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Abstract: Trewia nudiflora Linn. is a valuable forest resource due to its economic, ethnomedicinal, and
ecological properties; however, its allelopathic potential is undocumented. Therefore, this research
was designed to investigate the allelopathic impacts of T. nudiflora leaf extracts on alfalfa (Medicago
sativa L.) and barnyard grass (Echinochloa crus-galli (L.) P. Beauv.) growth, as well as to isolate and
to identify the active allelopathic substances responsible for these effects. A bioassay experiment
with eight different treatments (0.1, 0.3, 1, 3, 10, 30, 100, and 300 mg dry weight (DW) equivalents
of T. nudiflora extracts in mL−1) was carried out. The results showed that the growth of both plants
decreased with increasing contents of T. nudiflora extracts, with the effect depending on the plant
species and reaching its peak at a concentration of a 300 mg DW equivalent of T. nudiflora extract in
mL−1. Active substances were isolated and identified using an HPLC system, which revealed the
presences of methyl gallate and pinoresinol in aqueous methanol extracts of T. nudiflora. The shoot
and root lengths of the alfalfa and the barnyard grass decreased significantly when they were treated
with the methyl gallate and the pinoresinol. The allelopathic inhibition increased with increasing
compound concentrations, with the root growth being more sensitive to the pinoresinol than to the
methyl gallate, and it was significantly higher at the concentration of 10 mM. These results indicated
that the T. nudiflora leaf extracts limited the growth of the treated plants, and the methyl gallate and
pinoresinol in the extracts may have caused the inhibition of the T. nudiflora extracts. Thus, the leaf
extracts of T. nudiflora and the substances methyl gallate and pinoresinol could be incorporated into
sustainable agricultural practices or used to develop bioherbicides that would promote sustainable
weed management practices.

Keywords: Trewia nudiflora; medicinal plant; allelopathic potential; bioactive compounds; methyl
gallate; pinoresinol

1. Introduction

Trewia nudiflora Linn., a member of the Euphorbiaceae family, is a fast-growing tree
species widely used in traditional medicine. The tree is medium- to large-sized, growing
up to 25 to 35 m in height with a straight trunk. The leaves are ovate and glossy green
and can be up to 15 cm in length (Figure 1A,B). The tree produces clusters of small, white,
fragrant flowers in the early spring months. The fruit is a small, yellowish-brown drupe
that contains several seeds. The bark, leaves, and roots of this plant are utilized for
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treating flatulence; promoting wound healing; managing sputum; and relieving stomach-
related issues, rheumatism, excessive bile, gout, and edema [1–4]. Various members of
the Euphorbiaceae family are known to possess different bioactive compounds, some of
which could be used for controlling weed growth. Previous studies have shown that certain
species within this family produce allelopathic substances that can impede the growths of
different plant species [5,6]. Moreover, chemical analysis of T. nudiflora has revealed that
this plant contains various categories of active substances, including flavonoids, phenols,
tannins, saponins, and other phytochemicals with potential biological effects [7]. Different
phytochemicals of T. nudiflora have been documented for their antioxidant, anticancer,
insecticidal, cerebroprotective, and antimicrobial properties [8–11]. Furthermore, studies
have indicated that extracts from T. nudiflora leaves have shown cytotoxic properties [12].
While extensive research has been conducted on the bioactivity of T. nudiflora, its allelopathic
effects have yet to be established.
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their extracts and compounds, holds great promise for improving agricultural yields and 
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Allelopathy is a natural phenomenon that involves the interaction of plants and other
organisms through the synthesis and release of bioactive compounds known as allelochem-
icals [13]. Allelochemicals are secondary metabolites traced in different plant parts such as
leaves, roots, flowers, fruits, bark, and seeds and released into the surrounding soil, water
(via leaching, root secretions, and litter decomposition), or air (via volatilization) [14,15].
When released, allelochemicals significantly affect the growth and development of nearby
plants, reducing competition for resources and growing space [13,16–18]. Many studies
have explored the inhibitory properties of allelochemicals from diverse plants against weed
growth, suggesting their potential use for weed biomanagement [19–21]. Several medicinal
plant species, including the Eucalyptus sp., Chrysanthemoides sp., and Euphorbia sp., have
been investigated for their allelopathic substances, such as 1,8-cineole, isomenthol, and
α-terpineol, which have been reported to suppress the growth of Solanum elaeagnifolium
weed species [22]; p-coumaric acid, phloridzin, catechin, and ferulic acid, which have been
reported to suppress the growth of Isotoma axillaris [23]; and β-sitosterol, taraxasterol, ger-
manicol, α-amyrin, stigmasterol, and β-amyrin, which have been reported to suppress the
growths of Lactuca sativa and Sorghum bicolor [6]. Over the past few years, researchers have
examined the allelopathic properties of various medicinal plant species and the bioactive
compounds they contain in order to identify natural substances with allelopathic effects
that can inhibit the growth of weeds, potentially serving as alternatives to synthetic her-
bicides. The utilization of allelopathic plants, along with their extracts and compounds,
holds great promise for improving agricultural yields and controlling weed growth. Pre-
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vious researchers have demonstrated the effectiveness of incorporating this in different
forms, including mulch, intercropping, cover crops, and soil drenching [21,24]. Hence, it is
necessary to identify and assess candidate plant species with allelopathic potential, along
with the specific compounds involved. T. nudiflora leaves have displayed a wide range of
biological activities, but their allelopathic properties remain unverified. Therefore, the aim
of this study was to determine the allelopathic potential of T. nudiflora leaf extracts and
isolate and identify the active substances responsible for the allelopathic effect.

