node explant, (f) intact
and wounded protocorm explants; the end part without shoot apical meristem (arrow) used as
explants, (g) in vitro rooted seedlings; their leaf and stem nodes (N) used as explants, (h) a protocorm
resulting from the development of a Dactylorhiza umberosa seed embryo at the stage of converting
apical meristem (AP) to leaf primotdia (LP), with many hairy rhizoids (R) at the bottom end.

Table 1. Effects of PGRs and explant types on the mean formation of somatic embryos (PLBs) and
their germination rate, in Epipactis veratifolia and Dactylorhiza umberosa. (×) in column Shows the
kinds of explant. Within each column, different letters indicate significant differences at p < 0.05 using
ANOVA and Duncan’s multiple range tests.

Plant
Concentration of PGRs (mg/L) Explant Type PLBs

Formation (%)
PLBs

Growth (%)TDZ NAA BA Kin Protocorm Leaf Node Crown

tiEpipactis
verafolia

0 0 0 0 × - - - 0 0
3 0 0 0 × - - - 100 a 100 a

0 0 1 0 - × - - 0 0
0 0 1 0 - - × - 0 0
0 0 2 0 - × - - 0 0
0 0 2 0 - - × - 0 0
0 0 3 0 - × - - 0 0
0 0 3 0 - - × - 0 0
0 0.5 0 0 - × - - 0 0
0 0.5 0 0 - - × - 25 b 25 d

0 0.5 1 0 - × - - 0 0
0 0.5 1 0 - - × - 25 b 75 b

0 0.5 2 0 - × - - 0 0
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Table 1. Cont.

Plant
Concentration of PGRs (mg/L) Explant Type PLBs

Formation (%)
PLBs

Growth (%)TDZ NAA BA Kin Protocorm Leaf Node Crown

0 0.5 2 0 - - × - 0 0
0 0.5 3 0 - × - - 0 0
0 0.5 3 0 - - × - 0 0
0 1 0 0 - × - - 0 0
0 1 0 0 - - × - 38 a 20 d

0 1 1 0 - × - - 0 0
0 1 1 0 - - × - 25 b 50 c

0 1 2 0 - × - - 0 0
0 1 2 0 - - × - 18 c 75 b

0 1 3 0 - × - - 0 0
0 1 3 0 - - × - 0 0
0 0 1 0 - × - - 0 0
0 0 1 0 - - × - 0 0
0 0 2 0 - × - - 0 0
0 0 2 0 - - × - 25 b 50 c

