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Abstract: Apple chlorotic leaf spot virus (ACLSV) (genus, Trichovirus; family, Betaflexiviridae) is a
widespread, deleterious, and the most damaging pathogen of pome and fruit trees including domes-
ticated apple (Malus × domestica Borkh.), to which it is transmitted by grafting and pruning. The
positive-sense, single-stranded RNA virus is 600–700 nm long and has a genome of 74.7–7.56 kbp in
size, minus the poly-A tail and 3′- and 5′-untranslated regions. The genome has three overlapping
open reading frames (ORFs) that encode a replication-associated protein (Rep), movement protein
(MP), and coat protein (CP). RNA interference (RNAi)-mediated antiviral defense in eukaryotes has
evolved to control infections in plant viruses. The objective of this study was to analyze locus-derived
microRNAs (mdm-miRNAs) in the apple genome with potential for targeting ACLSV +ssRNA-
encoded mRNAs, using a predictive approach that involves four algorithms. The goal is to mobilize
the in silico-predicted endogenous mdm-miRNAs and trigger the RNAi pathway experimentally in
apple trees to evaluate antiviral resistance to ACLSV. Experimentally validated apple (2n = 2X = 34)
mdm-miRNAs (n = 322) were obtained from the miRBase database and aligned to the ACLSV genome
(KU870525). Of the 322 targeting mature locus-derived mdm-miRNAs analyzed, nine apple mdm-
miRNA homologs (mdm-miR395k, mdm-miR5225c, and mdm-miR7121 (a, b, c, d, e, f, g, h) were
predicted by all “four algorithms”, whereas fifty-eight mdm-miRNAs were identified as consensus
binding sites by the combined results of two algorithms. The miRanda, RNA22, and TAPIR algo-
rithms predicted binding of mdm-miR395k at nucleotide position 4691 and identified it as the most
effective interacting mdm-miRNA targeting the virus ORF1 sequence. An integrated Circos plot was
generated to validate the accuracy of target prediction and determine if apple mdm-miRNAs could
bind to the predicted ACLSV mRNA target(s). A genome-wide in silico-predicted miRNA-mediated
target gene regulatory network was implicated to validate interactions necessary to warrant in vivo
analysis. The availability of validated locus-derived microRNAs (mdm-miRNAs) with predicted
potential to target ACLSV in infected apple trees represents the first step toward development of
ACLSV-resistant apple trees.

Keywords: Trichovirus; in silico tools; apple chlorotic leaf spot virus; miRNA; RNA interference

1. Introduction

The cultivated apple (Malus domestica Borkh.) is an economically and culturally popu-
lar fruit and among the most widely produced in the world [1–3]. The first whole genome
reference for domesticated apple (2n = 2X = 34) was released in 2010 [4]. Apple chlorotic leaf
spot virus (ACLSV) is a member of the genus Trichovirus (family Betaflexiviridae). The ACLSV
is an economically important, highly damaging, graft-transmissible latent pathogen that
occurs worldwide, and infects woody cultivated, ornamental, and wild plants including
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apple trees [5–9]. The virus has a positive-sense, single-stranded RNA genome encapsi-
dated in a particle 600–700 nm in length. The ACLSV genome is 74.7–7.56 kbp in size, not
including the poly-A tail and the 3′- and 5′-untranslated regions. The genome encodes
three overlapping open reading frames (ORFs) from which the viral replication-associated
protein (Rep), movement protein (MP), and coat protein (CP) are encoded [10–12].

In plants, microRNAs (miRNAs) have multiple critical roles in various biological pro-
cesses such as development, growth, response to environmental stress, and to host–virus in-
teraction by controlling gene expression and regulation. They are usually 20–24 nucleotides
long and can bind to complementary sequences in messenger RNAs (mRNAs), leading
to mRNA degradation or translation repression [13,14]. Plant miRNAs are formed from
miRNA precursors (called pri-miRNAs). The enzyme Dicer-like1 (DCL1), ribonuclease
(RNase) III, is responsible for processing pri-miRNA transcripts into precursor miRNAs
(pre-miRNAs). The DCL cleaves the pri-miRNA stem-loop, releasing a double-stranded
RNA molecule containing the miRNA sequence. Subsequently, intermediate duplexes
(miRNA/miRNA*) are formed, stabilized, and incorporated into the RNA-induced silenc-
ing complex (RISC), which guides the miRNA to the target mRNA through base pairing,
resulting in repression [15–18].

The processes involved in microRNA-directed RNA silencing are based on RNA
interference (RNAi) and represent a conserved innate defense mechanism in eukaryotes,
including plants, for combatting viruses by altering host–virus interaction and inhibiting
virus replication [19–21]. Artificial microRNA (amiRNA) can trigger gene silencing that
in turn can confer resistance or tolerance in plants to combat invading viruses. The use of
amiRNA has been to confer resistance in rice plants to rice stripe virus [22] and in cucumber
plants to cucumber green mottle mosaic virus [23] in economically important plants. Apple
tree was screened for possible multiple molecular mechanisms to explore mature miRNAs,
which are a natural source of immunity to biotic and abiotic stresses and are important for
growth and development [24–28]. The apple genome was mapped with experimentally
verified 322 mature mdm-miRNAs available in miRBase [29]. The mdm-miRNAs are
assumed to have binding sites in the ACLSV genome with high confidence.