2. Materials and Methods
2.1. Trewia nudiflora Samples and Test Plant Species

Fresh T. nudiflora leaves were harvested from Sirajganj, Bangladesh, during May–June 2020
(latitude: 24◦38′30.12′′ N and longitude: 89◦39′0.00′′ E). After washing, the leaves were
subsequently dried in shade before being ground into a fine powder (GM 200 Laboratory
Grinder; Retsch, D-42781 Haan, Germany) and stored at 2 ◦C for further use. The allelo-
pathic effects of T. nudiflora were investigated in a growth experiment using a dicot, alfalfa
(Medicago sativa L.), and a monocot, barnyard grass (Echinochloa crus-galli (L.) P. Beauv.).
Alfalfa was selected based on its established seedling growth, while barnyard grass was
selected due to its widespread presence as a prevalent weed in crop fields worldwide [25].

2.2. Extraction of Trewia nudiflora Leaves for the Bioassay Experiment

The extraction of T. nudiflora started with soaking 100 g of its leaf powder in 1 L of 70%
aqueous methanol for 48 h. The resulting mixture was filtered through a No. 2 filter paper
(Toyo Roshi Kaisha Ltd., Tokyo, Japan), and the remaining residue was subjected to another
24 h of extraction using 1 L of methanol and filtered again. The two filtered solutions were
combined and subjected to evaporation using a rotary evaporator at 40 ◦C (Model RE 200;
Yamato Scientific Co., Ltd., Tokyo, Japan) to obtain the crude extract. The crude extracts
were diluted with methanol to prepare eight different treatment concentrations (0.1, 0.3, 1,
3, 10, 30, 100, and 300 mg DW equivalents of T. nudiflora extracts in mL−1). The treatment
concentrations were added to the papers (No. 2) in Petri plates (28 mm) and allowed to
dry. Each Petri dish was then prepared by placing ten alfalfa seeds and ten barnyard grass
seedlings (sprouted at 25 ◦C for 48 h) inside and moistening them with 0.6 mL of Tween 20,
a polyoxyethylene sorbitan monolaurate solution (0.05% (v/v)). The control group was
moistened with the Tween 20 solution instead of the T. nudiflora extract solution. The Petri
plates were then moved to a growth chamber and kept in the dark at 25 ◦C for 48 h. The
growth inhibition percentages were calculated by analyzing the differences in the plant
lengths between the treated and the control group.

