
Citation: Li, Z.; Ouyang, Y.; Pan, X.;

Zhang, X.; Zhao, L.; Wang, C.; Xu, R.;

Zhang, H.; Wei, Y. TCP Transcription

Factors in Pineapple: Genome-Wide

Characterization and Expression

Profile Analysis during Flower and

Fruit Development. Horticulturae

2023, 9, 799. https://doi.org/

10.3390/horticulturae9070799

Academic Editor: Cristina

Moniz Oliveira

Received: 3 June 2023

Revised: 7 July 2023

Accepted: 11 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

TCP Transcription Factors in Pineapple: Genome-Wide
Characterization and Expression Profile Analysis during Flower
and Fruit Development
Ziqiong Li 1, Yanwei Ouyang 1, Xiaolu Pan 1, Xiaohan Zhang 1, Lei Zhao 1, Can Wang 1, Rui Xu 1, Hongna Zhang 1,*
and Yongzan Wei 2,*

1 Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China;
liziqiong2021@163.com (Z.L.); oyyw124@163.com (Y.O.); pxlat4820@163.com (X.P.);
zhangxiaohan1205@163.com (X.Z.); 21220951310191@hainanu.edu.cn (L.Z.); canw0131@163.com (C.W.);
xr123000z@163.com (R.X.)

2 Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of
Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences,
Haikou 571101, China

* Correspondence: 994357@hainanu.edu.cn (H.Z.); wyz4626@163.com (Y.W.)

Abstract: TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors contain specific
a basic helix–loop–helix structure, which is a significant factor in the regulation of plant growth and
development. TCP has been studied in several species, but no pineapple TCP has been reported to
date. Whether they are involved in the development of the flower and fruit in the pineapple remains
unclear. In this study, nine non-redundant pineapple TCPs (AcTCPs) were identified. Chromosomal
localization, phylogenetics, gene structure, motifs, multiple-sequence alignment, and covariance on
AcTCP family members were analyzed. Analysis of promoter cis-acting elements illustrated that the
AcTCP gene may be mainly co-regulated by light signal and multiple hormone signals. Analysis of
expression characteristics showed a significant increase in AcTCP5 expression at 12 h after ethylene
treatment, and significantly higher levels of AcTCP8 and AcTCP9 expression in the pistil than in other
floral organs. Meanwhile, the AcTCP4, AcTCP5, AcTCP6, AcTCP7, and AcTCP9 expression levels
were downregulated at later stages of fruit development. Transcription factors that may interact with
TCP protein in the regulation of flower and fruit development are screened by the protein interaction
prediction network, AcTCP5 interacts with AcSPL16, and AcTCP8 interacts with AcFT5 and AcFT6
proteins, verified by Y2H experiments. These findings provide a basis for further exploration of the
molecular mechanisms and function of the AcTCP gene in flower and fruit development.

Keywords: TCP transcription factors; pineapple (Ananas comosus (L.) Merr.); expression profiling;
flower development; fruit development; protein interaction

1. Introduction

The TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) gene family encodes pro-
teins that are plant-specific and play an essential role in the modulation of plant growth.
The TCP transcription factor was first described to have originated from three special
gene family members, TB1 (TEOSINTE BRANCHED1) in maize, which can control apical
dominance in maize [1]; CYCLOIDEA (CYC), which can regulate the bilateral symmetry of
Antirrhinum flowers [2]; and proliferating cell factor 1 and 2 (PCF1 and PCF2) in rice, which
are involved in the meristem-specific expression of the rice PCNA (proliferating cell nuclear
antigen) gene [3]. TCP proteins have a highly conserved basic helix–loop–helix (bHLH)
structure consisting of 59 residues, called the TCP structural domain [4]. According to
the phylogenetic analysis and structural characteristics of the TCP gene family, they could
be divided into two classes, class I (TCP-P) and class II (TCP-C), with class I containing
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the PCF subfamily and class II containing the CIN and CYC/TB1 subfamilies. Obvious
differences exist between these two classes of proteins, with the basic structural domain
of class I lacking four amino acid residues compared with that of class II [5]. In addition,
the PCF subfamily encodes proteins that bind to the GGNCCCAC element, and the class II
TCP family encodes proteins that bind to G(T/C) GGNCCC element, thereby regulating
downstream gene expression [6].