In this study, an integrated bioinformatics approach was investigated to predict apple
genome-encoded mdm-miRNAs implemented to target the +ssRNA-encoded genome of
ACLSV. In silico predicted tools can aid in evaluating how miRNA binding sites interact
with different target mRNA. Several publicly available computational analysis algorithms
have been developed for predicting miRNA targets. The application of various computer-
aided miRNA prediction tools with multiple functions has facilitated in silico prediction
in biotechnology, including the development of virus-resistant or -tolerant plants. In this
study, several miRNA prediction tools were evaluated and used to identify microRNA–
mRNA binding sites in the ACLSV genome for use in developing transgenic or non-
transgenic modified apple plants with resistance to ACLSV and, potentially, closely related
trichoviruses. Potential targets of the most promising apple miRNAs for breeding were also
of interest to better understand trichovirus–apple plant interaction during infection. Until
now, there have been no reports of the use of an amiRNA-based strategy to develop ACLSV
tolerance in apple plants, which is based on the prediction of homologous amiRNAs for
silencing ACLSV.

The objective of this study was to identify the predicted target sites of apple locus-
derived mdm-miRNAs and the dynamic miRNA–mRNA target site interactions most
likely to result in gene silencing of ACLSV for the future development of virus-resistant,
transgenic apple plants.

2. Materials and Methods
2.1. Apple Mature MicroRNAs and ACLSV Genomic Data Source

The available 322 mature apple miRNA sequences (mdm-miRNA156-mdm-miR11020)
(accession IDs: MIMAT0025867-MIMAT0043631) were downloaded and available in the
miRBase database (version 22) (http://mirbase.org/ accessed on 26 October 2022) [29]. The

http://mirbase.org/
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mature sequences of locus-derived mdm-miRNAs in the apple genome were acquired for
analysis (Supplementary Table S1). The whole genome sequence (7545 bases) of ACLSV
(isolate, SY03) (accession number KU870525) was retrieved from the NCBI (National Center
for Biotechnology Information) GenBank database [30].

2.2. Analysis of Multiple mdm-miRNA Target-Pairs in ACLSV Genome

To identify (predict) the mdm-miRNAs likely to bind most efficiently to the ACLSV
genome, a predictive approach was used involving four different algorithms most widely
used in similar studies to analyze “miRanda, RNA22, TAPIR and psRNATarget” (Table 1).
The mature sequences of the apple genome-encoded mdm-miRNAs and the genomic
transcript of ACLSV (in FASTA format) were similarly analyzed.

Table 1. Summary of the in silico prediction tools used in this study.

Algorithms Parameter Features Availability

miRanda

Score threshold = 140,
Free energy = −20 Kcal/mol,

Gap open penalty = −9.00
Gap extend penalty = −4.00

Seed-based interaction, Target site
accessibility, free energy

of RNA-RNA duplex,
conservation

http://www.microrna.org/
(accessed 26 January 2023) [31,32]

RNA22

Folding energy = −15 Kcal/mol
Number of paired-up bases = 12,

Sensitivity (63%),
Specificity (61%),

Non-seed-based interaction,
Site complementarity, Target site
multiplicity, Pattern recognition,
Folding energy of heteroduplex

https://cm.jefferson.edu/rna22/
Interactive/

(accessed on 22 October 2022) [33,34]

TAPIR Free energy = −20 Kcal/mol,
Hit per target = 1

Seed paring,
Free energy of duplex,
Multiple target sites,

http://bibiserv.techfak.uni-bielefeld.
de/rnahybrid

(accessed on 9 November 2022) [35]

psRNATarget

Expectation Score = 6.5,
HSP size = 19,

Penalty for G:U pair = 0.5
Penalty for opening gap = 2

Multiplicity of target site,
Translation inhibition,

Target accessibility,
Complementarity scoring

https://www.zhaolab.org/
psRNATarget/analysis?function=2

(accessed on 9 November 2022) [36,37]

2.3. miRanda

The miRanda algorithm, released in 2003, includes features for analyzing sequence
complementarity, seed-based interaction, and miRNA–mRNA duplex dimerization and
was released in 2003 [31]. Cross-species target conservation is a key feature of this algorithm
for making the prediction. This widely used standard scanning computational algorithm
was implemented to predict the miRNA binding sites in the corresponding target region
based on the thermodynamic free energy of duplexes [32]. The miRanda algorithm was
written in the C programming language. The default parameters were used for miRNA
target prediction (Table 1).

2.4. RNA22

The RNA22 algorithm uses a pattern-recognition approach that relies on non-seed-
based interactions of miRNA–mRNA pairs. A web-based server is used to predict miRNA
binding sites in the target sequence [33]. Highly sensitive and significant target patterns
were predicted based on maximum folding energy (MFE) [34]. The default parameters
were selected for the prediction of multiple target sites (Table 1).