0 0 3 0 - × - - 0 0
0 0 3 0 - - × - 13 c 100 a

Dactylorhiza
umberosa

0 0 0 0 × - - - 0 0

3 0 0 0 × - - - 100 a 90 b

0 0 0 1 × - - - 0 0

0 0 0 1.5 × - - - 25 c 75 b

0 0 0 2 × - - - 50 b 100 a

2 0 2 0 - - - × 0 0

1 0.5 0 0 - - - × 0 0

0 0.5 2 0 - - - × 0 0

2.2. Media and Culture Conditions

Cultivated seeds (Figure 1) were grown using a hormone-free modified FAST medium
(MFAST) as the basal medium containing both macro and micro elements (Merck, Hesse-
Darmstadt, Germany). The medium was supplemented with myo-inositol 100 mg L−1,
nicotinic acid 0.5 mg L−1, pyridoxine HCl 0.5 mg L−1, thiamine HCl 0.1 mg L−1, glycine
2 mg L−1, sucrose 3 g L−1, peptone 2% and agar 4.8 g L−1. [40]. The pH was adjusted to
5.5 ± 0.1 and the solution was autoclaved at 121 ◦C for 20 min. The same medium was
used for continuing growth of explants for a period of 6 to 8 weeks. To study the effects of
four kinds of growth regulators (PGRs), including thidiazuron (Sigma Aldrich, UAS) (TDZ
0, 2 and 3 mg L−1), N6-benzyleadenine (BA 0, 1, 2 and 3 mg L−1), ∞-naphthaleneacetic
acid (NAA 0, 0.5 and 1 mg L−1), kinetin (KIN 0, 1, 2 and 3 mg L−1) and four kinds of
explants (including five explants of each type of crown, node, leaf segment, and protocorm)
were cultured in separate Petri dishes (five micro-samples in each of three replicates) and
placed in a growth room under white LED lights (Figure 1). Then the interaction between
TDZ (0 and 3 mg L−1), wounding, and light spectra was investigated on SE of protocorm
explants (wounded or un-wounded) in both species. The light treatments including white
light (W, as the control range at 400–700 nm), blue (B) range at 460 nm, red (R) range
at 660 nm, green (G) range at 530 nm, combination of red and blue (R:B = 70:30), also a
combination of red and far-red (R:FR = 70:30) were provided using LED lamps at light
intensity of 80 µmol m−2 s−1 as well as darkness condition, as the control. The cultures
were placed in a growth room with a temperature of 22 ± 2 ◦C, a light period of 16 h and, a
relative humidity of 70%. Wavelengths were measured using a Sekonic C7000 spectrometer
(Sekonic Corp., Tokyo, Japan) within the range of 300–800 nm. After four weeks, induction
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of DSE (globular type) was evaluated using a microscope. Following SE induction, the
cultures were transferred to the hormone-free MFAST medium and placed under the light
with the same environmental conditions as previously described.

2.3. Germination and Acclimatization

Embryos produced via DSE were counted as germinated (Table 1) and transferred
to a hormone-free basal medium for plant growth under the environmental conditions
described above. For acclimatization, the plantlets (developed from DSE) were transferred
to plastic pots filled with a sterile coco-peat: perlite mixture (3:1), and placed in an adapted
chamber at a temperature of 28 ± 2 ◦C.

2.4. Statistical Analysis

Experiments were arranged as factorial in a completely randomized design. The data
were subjected to analysis of variance (ANOVA) and means were compared using Duncan’s
multiple range tests at p < 0.05 probability level using the SAS 9.3 software.

3. Results
3.1. Effects of PGRs, Explant Type, and Wounding on DSE

Embryo formation was observed three weeks after placing the explants in the growth
medium. The results of the statistical analysis showed a significant difference between the
interaction of treatments (growth regulators, the type of explant, and the light spectrum).
The percentage of DSE formation, PLBs germination, and final plantlets formation, espe-
cially on protocorm explants, in both species, had significant differences (p < 0.05) under
various light spectra (Figures 2–8). The type of PGR caused a significant effect on embryo
formation in both species (Table 1, Figure 4). Between the PGR treatments, E. veratifolia
showed the highest embryogenesis frequency (100%) when grown on a medium supple-
mented with 3 mg L−1 TDZ, using protocorms and followed by 1 mg L−1 NAA (38%) in
node explants (Table 1). The medium supplemented with 3 mg L−1 BA had the lowest SE
rate at 13%. Table 1 shows an increase in DSE production with increasing NAA concen-
tration (from 0 to 1 mg L−1) in combination with BA. NAA treatment (0.5 mg L−1) alone
and in combination with 1 mg L−1 BA, caused 25% PLB formation on the node explants
in Epipactis veratifolia, but in combination with BA, the survival of these somatic embryos
(PLBs growth %) was 50% more (Table 1). The positive effect of BA on the survival of
somatic embryos is also observed in combination with 1 mg L−1 of NAA (Table 1).