The TCP family is ubiquitous in higher plants. They have 23 members in Arabidopsis [7],
21 members in Ziziphus jujuba [8], 18 members in grape [9], 18 members in strawberry [10],
and 29 members in maize [11]. As a conserved and widespread transcription factor family
in plants, TCP has evolved various methods to accurately regulate its downstream target
genes in different plants, and its gene expression has been strictly regulated [12]. TCP
transcription factors could regulate many biological processes, such as flower development,
fruit development, leaf development, and plant hormone signal transduction [13–24].
Some TCP members are regulated by microRNA319 [25–28]. TCP proteins regulate flower
development. Arabidopsis TCP5/13/17 (class II TCP protein) interacts with FD proteins,
integrates into the FT-FD module, promotes AP1 expression, and positively regulates
flowering in an AP1-dependent manner [13]. In Arabidopsis, AtTCP4 has the function
of regulating flowering time, TCP4 deletion mutants flower later than the wild type,
and TCP4 overexpression mutants (TCP4: VP16-C) flower earlier than the wild type [14].
AtTCP7 interacts with NF-Y to activate the transcriptional expression of the flowering
integration gene SOC1, which makes Arabidopsis flower earlier [15]. TCP5 restricted petal
growth in a dose-dependent manner. The TCP5 deletion mutants in Arabidopsis had
wider petals than those in the wild type, and the petal width of TCP5 overexpression
plants was significantly reduced [16]. In Chrysanthemum morifolium, CmCYC2b-CmCYC2d,
CmCYC2b-CmCYC2e, and CmCYC2c-CmCYC2d interact to form heterodimeric complexes,
and CmCYC2c has the ability to interact with the promoter region of ClCYC2f, thereby
controlling the development of flower symmetry [17]. TCP protein can promote or inhibit
fruit ripening during fruit development. In woodland strawberry, FvTCP9 modulates
the expression of genes associated with ABA signaling (FvNCED1, FvPYR1, FvSnRK2,
and FvABI5) and interacts with FaMYC1 to regulate anthocyanin biosynthesis, thereby
promoting fruit ripening [18]. In banana, MaTCP20 and MaTCP5 promote the expression
of MaXTH10/11 to soften the fruit, and MaTCP19 inhibits the expression of XTH10/11. In
addition, MaTCP20 interacts with MaTCP5 to form a dimer, which could promote the
transcription of XTH10/11, and the combination of MaTCP20 and MaTCP19 offsets its
promotion of XTH10/11 transcription [19]. Tomato TCP proteins can interact with other
proteins of this family to form dimers. In addition, the expression of TCP12, TCP15, and
TCP18 genes is regulated by RIN (ripening inhibitor), CNR (colorless non-ripening), and
SlAP2a (APETALA2a) proteins, which play an important role in fruit ripening, and TCP
proteins can also bind to promoters of members of this family to co-regulate tomato fruit
formation [20].

Pineapples are perennial herbaceous fruit trees under the family Bromeliaceae. It has
important processing and fresh food value [29]. Considering the significant contribution of
the TCP family to flower and fruit development, and the lack of previous reports on the
TCP family in pineapples, a comprehensive survey of the TCP family in pineapples was
conducted in this study. Nine non-redundant TCP genes were identified and systematically
analyzed for chromosome mapping, phylogenetics, gene structure and motif, multiple-
sequence alignment, covariance, and promoter cis-acting elements. The expression profiles
of the AcTCP gene at various stages of flower and fruit development were also analyzed
further, and proteins that interact with TCP were predicted and validated, laying the
foundation for functional validation of the pineapple gene.
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2. Materials and Methods
2.1. Plant Growth and Flower Induction

The pineapple plants (Ananas comosus L. cv. Comte de Paris) were obtained from the
pineapple planter base of Zhanjiang, China (21◦10′2′′ N, 110◦16′34′′ E). Homogenous plants
with 25 leaves 30 cm long were selected for perfusion treatment to induce flowering. The
treatment group was perfused with 30 mL of 400 mg/L ethephon and the plants were
treated with an equal volume of water as the control group. The shoot apices of pineapple
were also collected at six time points: 0 h, 12 h, 1 d, 7 d, 14 d, and 21 d after treatment.
The petals, ovary, stamens, sepals, and stylet were simultaneously collected in full bloom.
Fruits were also collected at 6 time points, 2, 4, 6, 8, 10, and 11 weeks after treatment. Three
independent biological replications should be inclusive of every sample.

2.2. Identification of TCP Gene Family in Pineapple

Genome and proteome sequences were downloaded from the pineapple genome
database (http://pineapple.zhangjisenlab.cn/pineapple/html/index.html, accessed on
2 June 2022) [30]. Twenty-four AtTCP transcription factor protein sequences were down-
loaded from the Arabidopsis database (https://www.arabidopsis.org/, accessed on 2 June
2022) [31]. The AcTCP candidate gene was obtained by using AtTCP protein sequences
and BLAST to find the most similar sequences from the pineapple genome database. All
of the candidate genes were further examined by the NCBI Conserved Domain Database
(https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, accessed on 1 August 2022) to
confirm that they contain the TCP domain structure.