2.5. TAPIR

The TAPIR algorithm is a recently developed web server used to precisely select highly
specific miRNA–mRNA duplexes. TAPIR is also known as Tapirhybrid. The algorithm
has been widely used to identify seed-based miRNA target binding sites based on the
minimum free energy ratio in plants [35]. Target prediction was performed using the
standard (default) parameters (Table 1).

http://www.microrna.org/
https://cm.jefferson.edu/rna22/Interactive/
https://cm.jefferson.edu/rna22/Interactive/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid
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2.6. psRNATarget

The psRNATarget algorithm is based on the highly sensitive recognition of cleavage
patterns and uses a complementarity assessment scheme for predicting multiple binding
sites of plant miRNAs in the target sequences and is available on a web server [36,37]. The
published 207 apple mdm-miRNAs were selected in the web server for analysis. Standard
parameters were chosen for the prediction of multiple target sites (Table 1).

2.7. Discovering Apple mdm-miRNA-Target Interactions

The apple mature mdm-miRNAs and target ORFs of ACLSV were plotted using the
Circos algorithm [38].

2.8. RNAfold

The RNAfold algorithm is available on a web server implemented in the ViennaRNA
package [39]. It is used to construct the secondary structures of consensus mdm-miRNA
precursors. The precursor sequences of apple mdm-MIRNAs were analyzed using the
default settings.

2.9. RNAcofold

The RNAcofold algorithm evaluates miRNA–mRNA interactions by estimating the
free energy (∆G) of duplexes [40]. The consensus FASTA sequences of the mature apple
mdm-miRNAs and target sequences of ACLSV were analyzed using the default settings.

2.10. Statistical Analysis

The predicted miRNA sequence data are as graphical interpretations. The R language
(version 3.1.1) is a widely used tool for interpreting and visualizing biological data [41].

3. Results
3.1. Apple Genome-Encoded mdm-miRNAs Targeting ACLSV Genome

The in silico approach to identifying apple mdm-miRNAs with predicted potential
to target the ACLSV +ssRNA-mRNA among the 322 locus-derived mdm-miRNAs in
the apple genome, was investigated using a predictive approach involving “four algo-
rithms”. The miRanda algorithm predicted the binding of 37 mature apple mdm-miRNAs
to 46 target sites in the ACLSV genome. The RNA22 algorithm predicted 108 mdm-miRNAs
targeting 161 ACLSV genome sites. The TAPIR algorithm identified 103 apple genome-
encoded mdm-miRNA-target pairs. Finally, the psRNATarget identified 109 mdm-miRNAs
targeting 166 ACLSV genome sites as highly significant “cleavable targets” (Figure 1)
(Tables S2 and S3 and File S1 ).

3.2. Apple mdm-miRNAs Targeting ORF1 That Ecodes Replication-Asscoiated Protein

The trichoviral ORF1 (140–5773) (5634 bases) encodes the replication-associated polypro-
tein (Rep) that harbors the RNA-dependent RNA polymerase (RdRp), essential for genome
replication [42,43]. The miRanda algorithm predicted the binding of thirty one apple mdm-
miRNAs: mdm-miR159c (start site 4379), mdm-miR160 (a, b, c, d, e) (4197), mdm-miR169a
(4217, 3355), mdm-miR169 (e, f) (1571), mdm-miR169 (g, h, i, and j) (4217,3355), mdm-
miR393 (g, h) (3091), mdm-miR395k (4691), mdm-miR3627d (2376), mdm-miR5225 (a, b)
(182), mdm-miR5225c (4719), mdm-miR7121 (a, b, c, d, e, f, g, and h) (149), mdm-miR10998
(3899), and mdm-miR11012 (a, b) (4585) (Figure 2A).