Different concentrations of the BA alone or in combination with NAA did not affect the
leaf explants of Epipactis veratifolia (Table 1). Three weeks after placing the explants in the
growth medium, somatic embryos formed on protocorm explants of D. umberosa, under all
light spectra. Embryo formation and germination rate, percentage of DSE, embryo germina-
tion, and plantlet production were significantly (p < 0.05) influenced by the type of explant,
the combination of PGRs, light spectrums, and wounding (Table 1, Figures 4–6 and 8). The
kind of PGRs utilized had a considerable effect on the DSE percentage (Table 1). Only
protocorm explants that developed globular embryos displayed somatic embryo initiation
in D. umberosa (Table 1). The DSE was induced on the protocorm explants after three to four
weeks. The maximum rate (100%) of embryo formation (DSE) was observed in a medium
containing 3 mg L−1 TDZ (Table 1). In contrast, no embryos were observed on crown
explants of D. umberosa in all PGR treatments. Kin in 1.5 and 2 mg L−1 concentrations,
also caused 25% and 50% direct embryogenesis in protocorm explants of D. umberosa,
respectively. All concentrations of PGRs (TDZ, BA, and NAA) did not affect the crown
explant. SE was observed on both protocorm (100%) and stem node (38%) explants of E.
veratifolia (Table 1). R-FR spectra caused most DSE on non-wounded protocorm explants of
E. veratifolia (Figures 2 and 5a). In D. umberosa only one form of the explant (protocorm)
produced a number of somatic embryos (Figure 3) with a high frequency of embryo ger-
mination (Table 1). Therefore, the protocorm explant was selected to proceed with the
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experiment. The most somatic embryo of D. umberosa was obtained under white light and
wounding, which had a positive effect on the DSE of this species (Figure 5b).
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Figure 2. PLBs formation of Epipactis veratifolia after direct somatic embryogenesis under different
light spectra; on protocorm explants ((a–g). in medium contain 3 mg L−1 TDZ) and node explant
((h), in medium contain 0.5 mg L−1 NAA); (a) Cluster of PLBs at different developmental stages,
including rudimentary PLBs (RP), PLBs with shoot apical meristem (SM), PLBs with first leaf pri-
mordia (LP) and PLBs with first leaf (FL) under blue spectrum. Each red circle represents a PLB
which its stage or morphology is explained by arrow, (b) PLBs with huge diameter under green
spectrum, (c) large PLBs with two leaf primordia (2LP) under red + blue spectra, (d) deformed PLBs
with branched first leaf primordia under red spectrum, (e) many tiny PLBs with one leaf primor-
dia without chlorophyll under red + far spectra, (f) PLBs with three leaf primordia (3LP) without
chlorophyll under dark conditions, (g) many PLBs with three leaf primordia (3LP) under white light,
(h) direct somatic embryo (one PLB) formation on node explant under dark condition by using 0.5
mg L−1 NAA, (i) growth of somatic plantlet on hormone-free medium.
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Figure 3. Direct somatic embryogenesis (formation of PLBs) on protocorm explants of Dactylorhiza
umberosa under different light conditions including; (a) Cluster of PLBs at different stages of devel-
opment stages with many rhizoids (R) under blue spectrum (in media containing 1.5 mg L−1 Kin),
(b) under white light (in media containing 2 mg L−1 Kin), (c) red + far-red spectra (in media contain-
ing 3 mg L−1 TDZ), (d) dark condition (in media containing 1.5 mg L−1 Kin), (e) red + blue spectra
(in media containing 3 mg L−1 TDZ), (f) green spectra (in media containing 3 mg L−1 TDZ), (g) red
spectra (in media contain 3 mg L−1 TDZ), (h) germination of somatic embryos (PLBs), (i) growth of
somatic plantlets.
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Figure 4. Interaction effects of TDZ concentrations (0 and 3 mg L−1) and different light spectra on
DSE of protocorm explants of Epipactis Veratifolia (a) and Dactylorhiza umberosa (b). The horizontal
axis shows the light treatment (W = white, G = green, R = red, R-B = red + blue, RFR = red + far-red,
and D = dark). The columns show somatic embryogenesis (the mean number of embryos (PLBs)
per treatment). Values are the mean of three replicates and bars represent the standard errors. Data
were recorded two months after embryo formation. Different letters indicate significant differences at
p < 0.05 using Duncan’s multiple range test.
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Figure 5. Interaction between different light spectra and wounding on embryogenesis (PLBs forma-
tion on protocorm explants) in Epipactis veratifolia (a) and Dactylorhiza umberosa (b) on media
containing 3 mg L−1 TDZ. The horizontal axis shows the light treatment (W = white, G = green,
R = red, R-B = red + blue, RFR = red + far-red, and D = dark). The vertical columns show the
means of somatic embryogenesis with wounding/unwounding explants. Values are the means of
three replicates and bars represent the standard errors. Data were recorded two months after the
formation of embryos Different letters indicate significant differences at p < 0.05 using Duncan’s
multiple range test.
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Figure 6. Influence of different light spectra on the induction of somatic embryos% on protocorm
wounded explants from Epipactis veratifolia (a) and Dactylorhiza umberosa (b) in media containing
TDZ. The horizontal axis shows the light treatment (W = white, G = green, R = red, R-B = red + blue,
RFR = red + far-red, and D = dark). The vertical columns show the means of somatic embryogenesis
under the wounding/unwounding and PGR-free/TDZ conditions. Values are the means of three
replicates and bars represent the standard errors. Different letters indicate significant differences at
p < 0.05 using Duncan’s multiple range test.
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3.2. Induction of SE under Different Light Spectra