Prediction of the molecular weight (MW), isoelectric point (PI), Aliphatic index, and
grand average of hydropathicity (GRAVY) of AcTCP transcription factors using the online
site (https://www.expasy.org/, accessed on 8 August 2022) [32]. The CELLO v.2.5 web-
site (http://cello.life.nctu.edu.tw/, accessed on 9 August 2022) was used to predict the
subcellular location of AcTCP proteins [33].

2.3. Chromosomal Distribution and Evolutionary Analysis of the AcTCP Gene Family

The localization information of AcTCP gene chromosomes was obtained from the
pineapple genome database, and the chromosome localization information map was com-
pleted using MG2C (http://mg2c.iask.in/mg2c_v2.1/, accessed on 10 August 2022) [34].
All TCP protein sequences of maize, grape, and Arabidopsis were downloaded from the Uni-
Port database (https://www.uniprot.org/, accessed on 12 August 2022), and phylogenetic
trees were constructed by the maximum likelihood (ML) method using MEGA 7.0 software
with 1000 bootstrap replicates [35].

2.4. Conserved Motifs and Gene Structure Analysis of AcTCP Gene Family

The conserved motifs of AcTCP were analyzed through the MEME website [36] (https:
//meme-suite.org/meme/tools/meme, accessed on 15 August 2022), with parameters set
to classic mode, an unlimited number of repetitions, and a maximum number of motifs
of eight. Intron structure analysis of AcTCP was performed based on genome-wide GFF
annotation files. Visual analysis was performed using TBtools software [37].

2.5. Gene Duplication and Syntenic Analysis of the Pineapple AcTCP Gene Family

The genome sequences of maize, rice, grape, and Arabidopsis were downloaded
from the Ensembl Plants database (https://plants.ensembl.org/index.html, accessed on
20 August 2022), the gene duplication events of pineapple with each of the four species
were plotted using TBtools software, and the TBtools’ dual systeny plot tool was used to
complete the covariance analysis plots.

2.6. Cis-Acting Regulatory Elements in the Promoter and Protein Interaction Prediction Analysis

The first 2000 bp sequences of the transcriptional start site of the nine AcTCP genes
were submitted to PlantCARE (https://bioinformatics.psb.ugent.be/webtools/plantcare/
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html/, accessed on 20 September 2022) [38]. Prediction of promoter cis-acting elements
was performed. Interaction predictions for nine AcTCP genes were performed using the
protein interaction prediction online website (STRING https://cn.string-db.org/, accessed
on 25 September 2022) [39].

2.7. RNA Isolation, qRT-PCR Analysis of AcTCPs in Different Issues, and the Stage of
Development

Each sample was weighed with 500 mg of pineapple tissue for total RNA extraction
using the RNA extraction kit (Huayueyang, Beijing, China). RNA quality and concentration
were detected using NanoDrop™ One/OneC Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and 1.5% agarose gels. The concentrations of obtained total RNAs
were 150–500 ng/µL. Then, the first-strand cDNAs were synthesized from 1 µg of total
RNA via the Revert Aid First-Strand cDNA Synthesis Kit (Thermo Fisher Scientific, USA).

Primers for pineapple AcTCP genes were designed using BatchPrimer3 online
(Table S1). For qRT-PCR analysis, the AcActin gene was used as a reference gene. The
qRT-PCR was performed using SYBR-green fluorescence with Light Cycler 480 II (Roche,
Basel, Switzerland). The reaction mechanism was performed in a 10 µL volume, including
5 µL of 2 × SYBR Green PCR Master Mix (Applied Biosystems, Waltham, MA, USA), 1 µL
of cDNA, and 1 µL of primers. The expression level of AcTCP genes was calculated by the
2−∆∆Ct [40] method, and three biological replications were used in all the experiments.

2.8. Statistical Analysis

Statistically significant differences were determined using the LSD test. The
mean ± standard error (SE) of three replicates is presented. Data were analyzed using SPSS
Statistics 25.0 software. Lowercase letters indicate significant differences at p ≤ 0.01.