The RNA22 predicted eighty-two apple mdm-miRNAs: mdm-miR160 (start site a, b, c,
d, e) (2133, 4424), mdm-miR166f (963, 4194), mdm-miR167a (975), mdm-miR167 (b, c, d, e, f,
g, h, i, and j) (3231), mdm-miR168 (a, b) (2504, 3030), mdm-miR169o (345), mdm-miR171f-3p
(3230), mdm-miR171f-5p (5101), mdm-miR171o (836), mdm-miR171q (5101), mdm-miR172
(m, n) (3230), mdm-miR319 (a b-3p (5195), mdm-miR319c-5p (952, 1743, 3236), mdm-
miR319h (952, 1743, 3236), mdm-miR393 (d, e, f, g, h) (3092), mdm-miR394 (a, b)(2587),
mdm-miR395 (d-5p, g-5p, h, i-5p, and j) (5181), mdm-miR395k (4691), mdm-miR395l (5592),
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mdm-miR408a (2376), mdm-miR477 (a, b) (3659), mdm-miR482a-3p (2135), mdm-miR530
(a, b, c) (4683), mdm-miR535 (a, d) (1652), mdm-miR3627d (2376, 3541), mdm-miR5225 (a,
b) (1364) mdm-miR5225c (1718), mdm-miR7121 (a, b, c) (153, 961, 2574), mdm-miR7121 (d,
e, f, g, h) (2574, 4538), mdm-miR10978 (a, b) (1644), mdm-miR10979 (2150), mdm-miR10980
(a, b) (2630, 4198), mdm-miR10983 (5399), mdm-miR10984b-3p(2584), mdm-miR10993
(c, d, e, f) (972), mdm-miR10994-3p (2217), mdm-miR10995 (960, 4695), mdm-miR10996a
(3100), mdm-miR11002 (a, b, c-3p) (558, 4139, 5331), mdm-miR11012 (a, b) (4582), and
mdm-miR11019 (964) (Figure 2B).
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The TAPIR algorithm identified multiple mdm-miRNAs: mdm-miR167a (start site
976), mdm-miR168 (a, b) (2505), mdm-miR169 (k, l, m, n, o) (200), mdm-miR171 (m, n)
(700), mdm-miR319 (b-5p, d, e, f) (5373), mdm-miR390 (a, b, c, d, e, f) (687), mdm-miR393
(d, e, f) (3091), mdm-miR394a (1426), mdm-miR394b (1970), mdm-miR395 (a, b, c, d-3p,
e, f, g-3p, h, and i-3p,) (1970), mdm-miR395k (4691), mdm-miR396 (a, c, d, e) (2702),
mdm-miR397 (a, b) (3331), mdm-miR399 (e, f, g, h) (1443), mdm-miR403 (a, b) (2053),
mdm-miR477a (2028), mdm-miR482a-3p (2136), mdm-miR482b (2207), mdm-miR530 (a,
b, c) (4730), mdm-miR5225c (4490), mdm-miR7120 (a-3p, b-3p) (2867), mdm-miR7121 (a,
b, c, d, e, f, g, and h) (1755), mdm-miR10981 (c, d) (5024), mdm-miR10983 (3324), mdm-
miR10986 (5404), mdm-miR10989 (a, b, c, d, e) (3173), and mdm-miR10991(a, b, c, d, e)
(4997) (Figure 2C and Tables S2 and S3).

Several “potentially efficient” locus-derived mdm-miRNAs occurring in the apple
genome were predicted by the psRNATarget algorithm: mdm-miR156 (ad, ae) (2674), mdm-
miR159 (a, b) (375), mdm-miR164 (b, c, d, e, f) (2670), mdm-miR166 (a, b, c, d, e, f, g, h,
and i) (781), mdm-miR169 (e, f) (2669), mdm-miR171o (581), mdm-miR172 (a, b, c, d, e, f,
g, h, I, j, k, l, m, n, o) (5580), mdm-miR319 (a, b) (2232), mdm-miR394 (a, b) (1426, 4195),
mdm-miR395 (a, b, c, d, e, f, g, h, and i) (1970, 4121), mdm-miR396 (a, b, c, d, e, f, g) (2702,
3376), mdm-miR399 (e, f, g, h) (1443), mdm-miR408 (a) (2218, 1410), mdm-miR408 (b, c,
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d) (2668), mdm-miR482a-5p (4111), mdm-miR535 (a, d) (1652), mdm-miR858 (4465, 4296),
mdm-miR2111 (a, b) (1021, 4893), mdm-miR5225 (a, b) (1340, 5233), mdm-miR5225c (266,
4490), mdm-miR7120 (a, b) (5128, 4556, 3088), mdm-miR7121(a, b, c, d, e, f, g, and h) (1755),
mdm-miR7123 (a, b) (1567), mdm-miR7125 (5489), and mdm-miR7126 (1910) (Figure 2D)
(Tables S2 and S3).
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3.3. Apple mdm-miRNAs Targeting ORF2 That Encodes Movement Protein

The ACLSV ORF2 (5685–7067) (1382 nucleotides) encodes a multifunctional movement
protein (MP) required for cell-to-cell movement of ACLSV [44–47]. The miRanda algorithm
predicted several apple mdm-miRNAs putatively capable of silencing the movement
protein by targeting ORF2: mdm-miR319d (start site 6744), mdm-miR828 (a, b) (6033),
mdm-miR3627d (6736), mdm-miR5225 (a, b) (6226), mdm-miR10980 (a, b) (6561), and
mdm-miR11008 (6150) (Figure 2A).

The RNA22 predicted binding of potential apple mdm-miRNAs to target ORF2: mdm-
miR164 (a, b, c, d, e, f) (start site 6096), mdm-miR169 (e, f) (6750), mdm-miR171(a, b)
(6071), mdm-miR171f-5p (6651), mdm-miR171 (j, k, l, p) (6071), mdm-miR171 (q) (6071,
5101), mdm-miR319d (6744), mdm-miR393 (d, e, f)(6423), mdm-miR394 (a, b) (6746), mdm-
miR399 (a, b, c, d, i, j) (6083), mdm-miR482a-5p (6657), mdm-miR530 (a, b, c) (6312),
mdm-miR3627d(6736), mdm-miR7121 (a, b, c, d, e, f, g, h) (6415), and mdm-miR10981 (a, b)
(6085) (Figure 2B).