2.3. Method for Isolating and Purifying Active Allelopathic Substances

T. nudiflora leaf powder (2.9 kg) was used to prepare an aqueous residue through
the extraction process, as has been described in the preceding Section 2.2. To isolate
active substances, we used a cress bioassay that would separate the active fraction at each
step. The resulting residue was then subjected to partitioning with ethyl acetate (EtOAc)
after its pH was balanced to 7.0. The partitioning involved six repetitions using equal
amounts of EtOAc each time. The residue of the EtOAc fraction was divided by a column
containing 60 g of silica gel, with a mesh size of 70–230 (Nacalai Tesque, Kyoto, Japan). The
column was eluted gradually with elevating concentrations of EtOAc in n-hexane, with
each step consisting of a 10% increase in EtOAc volume and a total volume of 150 mL
per step and methanol (300 mL). Fraction F6 (eluted with 70% EtOAc) showed a greater
inhibitory effect and was separated with a Sephadex LH-20 column (100 g; GE Healthcare,
Uppsala, Sweden). Purification involved elution with 20 (F1), 40 (F2), 60 (F3), and 80%
(F4) aqueous methanol (v/v; 150 mL for each step) and methanol (F5) (300 mL). Fraction
F3 (eluted with 60% aqueous methanol) showed inhibitory activity and was fractionated
using a reverse-phase C18 cartridge (1.2 × 6.5 cm; YMC Co., Ltd., Kyoto, Japan) eluted with
15 mL of 20–90% (v/v) aqueous methanol in each step and finally with 30 mL of methanol.
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Fractions F1 and F3, which were obtained from elution with 20 and 40% aqueous methanol,
respectively, showed inhibitory activity and were selected for purification using reverse-
phase HPLC (500 × 10 mm I.D., S-5µm, 12 nm; YMC Co., Ltd.). The eluents consisted of
15 and 45% (v/v) of aqueous methanol, respectively, and the flow rate was 1.5 mL min−1.
Inhibitory activity was observed at retention times of 61–72 and 68–92 min. The peak was
further subjected to purification with a 3 µm column (4.6 I.D. × 250 mm; Inertsil ODS-3,
HP 3 µm; GL Sciences Inc., Tokyo, Japan). The eluents were 10 and 40% (v/v), respectively,
aqueous methanol, with a 0.5 mL min−1 flow rate, and eluted at retention times of 64–90
and 50–55 min, respectively, at a 220 nm wavelength.

2.4. Bioactivity of the Identified Substances

To conduct a bioassay, five concentrations, 0.1, 0.3, 1, 3, and 10 mM, of two substances
were formulated by diluting them with methanol. The solutions were added to No. 2 filter
paper and allowed to dry in a draft chamber. Petri plates were prepared with ten alfalfa
seeds, barnyard grass seedlings, and a control. The seeds were hydrated with 0.6 mL Tween
20 (0.05% v/v) and transferred to the growth chamber. After 48 h of treatment, the alfalfa
and barnyard grass growths were compared with that of the control to compute the growth
inhibition percentage for each concentration of the two substances.

2.5. Analysis

The data gathered from the CRD study were analyzed using a one-way ANOVA
and Tukey’s test to identify any statistically significant distinctions between treatments
at p = 0.05. The statistical software IBM SPSS 16.0 [26] was used to conduct data analysis,
while GraphPad Prism 6.0 was used to determine the I50 values (required concentrations
to achieve 50% growth reduction). The T. nudiflora extract bioassay was performed twice,
with three replications (n = 60) for each treatment, while the bioassays carried out with the
allelopathic substances had three replications (n = 30) for each treatment.