2.9. Yeast Two-Hybrid Analysis

In order to verify the interaction between TCP protein with SPL and FT proteins, the
online website (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 20 January 2023) was
used to analyze the protein sequence with the highest homology to SPL9 and FT in the
pineapple genome. The full-length cds of AcSPL4, AcSPL16, AcSPL17, FT2, FT5, and FT6
were cloned into PGBKT7 vector, and the full-length AcTCP5 and AcTCP8 were cloned into
PGADT7 vector. The BD vector and AD vector were co-transformed into a yeast-competent
AH109 strain and coated on SD/Trp/leu. Healthy yeast cells were selected and coated on
the selection medium SD/Trp/Leu/His/Ade/3-AT (5/10 mM). After 48–72 h of culture,
X-a-Gal was added drop by drop to further verify whether TCP protein interacted with
SPL and FT proteins.

3. Results
3.1. Identification and Classification of TCP Gene Family in Pineapple

TCP genes of pineapples were identified by BLAST search. The TCP proteins in
Arabidopsis were employed as a query object to search for homologous sequences of the
pineapple genome by using TBtools, and nine non-redundant TCP genes of pineapple were
obtained. They were named AcTCP1-AcTCP9 based on the position of the chromosomal
mapping. Details of the physical and chemical properties of AcTCP genes are listed in
Table 1. The molecular length and weight of the nine AcTCP proteins ranged between
253 (AcTCP9) and 532 (AcTCP8) amino acid residues, with relative molecular masses
ranging from 25.54 kDa (AcTCP9) to 57.7 kDa (AcTCP8). Meanwhile, the theoretical
isoelectric point (pI) values of AcTCP ranged from 5.35 to 10.35. Six of the members had
pI < 7. Thus, presumably, the family members are mostly acidic. The lipid index ranged
from 52.44 to 75.43, all of which were greater than 40, so the protein was possibly unstable.
The values of GRAVY were all less than 0, so the proteins are presumably hydrophilic [41].
The subcellular localization prediction analysis indicated that all nine AcTCPs exhibited
nuclear expression.

https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://cn.string-db.org/
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Table 1. TCP gene family identification and protein properties analysis in pineapple.

Gene
Name Gene ID

Maximum
ORF

Length (bp)

Amino Acid
Length

(aa)

MW
(kDa)

Theoretical
pI

Aliphatic
Index GRAVY

Predicted
Subcellular

Location

AcTCP1 Aco012417.1 807 269 30.21 7.89 75.43 −0.607 Nuclear
AcTCP2 Aco024489.1 1062 354 39.43 9.13 69.77 −0.503 Nuclear
AcTCP3 Aco006659.1 1014 338 34.37 6.59 62.07 −0.51 Nuclear
AcTCP4 Aco002292.1 1020 340 37.89 5.89 71.38 −0.694 Nuclear
AcTCP5 Aco003020.1 963 321 35.66 6.27 60.59 −0.795 Nuclear
AcTCP6 Aco021664.1 1065 355 37.42 5.47 63.94 −0.646 Nuclear
AcTCP7 Aco015741.1 945 315 32.55 6.17 65.05 −0.499 Nuclear
AcTCP8 Aco010666.1 1596 532 57.70 5.35 52.44 −0.848 Nuclear
AcTCP9 Aco010326.1 759 253 25.54 10.35 67.83 −0.255 Nuclear

3.2. Chromosomal Mapping of AcTCP Gene Family

The chromosome location of AcTCPs was analyzed in accordance with the genome
annotation information of pineapple, and the MG2C website was used to draw the chro-
mosomal map. The findings revealed that the nine AcTCPs were located on seven distinct
chromosomes. Among them, AcTCP1, AcTCP2, and AcTCP3 were located at LG01, AcTCP4
was at LG04, AcTCP5 was at LG06, AcTCP6 was at LG07, AcTCP7 was at LG09, AcTCP8
was at LG10, and AcTCP9 was at LG25 (Figure 1). The results indicated that AcTCPs were
unevenly distributed on seven chromosomes of pineapple.
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Figure 1. Locations of AcTCP genes in pineapple chromosomes. Nine AcTCP genes were distributed
on seven chromosomes. The vertical bar represents the chromosomes in the pineapple genome. The
scale on the left indicates the length of each chromosome.

3.3. Phylogenetic Analysis

To explore the evolutionary relationship between TCP genes in pineapple and other
plants such as Arabidopsis, grape, and maize, an evolutionary tree was constructed (Figure 2).
The results revealed that these genes could be categorized into two major classes, class I and
class II, which were further divided into subfamilies, including PCF, CIN, and CYC/TB1.
AcTCP3, AcTCP6, AcTCP7, and AcTCP9 belonged to the PCF subfamily; AcTCP1, AcTCP4,
and AcTCP8 belonged to the CIN subfamily; and AcTCP2 and AcTCP5 belonged to the
CYC/TB1 subfamily. TCP genes belonging to the same subfamily may have higher sequence
similarity and thus have similar functions.