The TAPIR algorithm predicted eight mdm-miRNAs: mdm-miR169b (6678), mdm-
miR396 (e, f) (6447), mdm-miR3627d (6567), mdm-miR7125 (5806), mdm-miR10980 (a, b)
(6561), mdm-miR10994-3p (5976) (Figure 2C). Several potential apple mdm-miRNAs were
predicted by the psRNATarget algorithms: mdm-miR169 (b, c, d) (6678), mdm-miR171o
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(5985), mdm-miR390 (a, b, c, d, e, f) (6321), mdm-miR393 (d, e, f) (6432), mdm-miR395 (a, b,
c, d, e, f, g, h, i) (6286), mdm-miR396 (f, g) (6447), mdm-miR397 (a, b) (6152), mdm-miR482b
(6432), and mdm-miR5225c (6200) (Figure 2D) (Tables S2 and S3).

3.4. Apple mdm-miRNAs Targeting ORF3 That Encodes Coat Protein

The ACLSV ORF3 (6751–7332 bp) (581 nucleotides) encodes a capsid protein (CP)
involved in encapsidation of trichoviral ssRNA into a virion, or particle [48,49]. A single
mdm-miRNA (mdm-miR5225c) was identified that was located at nucleotide position
7297 by the miRanda algorithm (Figure 2A). Two unique apple mdm-miRNAs were identi-
fied by RNA22: mdm-miR168 (a, b) (7265) (Figure 2B).

Several potential apple mdm-miRNAs were predicted to target ORF3 for silencing the
coat protein gene by the TAPIR algorithm: mdm-miR156 (p, q, r, s, x, y, z) (6758), mdm-
miR156 (aa, ab, ac, ad, ae) (6758, 7293), mdm-miR397b (6839), mdm-miR398 (b, c) (6839),
mdm-miR11001 (6858), mdm-miR11016 (6858) (Figure 2C). In addition, nineteen mdm-
miRNAs were predicted with psRNATarget: mdm-miR156 (p, q, r, s) (6758), mdm-miR156
(ab, ac, ad, ae) (6758, 7293), mdm-miR166 (a, b, c, d, e, f, g, h, i) (7335), mdm-miR398a (6890),
and mdm-miR858 (6846) (Figures 2D and 3) (Tables S2 and S3).
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3.5. Evaluation of Common Apple MicroRNAs

Based on the predicted locus-derived mdm-miRNAs in the apple genome, nine miR-
NAs (mdm-miR5225c and mdm-miR7121 (a, b, c, d, e, f, g, and h) were detected as having
potential binding sites in the ACLSV genome when considering the consensus from all four
algorithms (Figures 1 and 3).
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3.6. Evaluation and Identification of Consensual Apple MicroRNAs for ACLSV Silencing

Using a combination of the “four algorithms miRanda, RNA22, TAPIR, and psR-
NATarget, the consensus is expected to yield high accuracy and robustness for identifying
locus-derived mdm-miRNAs in the apple genome that may potentially interact with the
viral genome. The consensus for the genomic binding sites was predicted using the tools
described, to analyze the biological data available in the public databases.

Of the 322 targeting mature apple tree mdm-miRNAs, 58 apple mdm-miRNAs (mdm-
miR156 (start site o, p, q, r, ab, ac) at nucleotide (nt) position 6758, mdm-miR156 (ad, ae)
at nt position 7293, mdm-miR167a at nt position 976, mdm-miR168 (a, b) at nt position
2505, mdm-miR169b at nt position 6678, mdm-miR319d at nt position 6744, mdm-miR393
(d, e, f, g, h) at nt position 3092, mdm-miR393 (d, e, f) at nt position, mdm-miR394a at
nt position 1426, mdm-miR395 (a, b, c, d, e, f, g, h, i) at nt position 1970, mdm-miR395k
at nt positions 4691, mdm-miR396 (a, c, d, e) at nt position 2702, mdm-miR396 (f, g) at
nt position 6447, mdm-miR399 (e, f, g, h) at nt position 1443, mdm-miR482a-3p at nt
position 2136, mdm-miR535(a, d) at nt position 1652, mdm-miR3627d at nt positions 2376
and 6736, mdm-miR5225c at nt position 4490, mdm-miR7121 (a, b, c, d, e, f, g, h) at nt
positions 153 and 1755, mdm-miR10980 (a, b) at nt position 6561, and mdm-miR11012 (a, b)
at nt position 4585 were detected based on the consensus of the two algorithms (Figure 4,
Table 2, Tables S2 and S3).
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Figure 4. The intersection plot shows the consensus apple mdm-miRNAs targeting the ACLSV
genome. The predicted mdm-miRNA binding sites were based on the consensus or combined results
of both algorithms.

Based on the identification of 58 consensus mdm-miRNAs, nine apple tree mdm-
miRNAs, mdm-miR7121 (a, b, c, d, e, f, g, h) (start site 1755) (target protein Rep), and
mdm-miR395k (4691) (Rep) were predicted to be the most effective mdm-miRNAs for
targeting the ACLSV genome (Figure 4).
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Table 2. Target binding sites of consensus apple genome-encoded mdm-miRNAs, determined by
combined results of two algorithms.