3. Results
3.1. Effects of Extracts from Trewia nudiflora Leaves on Test Plants

The extracts of T. nudiflora strongly suppressed the growths of the alfalfa and the barn-
yard grass, with corresponding increases in inhibition as the doses of the extract increased.
(Figures 2–4). For alfalfa, the inhibition was observed at a concentration of 0.3 mg DW, with
more than 65% growth reduction at a concentration of a 1 mg DW equivalent of T. nudiflora
extracts in mL–1. Shoot growth reductions of 66.85, 79.44, and 89.07% and root growth
reductions of 67.03, 81.11, and 87.3% were observed at concentrations of 3, 10, and 30 mg
DW equivalents of T. nudiflora extracts in mL−1, respectively. At extract concentrations
of 100 and 300 mg DW, the alfalfa growth was completely inhibited. For barnyard grass,
growth inhibition was observed at a concentration of 0.1 mg DW, with an 18% inhibition of
shoot growth at a 0.3 mg DW equivalent of T. nudiflora extracts in mL−1. However, shoot
growth reduction was 4.95% with the extract concentration of 1 mg DW, and the reduction
gradually increased with increasing extract concentration. Shoot growth reductions of 19.42,
38.44, and 84.97% and root growth reductions of 77.80, 89.05, and 99.87% were observed
at concentrations of 10, 30, and 100 mg DW equivalents of T. nudiflora extracts in mL−1,
respectively. At an extract concentration of 300 mg DW, the barnyard grass growth was
completely inhibited by the T. nudiflora extracts. Table 1 shows that for a 50% decrease in
the alfalfa and barnyard grass growth, concentrations of 0.53–40.48 mg DW of T. nudiflora
extracts were required. The I50 values indicated that the alfalfa was more susceptible to the
T. nudiflora extracts than the barnyard grass, with concentrations of 0.53 and 0.60 mg DW
causing a 50% decrease in alfalfa development while concentrations of 1.24 and 40.48 mg
DW were required for the same effect on the barnyard grass.
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Table 1. The concentrations of T. nudiflora extracts needed to suppress the growth of alfalfa and
barnyard grass by 50% (I50 values).

Test Plant Species I50 Value
(mg DW Equivalent of T. nudiflora Extracts, mL−1)

Shoot Root
Dicot Alfalfa 0.53 c 0.60 c

Monocot Barnyard Grass 40.48 a 1.24 b

Significant differences (p ≤ 0.05) are indicated by distinct letters within the same treatment group, as determined
with the LSD test.

3.2. Characterization of the Isolated Compounds

To characterize the isolated substances, HRESIMS analysis was conducted using a
Thermo Scientific Orbitrap Exploris 240 mass spectrometer. NMR spectroscopic data
were obtained at a 500 MHz optical rotation, and the substances were colorless powders.
Substance 1 was analyzed, and its molecular formula was determined to be C8H8O5 with
HRESIMS m/z 183.0298 [M−H]− (calculated for C8H7O5 183.0299); (500 MHz, CD3OD). The
1H NMR spectrum of this substance as measured in CD3OD showed two aromatic proton
signals at δH 7.04 (2H, s) and one methyl proton signal at δH 3.81 (3H, s). Substance 1 was
identified as methyl gallate, which was in agreement with published data [27] (Figure 5a).

Substance 2 was analyzed, and its molecular formula was determined to be C20H22O6
with HRESIMS m/z 357.1336 [M−H]− (calculated for C20H21O6 357.1344); [α]D

23 = +18.2
(c 0.13, CHCl3). The 1H NMR spectrum of this substance as measured in CDCl3 showed
six aromatic proton signals at δH 6.90 (2H, d, J = 1.7), 6.89 (2H, d, J = 8.1), and 6.82 (2H,
dd, J = 8.1, 1.7); two methyl proton signals at δH 3.91 (6H, s); four methine proton signals
at δH 4.74 (2H, d, J = 4.3) and 4.24 (2H, m); four methylene proton signals at δH 3.88 (2H,
dd, J = 9.3, 3.6) and 3.10 (2H, dd, J = 6.8, 3.6); and two hydroxy proton signals at δH 5.60
(2H, s). The 1H NMR spectrum of substance 2 was identified as pinoresinol, which was in
agreement with published data [28] (Figure 5b).
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Figure 5. The molecular structures of methyl gallate (a) and pinoresinol (b) identified and character-
ized from T. nudiflora leaf extracts.