3.4. AcTCP Gene Structure, Motif Analysis, and Multiple-Sequence Alignment of AcTCP Protein
Sequences

Gene structure and motif analyses were conducted to gain deeper insights into the
evolutionary relationships and structural characteristics of TCP proteins in pineapple.
The protein sequences of nine AcTCPs were utilized to construct an evolutionary tree,
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which resulted in their classification into three distinct groups based on their evolutionary
relationships. The eight conserved motifs with the highest frequencies among the nine TCP
proteins of pineapple were analyzed using the MEME website (Table S2). All nine AcTCPs
were found to contain motif 1, which is an arginine-rich R domain. In addition, all class
1 subfamilies contain motif 3, all class 2 subfamilies contain motif 6, and the CYC/TB1
subfamily contains motif 7 (Figure 3A).
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The analysis of gene structure revealed that AcTCP4 and AcTCP8 contain three exons,
AcTCP9 contains two exons, and the other members contain only one exon; AcTCP9 contains
one intron, and AcTCP4 and AcTCP8 contain two introns (Figure 3B). The AcTCP genes
in the same subfamily showed similar exon patterns. The lack of introns in the members
of the CYC/TB1 subfamily and the smallest number of members of this subfamily are
inconsistent with the pattern found in previous studies; that is, genes lacking introns evolve
rapidly through gene duplication events [42], may be due to the small number of genes
that are not regular.

The multiple-sequence alignment analysis of AcTCPs revealed that all nine TCP
family members contain intact bHLH structural domains (Figure 3C), with 21 amino acid
residues on the basic conserved structural domain and a putative nuclear localization signal.
The helix region has alternating conserved hydrophobic residues, partially conserved
hydrophilic residues, and an LXLL motif. The loop region connecting the two helices
conserves glycine, aspartate, and serine residues. Moreover, proline is present in CYC/TB1
and PCF. A total of 13 highly conserved amino acids were found in the TCP structural
domain, including 7 in the basic region and 6 in the HLH region.

3.5. AcTCP Gene Covariance Analysis

Intra-species covariance analysis was conducted to investigate the occurrence of
gene duplication events in the AcTCP gene family, and the results demonstrated that no
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fragmental or tandem duplication events occurred. Between-species covariance analysis of
pineapple with maize, rice, Arabidopsis, and grape revealed that five AcTCPs generated eight
gene pairs between pineapple and maize; five AcTCPs generated nine gene pairs between
pineapple and rice; five AcTCPs generated six gene pairs between pineapple and Arabidopsis;
and three AcTCPs generated five gene pairs between pineapple and grape (Figure 4). The
results indicated that pineapple was more closely related to monocotyledonous plants than
to dicotyledonous plants.
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3.6. Analysis of AcTCP Promoter cis-Acting Elements

The cis-acting elements of the AcTCP gene promoter (upstream 2 kb region) were
predicted through the PlantCARE website to understand the regulation mechanism of
AcTCPs. The results showed that the promoter region contains four response elements
(light, hormone, stress, and plant growth and development), with a total of 181 elements
(Figure 5). Moreover, 92 light-responsive elements, 46 hormone-response elements, 25 stress-
response elements, and 18 plant growth and development-related elements were found
(Figure 5B). Further analysis revealed that the light-responsive elements, including AE-box,
chs-CMA2a, GA-motif, GATA-motif, G-box, GT1-motif, I-box, MRE, Sp1, TCCC-motif, TCT-
motif, and Box 4, were the most widely distributed among the family members, accounting
for about half of all response elements. In addition, hormone-response elements, including
ABRE, CGTCA-motif, GARE-motif, P-box, TATC-box, TCA-element, and TGACG-motif,
were widely distributed, accounting for about one-fourth of all response elements. Box
4 accounted for the largest proportion of light-responsive elements (about 27%), and it
had 10 elements on the promoter of AcTCP6. Among the phytohormone-responsive
elements, ABRE was particularly abundant, accounting for about 33%, and ABRE was
widely distributed on AcTCP3, AcTCP5, AcTCP6, AcTCP7, AcTCP8, and AcTCP9, with
four of them on the promoter of AcTCP4 (Figure 5C). These findings suggested that the
AcTCP gene family members may be mainly regulated by a combination of light signals
and multiple phytohormones.
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3.7. Expression Profile of AcTCP Genes
3.7.1. Expression Profile of AcTCP Genes during Flower Development

The expression characteristics of AcTCPs at different stages of flowering development
were analyzed to verify the role of AcTCPs in ethylene-induced pineapple flowering
development (Figure 6A). After ethylene treatment was applied for 12 h, the expression
levels of nine AcTCP members in pineapple terminal bud increased to different degrees.