Different light spectrums had a notable impact on DSE in both orchid types. Red light
led to a higher percentage (100%) of DSE and a number of PLBs (25 PLB) in E. veratifolia
were observed under red light (Figure 4). The percentages of DSE were also affected by
the light spectrums (p < 0.05). The greatest DSE percentages were observed under R: FR
(100%), R (95%), RB (70%), and G (67%) spectra, with the lowest DSE seen under B (30%),
W (45%), and darkness (61%), respectively (Figure 6a). FR (100%), R (95%), RB (70%), and
G (67%) spectra, with the lowest DSE seen under B (30%), W (45%), and darkness (61%),
respectively (Figure 6a). In D. umberosa, W light induced the highest DSE (100%), followed
by B (55%), R: FR (41.7%), RB (35%), G (30%), R (25.8%), and D (14.2%) (Figure 6b). The
size of SEs was significantly larger when explants of E. veratifolia were exposed to B, R-B,
and G spectra. Both white light and RB spectra led to greater development of PLBs with
three-leaf primordia (Figure 2). Bigger PLBs of D. umberosa were observed under the G
spectrum and dark conditions. RB spectra resulted in the development of more PLBs with
three-leaf primordia in this species (Figure 3). Explants of E. veratifolia turned brown and
subsequently exhibited necrosis when exposed to RB, W, and R lights. As a result, the
survival rate of plantlets decreased (Figure 9). Furthermore, the light spectrum had an
effect on embryo germination in both orchids. The embryos generated under R-Fr and W
lights resulted in the highest percentage of embryo germination and plantlet development
in E. veratifolia (100%) and D. umberosa (100%), respectively (not shown).
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Figure 9. Growth and survival of PLBs after direct somatic embryogenesis in Epipactis veratifolia.
(a) Production of the cluster with a number of large PLBs which became brown and necrotic under
a blue and white LED light spectra. (b) Red + blue and green light spectra produced the cluster
with a few numbers of PLBs that also turned brown and necrotic. (c) Red light produced the highest
embryogenesis and PLBs proliferation rate. (d) Significantly larger PLBs with a higher developmental
stage were observed in the cluster when explants were exposed to blue and red-blue light. In most
of the PLBs, the first leaflet (FL) and in some others the second leaflet (SL) were visible under these
spectra (arrow).

4. Discussion

The effect of different light spectra on the direct embryogenesis of temperate terrestrial
native orchids and their combination with plant growth regulators, explant type, and
wounding has not been previously investigated. Some researchers have studied the em-
bryogenesis of native orchids, for example, an in vitro somatic embryogenesis method and
regeneration for Anoectochilus elatus Lindley, an endangered orchid, by studying some PGRs
and vitamins [7]. Similar methods have been developed for some of the other endemic
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terrestrial orchids such as Anoectochilus elatus and Caladenia latifolia [41]. A number of
studies conducted in this field on orchids have used different types of explants for DSE; for
example, stem nodes [5,6,42], protocorm [41–43], apical buds, crowns, and leaves [5]. In the
current study, we focused on introducing an efficient method for DSE in D. umberosa and E.
veratifolia using a novel combination of light spectra, PGRs, and wounding. Leaf explants
of E. veratifolia did not produce any SE when placed in different media with different
PGRs, but protocorm and nodal explants efficiently induced SE (Table 1 and Figure 2a–h).
Wounding had effects on the genes encoding the induction of cell-wall proteins [44]. In the
current research, we found that in D. umberosa, wounded protocorm explants efficiently
induced DSE compared to non-wounded ones especially under white light and G spec-
trum (Figure 5b). This phenomenon is observed in E. veratifolia under all light conditions
(Figure 5a). This finding is consistent with previous findings in soybean [38] and in tomato
shoot regeneration by wounding of cotyledonary explants [45]. The results suggest that
intact explants are more efficient for embryo formation in D. umberosa under B, R, RB, RFR
spectra, and dark conditions (Figure 5b). It has been previously reported that the wounding
of explants causes browning, which increases the phenolic compounds and eventually
leads to the death of explants [46]. It can be said that wounding is an effective treatment to
induce embryogenesis and the light spectrum may affect its efficiency.