3.3. Bioactivities of the Two Substances (Methyl Gallate and Pinoresinol)

The bioactivities of the methyl gallate and the pinoresinol were studied against alfalfa
and barnyard grass seedling growth. The results, depicted in Figures 6 and 7, revealed
significant growth inhibition in the two test plants treated with both substances, and
this effect increased with increasing concentrations. Statistical analysis indicated that the
observed effects were significant at doses of 0.1 mM for each compound (p ≤ 0.05). The
application of 0.3 mM of methyl gallate resulted in significant growth inhibition of alfalfa
and barnyard grass, with shoot and root growth inhibitions of 65 and 50.8%, respectively,
for alfalfa and 37.9 and 46.3%, respectively, for barnyard grass. Pinoresinol, at the same
concentration, resulted in greater growth inhibition, with shoot and root growth inhibitions
of 68.9 and 80.9%, respectively, for alfalfa and 58.9 and 86.1%, respectively, for barnyard
grass. At 1.0 mM, the methyl gallate inhibited the alfalfa shoot and root growth by more
than 85% and the barnyard grass shoot and root growth by 44.1 and 54.2%, respectively,
while the pinoresinol reduced the shoot and root growth for alfalfa by 83.8 and 93.6%,
respectively, and for barnyard grass by 72 and 97.7%, respectively. The concentration
of 3.0 mM of both substances resulted in further growth inhibition, with 93 and 94.2%
inhibition, respectively, of the alfalfa shoot and root growth by the methyl gallate and 89.1
and 94.1% inhibition, respectively, by the pinoresinol as well as 56.3 and 79.8% inhibition,
respectively, of the barnyard grass shoot and root growth by the methyl gallate and 89.6
and 98.7% inhibition, respectively, by the pinoresinol. At concentrations of 10 mM, the
methyl gallate and pinoresinol completely inhibited the alfalfa shoot and root growth and
the barnyard grass root growth. With the same doses, the barnyard grass shoot growth
was inhibited by 78.9 and 99.4% of the control by the methyl gallate and pinoresinol,
respectively. The I50 values were 0.065–0.293 mM for the alfalfa and 0.080–2.051 mM for
the barnyard grass (Table 2). The I50 values of the alfalfa and barnyard grass roots were
2.2, 3.6, and 2.7 times lower than those of the shoots, respectively, indicating that the roots
were more sensitive to methyl gallate and pinoresinol, except for the alfalfa roots to methyl
gallate. Based on the I50 values, the pinoresinol exhibited stronger inhibition than the
methyl gallate for both plant species.

Table 2. I50 values of methyl gallate and pinoresinol, identified from aqueous methanol extracts of
T. nudiflora for alfalfa and barnyard grass growth inhibition.

Test Plant I50 Value
(mM)

Alfalfa
Methyl Gallate Pinoresinol

Shoot 0.137 f 0.149 e

Root 0.293 c 0.065 h

Barnyard Grass Shoot 2.051 a 0.216 d

Root 0.610 b 0.080 g

Significant differences (p ≤ 0.05) are indicated by distinct letters within the same treatment group, as determined
with the LSD test.
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Figure 6. Different doses (0.1, 0.3, 1, 3, and 10 mM) of methyl gallate inhibited treated plants’ growth 
(A). Alfalfa and barnyard grass seedlings treated with five concentrations of methyl gallate (B). 
Means ± SEs of three replications. Vertical bars depict the mean standard errors. Different letters 
represent the differences between the control and the methyl gallate treatments (Tukey’s HSD at p 
≤ 0.05). 

Figure 6. Different doses (0.1, 0.3, 1, 3, and 10 mM) of methyl gallate inhibited treated plants’
growth (A). Alfalfa and barnyard grass seedlings treated with five concentrations of methyl gallate
(B). Means ± SEs of three replications. Vertical bars depict the mean standard errors. Different letters
represent the differences between the control and the methyl gallate treatments (Tukey’s HSD at
p ≤ 0.05).
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Figure 7. Different doses (0.1, 0.3, 1, 3, and 10 mM) of pinoresinol inhibited the treated plants’ 
growth (A). Alfalfa and barnyard grass seedlings treated with five concentrations of pinoresinol (B). 
Means ± SEs of three replications. Vertical bars depict the mean standard errors. Different letters 
represent the differences between the control and the pinoresinol treatments (Tukey’s HSD at p ≤ 
0.05). 