Horticulturae 2023, 9, 799 9 of 18

Among them, the expression levels of AcTCP5, AcTCP6, AcTCP7, AcTCP8, and AcTCP9
increased significantly, suggesting that these AcTCP members may be involved in early
floral induction in response to ethylene signals. However, the expression levels of AcTCP6,
AcTCP7, and AcTCP9 remained at a high level from 1 week after treatment to the period
before flowering, indicating that these AcTCP may be involved in the differentiation process
of flower organs in the late stage of pineapple flower induction.
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Figure 6. Expression profile of AcTCP genes in pineapple flower development: (A) Expression profile
of AcTCP genes in ethylene-induced pineapple flowering development. The x-axis represents the
different flower bud developmental stages of the pineapple; (B) Expression profile of AcTCP genes in
different floral organs of pineapple. The x-axis represents the different flower organ developmental
stages of the pineapple. The y-axis refers to the deduced FPKM value with Log2.

The expression patterns of AcTCPs in various flower organs of pineapple were exam-
ined to elucidate the role of AcTCPs in the formation of different flower organs in pineapple
(Figure 6B). AcTCP8 exhibited significant expression levels in the pistil, whereas AcTCP7
and AcTCP6 were highly expressed in ovary and sepal. AcTCP9 showed high expression
in ovary, sepal, and pistil. These findings indicate that distinct members of AcTCP may
participate in the development of various flower organs in pineapple.
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3.7.2. Expression Profile of AcTCPs Genes during Different Fruit Developmental Stages

The expression characteristics of AcTCPs at different periods of pineapple fruit were
analyzed to verify the role of AcTCPs in fruit development (Figure 7). The overall trend
showed that one group containing AcTCP4, AcTCP8, AcTCP5, AcTCP1, and AcTCP2 had
lower expression levels throughout fruit development, whereas the other group consisting
of AcTCP3, AcTCP7, AcTCP6, and AcTCP9 had higher expression levels in the early and
middle fruit stage, and then these levels decreased. Therefore, AcTCP3, AcTCP7, AcTCP6,
and AcTCP9 may be involved in the early development of pineapple fruit, but not in the
later development and ripening process. AcTCP3, AcTCP7, AcTCP6, and AcTCP9 all belong
to the PCF group of class I, whereas AcTCP4, AcTCP8, and AcTCP1 belong to the CIN group
of class II, and AcTCP5 and AcTCP2 belong to the CYC/TB1 group of class II. In conclusion,
the TCP members of the PCF group may be involved in the development of pineapple fruit,
whereas members of the CIN and CYC/TB1 group are not involved in the regulation of
fruit development.
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3.8. qRT-PCR Assays of AcTCP Expression Patterns
3.8.1. qRT-PCR Assays of AcTCP Expression Patterns during Flower Development

The expression characteristics of AcTCPs were analyzed by qRT-PCR experiments in
different developmental periods of pineapple flower to further verify the roles of AcTCPs
in flower development (Figure 8). The expression of AcTCP1, AcTCP2, and AcTCP7 in
flower buds significantly increased in the middle and late stages of ethylene treatment. By
contrast, the expression of AcTCP4 decreased significantly after ethylene treatment, and
thus, AcTCP4 may play a role opposite to that of the other members during flower bud
development (Figure 8A). The expression of AcTCP4, AcTCP6, AcTCP7, and AcTCP9 in
sepals, AcTCP8 and AcTCP9 in pistils, and AcTCP5 in ovaries was significantly higher
than those in other floral organs (Figure 8B). The AcTCP members differed greatly in terms
of expression in different floral organs, and they may play a role in the development of
different floral organs.
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Figure 8. qRT-PCR assays of AcTCP expression patterns during flower development: (A) Analysis of
AcTCP expression at six different developmental stages of ethylene-induced flower bud differentiation.
The x-axis indicates flower bud developmental stages; (B) Relative expression of AcTCP in different
floral organs, style (St), sepal (Se), ovary (Ov), petal (Pe), pistil (Pi), with style samples as reference.
The x-axis indicates flower organs. The y-axis indicates the relative expression of each gene. Error bars
indicate the standard deviations of the three biological replicates. Normal letters indicate significant
difference at 0.01, LSD test.