PGRs are known to stimulate cell division and play an important role in the induction
of SE [47]. The majority of previous studies have required auxins to induce SE in various
plant species, while some reports have shown that cytokinins promote the formation of em-
bryogenic cells with a role similar to that of auxins [48,49], for example, in orchids [5,15,50].
We used three concentrations of Kin (1, 1.5, and 2 mg L−1), which had not previously been
used for DSE in terrestrial orchids. Two concentrations of Kin (1.5 and 2 mg L−1) resulted
in positive effects on the DSE of D. umberosa (Table 1 and Figure 3). In other studies, the
growth regulator kinetin has been used to induce protocorm formation in Dactylorhiza
majalis [51,52]. The effect of these kinds of PGRs on embryogenesis has been reported on
black iris [53], Phalaenopsis [54], and Rhynchostylis retusa [55]. Effective PGR treatments
were 3 mg L−1 TDZ on protocorm and 1 mg L−1 NAA in nodal explant of E. veratifolia
and 3 mg L−1 TDZ and 2 mg L−1 Kin on protocorm explant of D. umberosa (Table 1). The
high concentrations of Kin and NAA (3 and 1 mg L−1, respectively) had no positive effect
on SE. It was reported that the exogenous addition of a high concentration of BA and Kin
significantly inhibited SE formation in orchard grass [56]. Our results showed that TDZ
had the highest efficiency for DSE than BA and NAA in E. veratifolia. This was consistent
with the previous results in Dendrobium [50,57] and Cymbidium [33]. In general, we found
that the application of TDZ and NAA on wounded explant was more effective for DSE
in E. veratifolia and TDZ, Kin on wounded explant induced DSE in D. umberosa. There are
only a few reports that mention the role of light spectra on SE induction in native orchid
species. In the present experiment, the highest percentage of DSE and embryo germination
rate in E. veratifolia was observed in protocorm explants exposed to R-Fr (100%) and then
R (95%) spectra (Figure 6), while B spectra, W light, and D condition had less effect on
embryo formation on explants (Figure 6a). This finding is in agreement with the results
of previous studies on the initiation and development of SE by R and R-Fr spectra in
Araujia sericifera [29], Oncidium [18], and Rosa chinensis [34]. In E. veratifolia, R and R-Fr
spectra produced the highest rate of embryogenesis and proliferation of embryos (PLBs);
although, the highest percentage of embryo proliferation was obtained under R-Fr light
(Figures 5a and 7). The positive effects of the red light spectrum have been reported on
the formation of 100% protocorms in orchids [58]. Consistently, R light has been reported
to promote the induction and proliferation of SE in Oncidium [18]. Red light has been
shown to affect plant reproduction through phytochrome, which in its active form increases
the endogenous hormonal balance, increasing the amount of cytokinin in the tissues and
counteracting the action of auxin [59]. In our study, in addition to R and R-Fr, G, R-B, B,
W light and D conditions were used on explants to induce embryogenesis in E. veratifolia,
but most of the explants produced a small number of embryos that also turned brown and
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necrotic under these conditions during three to four weeks (Figure 9a,b). This shows that
G, R-B, B spectra, W light, and D conditions delayed the germination of SE in E. veratifolia.
In the current study, the maturation of embryos as well as the germination of embryos
was significantly different in different light treatments. In some of the previous studies,
it has been reported that callus formation was high in the blue spectrum, which proves
that rapid cell division occurred, although the organized center of cell division required for
primordia formation was reduced and growth was delayed [60]. Interestingly, we found
that G light increased the formation and germination of SE in protocorm explants of E.
veratifolia (Figures 4a and 6a). The effect of the G spectrum was significant on the percentage
of explants that had embryogenesis and on the number of embryos (Figures 5a and 6a). A
study on carrot embryogenesis showed that G light caused the highest SE compared to the
other light spectra [61]. The highest PLBs formation, root formation, and shoot formation
rate in Cymbidium insigne was reported under the G spectrum [62]. The G light may have
active photoreceptors [63], but unlike red and blue light, green light photoreceptors have
not been discovered yet [64]. Embryos germinated when sub-cultured in the hormone-free
medium. In both orchids, the somatic embryos had advanced developmental stages under
the B and R-B spectrum, which rapidly increased the size of the embryos (Figure 9d). This
result shows the positive effects of the B spectrum on the development of PLBs and it is in
agreement with the previous report on the promotive effects of the B spectrum on embryo
size in carnation [24].