4. Discussion 
The development of both the alfalfa and barnyard grass seedlings was limited by the 

T. nudiflora extracts, and this inhibitory effect became more evident with increasing con-
tents of the extracts (Figures 2 and 3). The concentration required for a 50% reduction in 
shoot growth for alfalfa was lower than that for root growth, while for barnyard grass, the 
concentration required for root growth was lower than that for shoot growth (Table 1). 
Similar inhibitory effects were recorded in the growths of alfalfa and barnyard grass when 
they were exposed to the leaf extracts of Jatropha curcas, a plant species of the family Eu-
phorbiaceae, in a concentration-dependent manner [29]. Various plant species have been 
reported to have concentration-dependent inhibitory effects on weed growth, caused by 
allelopathic substances in their extracts [30–32]. In our prior investigation, two phytotoxic 

Figure 7. Different doses (0.1, 0.3, 1, 3, and 10 mM) of pinoresinol inhibited the treated plants’
growth (A). Alfalfa and barnyard grass seedlings treated with five concentrations of pinoresinol
(B). Means ± SEs of three replications. Vertical bars depict the mean standard errors. Different
letters represent the differences between the control and the pinoresinol treatments (Tukey’s HSD at
p ≤ 0.05).

4. Discussion

The development of both the alfalfa and barnyard grass seedlings was limited by
the T. nudiflora extracts, and this inhibitory effect became more evident with increasing
contents of the extracts (Figures 2 and 3). The concentration required for a 50% reduction
in shoot growth for alfalfa was lower than that for root growth, while for barnyard grass,
the concentration required for root growth was lower than that for shoot growth (Table 1).
Similar inhibitory effects were recorded in the growths of alfalfa and barnyard grass when
they were exposed to the leaf extracts of Jatropha curcas, a plant species of the family
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Euphorbiaceae, in a concentration-dependent manner [29]. Various plant species have been
reported to have concentration-dependent inhibitory effects on weed growth, caused by
allelopathic substances in their extracts [30–32]. In our prior investigation, two phytotoxic
substances were identified from the leaf extracts of T. nudiflora [33]. Thus, allelochemicals
may be the cause of the growth-limiting actions of T. nudiflora extracts. We fractionated
the extracts using chromatography and identified the two phenolic substances, methyl
gallate and pinoresinol, through spectral analysis. Phenolics are a diverse group of plant
secondary metabolites that have a variety of biological functions and have been shown to
be toxic to plant growth [34–36]. They are ubiquitous in plants and are synthesized through
the shikimate pathway [34,37]. Different plant phenolics, such as ferulic acid, syringic acid,
coumaric acid, gallic acid, and vanillic acid, have been reported to inhibit the growths of
weed species [38,39].

Methyl gallate, also known as methyl 3,4,5 trihydroxybenzoate, is a type of gallo-tannin
that belongs to the phenolic group and has three hydroxyl groups on an aromatic hydro-
carbon. It is commonly found in various plant species, including Geranium niveum [40],
Paeonia suffruticosa [41], Acer saccharlnum [42], and Acacia farnesiana [43]. Methyl gallate
has exhibited antioxidant, anti-inflammatory, and anticancer properties and is used as
a preservative in the food industry due to its antimicrobial activity, as reported in the
literature [44]. Studies have shown that methyl gallate from the species Mangifera indica
and Caesalpinia mimosoides has inhibited a range of plant growth. Its bioactivity is linked to
three hydroxyl groups on its phenolic ring and its short alkyl chain, which may contribute
to its allelopathic properties [45,46].