Apple
miRNAs

Position
miRanda

Position
RNA22

Position
TAPIR

Position
psRNATarget

MFE *
miRanda

MFE **
RNA22

MFE Ratio
TAPIR

Expectation
psRNATarget

mdm-miR156 (p, q, r, s) 6758 6758 0.44 6.00
mdm-miR156 (ab, ac) 6758 6758 0.46 5.00

mdm-156 (ad, ae) 7293 7293 0.60 7.00
mes-miR167a 975 976 −16.30 0.52

mdm-miR168 (a, b) 2504 2505 −20.70 0.56
mdm-miR169b 6678 6678 0.53 6.50
mdm-miR319d 6744 6744 −20.86 −18.10

mdm-miR393 (d, e, f) 6423 6423 −19.30 7.00
mdm-miR393 (d, e, f) 3092 3091 −22.70 0.60
mdm-miR393 (g, h) 3091 3092 −21.17 −21.11
mdm-miR394 (a, b) 1426 1426 0.49 5.00

mdm-miR395 (a, b, c, d, e, f, g, h, i) 1970 1970 0.47 6.00
mdm-miR395k 4691 4691 4691 −20.85 −18.00 0.68

mdm-miR396 (a, c, d, e) 2702 2702 0.52 6.50
mdm-miR396 (f, g) 6447 6447 0.43 7.00
mdm-399 (e, f, g, h) 1443 1443 0.52 6.50

mdm-482a-3p 2135 2136 −18.30 0.48
mdm-482b 2207 2207 0.34 6.00
mdm-535a 1652 1652 −18.60 6.00
mdm-535b 1652 1652 −17.90 6.50

mdm-miR3627d 2376 2376 −22.40 −19.30
mdm-miR3627d (1) 6736 6736 −24.37 −19.80

mdm-5225c 4490 4490 0.46 7.00
mdm-7121 (a, b, c) 149 153 1755 1755 −20.63 −22.40 0.58 5.00

mdm-miR7121 (d, e, f, g, h) 1755 1755 0.58 5.00
mdm-miR10980 (a, b) 6561 6561 −25.04 0.63
mdm-miR11012 (a, b) 4585 4582 −21.11 −18.82

* MFE is an abbreviation of minimum free energy. MFE ** is the maximum folding energy.

3.7. Construction of Apple mdm-miRNAs-mRNA Regulatory Network

Validation of the predicted interaction between host miRNAs and ACLSV genome was
visualized and created by a “Circos map”. The predicted Circos map shows a comprehen-
sive global view of the integrated apple mdm-miRNAs and the corresponding target genes
of the ACLSV genome. A Circos plot was drawn to enable a comprehensive visualization
of genomic data that reduces graph complexity and improves readability.

The interaction data were visualized as a chord diagram connecting the corresponding
apple locus-derived mdm-miRNAs and ORFs of the ACLSV genome (Figure 5). Biological
data were analyzed to generate the chord diagram (Circos plot) using R software. It
supports using the grammar of graphics syntax to present data as follows: Library (circlize),
chordDiagram (data, grid.col = ”white”, annotation Track = “grid”).

3.8. Secondary Structures of the Consensual RNA

The in silico identification, prediction, and validation of the consensus apple genome-
encoded mdm-miRNAs (mdm-MIR5225c, mdm-MIR395k, and mdm-MIR7121 (a, b, c, d,
e, f, g, h) were selected based on the predicted secondary structure of the pre-miRNA
sequences (Figure 6 and Table 3).

The adjusted minimal folding free energy (AMFE) was estimated using AMFE =
(MFE/length of a potential pre-miRNA)) × 100. The minimal folding free energy index
(MFEI) was calculated (MFEI = ((100 ×MFE)/Length of RNA/(G + C))%, based on the pre-
viously reported equation [50]. The higher AU content depicts a comparatively less stable
pre-miRNA secondary structure that would be readily recognized by the RISC complex and
converted into mature miRNA. The minimal folding free energy (MFE) is considered an
important determining factor that reflects the stability of the secondary structure. The lower
the MFE value, the higher the thermodynamic stability of the secondary structure [51].

3.9. Assessment of Free Energy

Evaluation and validation of the consensus locus-derived mdm-miRNAs in the apple
genome was determined by assessing their duplex binding free energies (∆G) (Table 4).
The implementation of free energy evaluation further helps to screen the most reasonable
candidates for genome silencing of ACLSV. An acceptable amiRNA–target duplex must



Horticulturae 2023, 9, 808 10 of 16

have at least 70% of the free hybridization energy calculated for a perfectly complementary
amiRNA [52]. The RNAcofold algorithm was used to analyze the secondary structure of
the common miRNA binding site, and the Vienna RNAcofold prediction is based on the
minimum free energy model [53].
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Table 3. Characterization and salient features of the consensus precursors of locus-derived mdm-
miRNAs in the apple genome analyzed in this study.

miRNA ID Accession
IDs

Length
Precursor MFE/Kcal/mol AMFE MFEI (G + C)%

mdm-MIR5225c MI0023156 119 nt −51.30 −43.10 −0.85 50.42
mdm-MIR395k MI0035639 168 nt −43.27 −25.75 −0.68 37.50
mdm-MIR7121a MI0023144 132 nt −49.40 −37.42 −0.79 46.97
mdm-MIR7121b MI0023145 172 nt −70.60 −41.04 −0.85 48.26
mdm-MIR7121c MI0023146 135 nt −71.30 −52.81 −1.09 48.15
mdm-MIR7121d MI0023147 121 nt −67.50 −55.78 −1.08 51.24
mdm-MIR7121e MI0023148 121 nt −67.50 −55.78 −1.08 51.24
mdm-MIR7121f MI0023149 88 nt −39.90 −45.34 −0.79 56.82
mdm-MIR7121g MI0023150 100 nt −45.80 −45.80 −0.89 51.00
mdm-MIR7121h MI0023151 121 nt −67.50 −55.78 −1.08 51.24

Table 4. Free energy (∆G) post-apple plant mdm-miRNA–mRNA duplex formation.