The results of this study show that the highest percentage of DSE (100%) was observed
in the explants exposed to W light, while the dark condition had the lowest effect on
embryo induction rate in D. umberosa (Figure 6b). Researchers have also reported that SE
induction and promotion are reduced in darkness in olive [65], soybean [66], and Coffea
Arabica [67]. The highest percentage of embryogenesis in D. umberosa was produced under
the W light and B spectrum (Figure 6b). The B spectrum had an efficient effect on DSE
and ISE in carnation [24]. The highest number of the torpedo, globular, and heart embryos
was observed under the B spectrum; in comparison to the effect of other light treatments
that had no embryo formation [24]. The B light can affect plant auxin content (specifically
indoleacetic acid-IAA). Therefore, it can affect PGR and morphotomorphogenesis [68].
Similar to the previous species, in D. umberosa, the apical meristem of PLBs had the most
development under R-B spectra and produced two to three-leaf primordia (Figure 2e).
This issue shows the positive and promotive effects of the B spectrum. The result showed
that when the G, R spectra and D conditions were used to induce embryogenesis in D.
umberosa, most of the explants did not produce embryos or a high number of embryos
died (Figure 9). The PLB with larger diameters were observed under the G spectrum and
D conditions (Figure 3d,f), but these conditions were not suitable for their survival. In
D. umberosa, the embryos germinated when they were transferred and cultured on the
PGR-free basal medium, and the germination level of embryos in different light spectra was
significantly different. After exposure to white light, the B spectrum increased the induction
and germination of SE from the protocorm explant (Figures 6b and 8). The B spectrum
is important for photomorphogenesis [68]. Consistent with this, it has been reported in
Oncidium that the B spectrum increases differentiation and enzyme activities in embryos [18].
Previous studies have already mentioned the relationship between SE production and
photo-equilibrium and the increase in SE formation by increasing photo-equilibrium. There
is a higher photo-equilibrium under W light compared to the B spectrum [69]. Our results
indicate that LEDs are a forward light source that increases DSE induction. Formation with
high efficiencies of plant regeneration in both terrestrial orchids studied. We recommend the
use of white light to produce the most PLBs on wounded protocorm explants of D. umberosa
(Figure 8) and R-Fr light for producing the highest number of PLBs on wounded protocorm
explants of E. veratifolia (Figure 7), both in a culture medium containing 3 mg L−1 TDZ.
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5. Conclusions

Some native species like D. umberosa have been exposed to extinction because of
uncontrolled harvest from their natural habitats. Mass propagation of E. veratrifolia and
D. umberosa is difficult and sometimes impossible by using conventional in vitro culture
methods because of low seed germination, lack of suitable symbionts, slow vegetative
growth, and absence of efficient methods for asexual reproduction. In the present study,
for the first time, a successful method and an efficient in vitro propagation protocol were
established for these species by using light spectra through DSE. This protocol will have
a significant impact on commercial micropropagation and genetic resource conservation
of these native orchids. Wounding on the protocorm explants of D. umberosa with the use
of a medium containing 3 mg L−1 TDZ caused a 94.1% increase in the number of PLBs
under white light. In E. veratrifolia, the use of wounded protocorm explants in the medium
containing 3 mg L−1 TDZ under the R spectrum caused an increase in production by 98.8%.
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