3.8.2. qRT-PCR Assays of AcTCP Expression Patterns during Fruit Development

AcTCP2, AcTCP4, AcTCP5, AcTCP6, AcTCP7, and AcTCP9 were all highly expressed
in early fruit development and gradually degraded in later stages, suggesting that the
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AcTCP family members may promote fruit ripening in early stages but are not involved
in fruit softening. The expression of AcTCP5 gradually decreased with fruit development,
so AcTCP5 may inhibit fruit ripening (Figure 9). The expression patterns of most AcTCP
members were consistent with the transcriptome results, indicating that the expression
profiles of these genes are accurate and reliable, further confirming the validity of the
experimental results. In conclusion, the expression of AcTCP family members varied
greatly at different periods of flower and fruit development, and these family members
may play a critical part in the development of pineapple flower and fruit.
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3.9. Diversified and Conserved Protein Interaction Network of AcTCP Proteins

Protein network prediction could help analyze the functions of AcTCPs and the
interaction regulatory network. Here, the protein interaction prediction site (https://cn.
string-db.org/, accessed on 25 September 2022) was used to predict the interaction network
of nine AcTCPs (Figure 10). The results showed that AcTCP5 interacts with SPL9 protein
(AT2G42200.1, Figure 10E), which is involved in the regulation of flowering and fruit
development. Meanwhile, AcTCP8 may interact with FT (AT1G65480.1, Figure 10H), which
is involved in the induction of flower formation. In addition, TCP proteins interact with
one another, indicating that TCP members regulate the expression of downstream genes by
forming polymers among themselves. These results provide an important entry point for
the study of TCP transcription factors involved in pineapple flower and fruit development.

https://cn.string-db.org/
https://cn.string-db.org/
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the black lines are co-expression, and the purple lines are protein homology.

3.10. Y2H Validation of the Interaction of AcTCP with FT and SPL

Previous studies found that SPL and FT transcription factors regulate plant flower
and fruit development [43,44], and based on protein interactions predicted that we select
SPL9 (AT2G42200.1) and FT (T1G65480.1) as interaction partners (Table S3). An evo-
lutionary tree was constructed to obtain the closest AcSPL family members (AcSPL4,
AcSPL16, and AcSPL17) related to SPL9 in pineapple and the closest AcPEBP family
members (AcFT2, AcFT5, and AcFT6) related to FT for yeast two-hybrid experiments
to verify the results predicted by the interaction network (Figure 11). pGBKT7-AcFT2,
pGBKT7-AcFT5, pGBKT7-AcFT6, pGBKT7-AcSPL4, pGBKT7-AcSPL16, pGBKT7-AcSPL17,
pGADT7-AcTCP5, and pGADT7-AcTCP8 were constructed. pGBKT7-AcSPL/AcFT was
co-transformed with pGADT7-empty, pGBKT7-empty with pGADT7-AcTCP, and pGBKT7-
lam with pGADT7-T into AH109 yeast susceptibility as negative control. Meanwhile,
pGBKT7-53 was co-transformed with pGADT7-T as positive control. The yeast cells ob-
tained from the above co-transformation were coated on SD/Trp/leu medium for growth,
and individual colonies were selected and separately coated on SD/Trp/Leu/His/Ade/3-
AT to observe the colony growth. The results showed that the yeast cells from the positive
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control, negative control, and experimental groups were able to grow on the SD/Trp/Leu
medium, indicating that the above combination was transformed into yeast cells. Positive
controls and the pGBKT7-AcSPL16 colonies co-transformed with pGADT7-AcTCP5 grew
well on SD/Trp/Leu/His/Ade/3-AT (10 mM). Moreover, the pGBKT7-AcFT5 colonies
co-transformed with pGADT7-AcTCP8, and the pGBKT7-AcFT6 colonies co-transformed
with pGADT7-AcTCP8 grew well on SD/Trp/Leu/His/Ade/3-AT (5 mM), whereas none
of the negative controls grew well. Then, 5 µL of X-α-gal was spotted on the colonies,
which turned blue, indicating that the above combination could activate the expression of
the downstream reporter gene. These results showed that AcTCP5 interacts with AcSPL16,
and AcTCP8 interacts with AcFT5 and AcFT6 proteins.
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Figure 11. AcTCP interacted with SPL and FT in yeast two-hybrid assay. pGBKT7-lam and pGADT7-T
is negative control, pGBKT7-53 and pGADT7-T is positive control. pGBKT7-AcSPL16 and pGADT7-
AcTCP5 grew well in SD medium lacking Trp, Leu, His, and Ade containing 10 mM 3-AT, while the
corresponding negative control did not grow normally under the same conditions. pGBKT7-AcFT5,
6 and pGADT7-AcTCP8 grew well in medium containing 5 mM 3-AT, while the corresponding
negative control did not grow normally under the same conditions.