Apple Mature
miRNA ID Accession ID Mdm-miRNA-Target Sequence (5′–3′) ∆G Duplex

(Kcal/mol)

mdm-miR5225c MIMAT0026052 5′ UCUGUCGUGGGUGAGAUGGUGC 3′

5′ GAAGCAGTGTACCCAAGACATA 3′ −15.90

mdm-miR395k MIMAT0043586 5′ GUUUCCUCAAACACUUCAUU 3′

5′ AGGCAGGAGTTTGAGGAAAC 3′ −18.30

mdm-miR7121a MIMAT0026040 5′ UCCUCUUGGUGAUCGCCCUGU 3′

5′ AAAGGGAGTTCATCGAGAGAA 3′ −22.10

mdm-miR7121b MIMAT0026041 5′ UCCUCUUGGUGAUCGCCCUGU 3′

5′ AAAGGGAGTTCATCGAGAGAA 3′ −22.10

mdm-miR7121c MIMAT0026042 5′ UCCUCUUGGUGAUCGCCCUGU 3′

5′ AAAGGGAGTTCATCGAGAGAA 3′ −22.10

mdm-miR7121d MIMAT0026043 5′ UCCUCUUGGUGAUCGCCCUGC 3′

5′ AAAGGGAGTTCATCGAGAGAA 3′ −22.10

mdm-miR7121e MIMAT0026044 5′ UCCUCUUGGUGAUCGCCCUGC 3′

5′ AAAGGGAGTTCATCGAGAGAA 3′ −22.10

mdm-miR7121f MIMAT0026045 5′ UCCUCUUGGUGAUCGCCCUGC 3′

5′ AAAGGGAGTTCATCGAGAGAA 3′ −22.10

mdm-miR7121g MIMAT0026046 5′ UCCUCUUGGUGAUCGCCCUGC 3′

5′ AAAGGGAGTTCATCGAGAGAA 3′ −22.10

mdm-miR7121h MIMAT0026047 5′ UCCUCUUGGUGAUCGCCCUGC 3′

5′ AAAGGGAGTTCATCGAGAGAA 3′ −22.10

4. Discussion

The ACLSV belongs to the genus Trichovirus, and infected trees exhibit reduced vigor
and yield. The ACLSV has been identified infecting fruit trees in numerous countries in the
last three decades. The discovery that amiRNA may be among the best option for combating
plant virus diseases has led to extensive research in the plant biotechnology arena [54].
Several studies have demonstrated the expression of endogenous plant miRNAs that can
directly target RNA or DNA viruses based on a predictive approach that implements
“four algorithms” to arrive at consensus solutions [55–61]. Recent studies have shown that
expression of amiRNA-based constructs in economically important transgenic crops can
reduce or eliminate the viral load in infected plants, resulting from infection by both RNA
and DNA viruses [22,23,62–67]. Until now, the potential for exploiting the regulation of
apple genome-encoded miRNA to abate infection of apple trees by ACLSV has not been
investigated as strategy for developing tolerant or resistant apple cultivars The results
of this study provide the first computationally-based evaluation of mature locus-derived
mdm-miRNAs in the apple plant genome to enable prediction of effective miRNA-binding
sites and provide new tools for better understanding the molecular and omic interactions
between apple plant host cells and ACLSV-encoded mRNAs/protein.

In silico algorithms have been widely used to predict miRNA-binding sites in the target
region to study host–virus interactions [68]. The use of computational biology and machine
learning approaches, that enable highly accurate prediction of optimal target regions in
viral genomes with low rates of false-positive predictions is key to accurately identifying
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potential miRNA-mRNA interactions. Here, four algorithm-based approaches, miRanda,
RNA22, TAPIR, and psRNATarget, were used to predict and analyze potential apple
plant–mdm-miRNA–mRNA interactions with ACLSV. Several potential apple miRNA
binding sites involved in miRNA-mRNA interactions were consistently identified by all
four algorithms implemented in this study. The miRanda and TAPIR algorithms were
found to be powerful multimorbidity algorithms that identify seed-based interactions in
the target region. The miRanda algorithm is a web-based algorithm and the most widely
used miRNA binding site predictor based on a dynamic programming algorithm and a
thermodynamic MFE calculation.