On the other hand, pinoresinol is a type of lignan that belongs to the group of polyphe-
nolic compounds. It is made up of two phenylpropanoid units that are linked by a β-β’
bond, and each unit consists of two aromatic rings with a hydroxyl group at the para
position and a methoxy group at the meta position [47]. This compound is naturally found
in various plants, such as Forsythia koreana [48], the Brassica sp., Sesamum indicum [49],
and the Olea sp. [50], as well as in animals such as Pieris rapae larvae [51]. Pinoresinol
has been reported to have anti-inflammatory [52], anticancer [53], antioxidant [54], and
antifungal [55] activities. Scavo et al. [56] and Kato-Noguchi et al. [57] have demonstrated
that pinoresinol extracted from Cynara spp. and Osmanthus spp. has inhibited the growth
of cress, wheat, and Italian ryegrass. 3,4-Dihydroxyphenylethanol, a polyphenol identified
from the leaf extracts of A. reticulata, was reported to impair the growths of two weed
species [58]. However, the inhibitory effect of pinoresinol is not well-understood. Oliva
et al. [59] reported that plant lignans suppress cell division and cause abnormal chromo-
some configurations in the meristematic cells of onion root tips. Moreover, pinoresinol
exhibits antibacterial and antifungal activity by disrupting bacterial cell membranes and
interacting with ergosterol in fungal cell membranes, leading to destabilization and cell
lysis [55,60].

Table 2 shows that the efficacies of methyl gallate and pinoresinol vary among plant
species and compounds, with root growth being more susceptible to the compounds than
shoot growth. The degree of sensitivity depends on the concentration of each compound.
Phenolic acids from Buchloe dactyloides showed similar dose-dependent inhibition of root
growth to that of the treated plants [61]. The root growth exhibited greater sensitivity
to the substances compared to the shoot growth, which is potentially attributable to the
enhanced permeability of radicles, which results in elevated oxidative stress and hindered
plant growth [62,63]. Benzoic acid has been reported to alter the morphology and internal
arrangement of cells in mustard roots, while ferulic acid interferes with enzymatic activ-
ity and promotes cell wall stiffening and lignin production, limiting cell expansion and
elongation [64,65]. Phenolic acid has exhibited varying growth-inhibiting effects among
different plant species [66,67], possibly due to variations in the inherent physiologies and
metabolisms of the target plants, which responded differently to distinct structural groups
of the compounds [68–70]. The I50 values indicated greater growth inhibition by pinoresinol
than methyl gallate. This greater growth inhibition can be attributed to the methoxy group
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on the aromatic ring of pinoresinol, which, in addition to the hydroxyl group, likely con-
tributes to more potent growth inhibition of alfalfa and barnyard grass compared to methyl
gallate [71,72]. However, this study is the first to isolate methyl gallate and pinoresinol
from T. nudiflora leaf extracts and demonstrate their allelopathic properties. It has been
demonstrated that using Secale cereale, Oryza sativa, and Carum carvi as mulch restricts the
spread of diverse invasive weeds by releasing phytotoxic compounds. Furthermore, em-
ploying these plants as mulch has been found to enhance yields [24,73,74]. Weed Zap and
Weed Warriors are some commercially available herbicides derived from diverse botanical
origins [75]. Accordingly, T. nudiflora and its individual substances, methyl gallate and
pinoresinol, could be used to develop eco-friendly herbicides that promote sustainable
agricultural practices.

5. Conclusions

The results of this experiment demonstrated that the extracts from T. nudiflora leaves
significantly inhibited the growths of alfalfa and barnyard grass, indicating their strong
allelopathic effects. With the increase in the T. nudiflora extracts, the growth of the seedlings
decreased. Active allelopathic substances, namely methyl gallate and pinoresinol, were
detected in the extracts, and these substances may be potential allelochemicals responsible
for inhibiting the growth of both treated plants. Notably, this experiment represents the
initial assessment of the allelopathic impacts of T. nudiflora as well as the identification of
its active compounds, namely methyl gallate and pinoresinol, from its leaf. However, the
allelopathic effects were solely assessed in controlled lab settings. Therefore, additional
research is necessary to delve into the mechanisms and actions of the T. nudiflora extracts
and the compounds involved. The results of such research could provide a basis for
developing potential bioherbicides.
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