The miRanda, RNA22, and TAPIR algorithms identified a consensus binding site
of mdm-miR395k at nucleotide position 4691. The apple common mdm-miR5225c and
mdm-miR7121 (a, b, c, d, e, f, g, h) were the most potent predicted miRNAs based on the
collective results obtained when data resulting from all four algorithms were considered
(Figure 4 and Table 2). The TAPIR and psRNATarget algorithms were used to predict the
binding strength of mdm-miR5225c and mdm-miR7121 (a, b, c, d, e, f, g, h) at consensus
viral genome positions, 4490 and 1755, respectively.

To predict miRNA binding sites of the target sequence based on MFE which is also
interpreted for evolutionary inference [69]. The stability of miRNA-mRNA duplex is related
to binding energy. Functional miRNA target recognition depends on the accessibility of
the binding site, which is a key feature of in silico algorithms for evaluating false-positive
miRNA–target interactions. The validation of miRNA–target interactions also depends on
the MFE [70]. A high probability of miRNA–target interaction was set to a lower value of
MFE [71]. The highest stability of miRNA-mRNA duplex is realized based on achieving the
most robust binding affinity of miRNA to target mRNA [72,73]. The prediction, evaluation,
and validation of miRNA targeting patterns were based on base-pairing probability of mdm-
miRNA seed regions with complementary high-affinity binding sites, within the ACLSV
genome. The MFE of mdm-miR395k was calculated to be −20.85 kcal/mol (miRanda),
−18.00 kcal/mol (RNA22) (Table 2), and −18.30 kcal/mol (RNAcofold) (Table 4), support
the predicted results, which are indicative of high stability of miRNA-mRNA duplexes
representing “true targets”.

When used with a free energy assessment, the approach provided apparently highly
reliable predictions of miRNA target binding sites and resulted in identification of ten
consensus potent apple miRNAs (Tables 2–4). These predicted apple mdm-miRNAs have
robust potential for RNAi-based gene silencing. Future work will focus on amiRNA-based
constructs directed toward silencing the ACLSV genome for transformation of desirable
apple cultivars.

Computational analyses revealed that the apple consensus mdm-miR395k is expected
to target ACLSV ORF1 sequences. The apple precursor mdm-MIR395k (NCBI Accession
ID: MI0035639) was located on apple chromosome MDC003846.250 (genome context co-
ordinates 8270 to 8437) [74]. In apple, Md-miR395 was shown to control the transcription
factor MdWRKY26 to regulate resistance to leaf spot disease [24]. The miR395 is involved
in the regulation of carbohydrate accumulation gene (NADP-MDH) for flower develop-
ment in camellia plants [75]. Our studies show that locus-derived mdm-miRNAs in the
apple genome directly pair with specific sites on ACLSV +ssRNA-encoded mRNAs. In the
current study, we developed a model to estimate the prediction probability using different
approaches to reduce false positives at the individual, consensus, and intersection levels.
The union approach is a highly sensitive approach for miRNA candidate prediction based
on the combination of more than one miRNA prediction tool. To increase the specificity
of the predictions, an intersection approach was implemented that is based entirely on
prediction specificity [76]. The apparently highly reliable target predictions suggest that the
in silico strategy implemented has yielded “high efficiency” predictions at the individual,
union, and intersection levels, and identified the best target binding sites of the studied
apple mdm-miRNAs (Figures 1–4 and Table 2).
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While previous studies have focused primarily on sequencing of full-length ACLSV
genome [10,11,77,78], in this study, locus-derived mdm-miRNAs were identified from
the apple genome that directly bind to multiple consensuses genomic regions of ACLSV.
Further, no previous report has shown that apple mdm-miRNAs bind to ACLSV, pre-
dicting several, functionally related, host-miRNA–virus-mRNA interactions. It is further
anticipated that the sequences predicted herein will be valuable for studying the mecha-
nisms involved in host-virus interactions at the biological, genetic, and omic levels. While
this study has evaluated the in silico interactions between apple genome-encoded mdm-
miRNAs and ACLSV, whether the predicted apple mdm-miRNAs can bind to ACLSV
sequences remains to be investigated. Definitive experiments are also needed to determine
the binding strength of the predicted mdm-miRNAs in transgenic apple plants.

5. Conclusions and Future Directions

The ACLSV has emerged as a damaging pathogen to pome and stone fruit trees
worldwide. This study involves the comprehensive and computational characterization
of mdm-miRNAs encoded in apple plants, predicted to feasibly silence ACLSV. Potential
apple mdm-miRNA candidates targeting ACLSV were screened using four “algorithms”.
Among the 322 apple mdm-miRNAs from the miRBase database, only one mdm-miRNA
(mdm-miR395k) was predicted to be impede ACLSV replication by targeting the genomic
consensus position, start site 4691, to silence the ACLSV Rep protein. This approach offers
specificity and sensitivity and complements existing molecular approaches for analyzing
targets for ACLSV disease abatement. Results indicate that the use of in silico tools provides
better results than a single algorithm when developing amiRNA-based mdm-miRNA
therapeutics to target ACLSV and other plant viruses as well.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae9070808/s1, Table S1: Mature mdm-miRNAs of apple
tree; Table S2: Identification of mdm-miRNA binding sites of apple using multiple algorithms; Table
S3: Gene-wise prediction of mdm-miRNA-binding sites; File S1: Prediction results by different
computational tools.
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