4. Discussion

TCP transcription factors, which are specific to plants, play a crucial role in the growth
and development of plants. While the TCP gene family has been extensively studied
and characterized in several plant species, there is limited systematic and comprehensive
knowledge regarding the TCP gene family in pineapple. In Arabidopsis [7], maize [11], and
grape [9], TCP members could be divided into class 1 and class 2 subfamilies and further
divided into CIN, CYC/TB1, and PCF. In the present study, a similar classification exists for
pineapples, as demonstrated by the results of studies on evolutionary relationship, gene
structure, and amino acid sequence alignment (Figures 2 and 3). Each AcTCP member has a
conserved bHLH structural domain (Figure 3C), similar to TCP members in Arabidopsis [7],
strawberry [45], and petunia [46] species. In terms of the number of TCP members, only
nine AcTCP members were identified in pineapple, far less than in Arabidopsis (23), rice (22),
tomato (30), and apple (52) [47]. In general, the number of gene replication events is an
important factor affecting the number of gene family members. No fragmental and tandem
duplication events occurred in the AcTCP members in pineapple, and this phenomenon
may be the main reason for the low number of TCP members in pineapple. Further
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collinearity analysis between species revealed that the collinearity gene pairs of AcTCP
with rice and maize were more than those with Arabidopsis and grapes (Figure 4), indicating
that the TCP of pineapple is more closely related to the species of monocotyledon and
highly conserved and long-term in evolution.

The significance of the TCP gene family in plant flowering, flower organ forma-
tion, and fruit ripening has been demonstrated in several species, such as Arabidopsis,
chrysanthemum, and banana. The results of transcriptomic data and qRT-PCR experiments
revealed that different AcTCP members have significantly different gene expression charac-
teristics during different tissues and organs, flower development, and fruit development
(Figures 6–9), indicating that the TCP gene family could participate in different processes
of growth and development in pineapple. However, different TCP members have different
temporal and spatial expression characteristics and functions. As members of the PCF
subfamily, the expression levels of AcTCP6, AcTCP7, and AcTCP9 significantly increased at
1 week or 2 weeks during ethylene-induced flowering (Figure 6A), and these TCP members
in pineapple may perform a significant function in the flowering process of pineapple. This
finding is similar to previous findings that AtTCP7 interacts with nuclear factor-Ys in Ara-
bidopsis to activate the expression of SOC1 and promote early flowering in Arabidopsis [14].
The expression of AcTCP8 and AcTCP9 was significantly higher in the pistil than in other
tissues (Figure 6B), and these two genes may affect pistil development. The high expression
of PmTCP4 in incomplete flowers was found to abort pistils [48,49], and AcTCP8 is closely
related to PmTCP4 and may play a similar role in pineapple. During fruit development,
the expression of AcTCP4 and AcTCP6 tended to increase and then decrease (Figure 7),
and thus, AcTCP4 and AcTCP6 may play a part in promoting fruit softening and fruit
ripening. This finding is also consistent with the previous findings that the expression trend
of FvTCP9 in strawberry increased and then decreased, with the function of promoting fruit
ripening [18]. In the current study, the cis-acting element of the promoter was analyzed
to investigate the regulation of TCP gene expression, and the expression of TCP protein
was found to be mainly influenced by light and hormonal signals (Figure 5). This finding is
similar to previous findings, which showed that in ProTCP22::MycTCP22 plants, TCP22
formed a complex with natural CRY2 only under blue light, whereas red light not only
affected the CRY2-TCP22 interaction but also induced TCP22 formation [50]. Moreover,
StTCP member expression was upregulated or downregulated after MeJA treatment [51],
and JA and ABA directly activate AaTCP15 expression in response to AaGSW1 to regulate
artemisinin biosynthesis [23].

Protein interaction network prediction screened SPL and FT proteins that may interact
with TCP proteins and regulate flower and fruit development. For confirmation of the
hypothesis, yeast two-hybrid experiments were performed to verify the interactions be-
tween pGBKT7-SPL16 and pGADT7-AcTCP5, pGBKT7-AcFT5 and pGADT7-AcTCP8, and
pGBKT7-AcFT6 and pGADT7-AcTCP8 (Figure 11). Previous studies found that the FT-FD
module plays a key role in the photoperiodic flowering pathway, with TCP interacting
with the FT-FD complex and then binding to the downstream AP1 promoter, enhancing its
transcription and positively regulating flowering in an AP1-dependent manner [13]. SPL
proteins affect plant flowering through the age pathway, and Arabidopsis SPL3/4/5 has also
been shown to promote flowering by interacting with FD and binding to the GTAC motif
on the AP1 promoter, and delay flowering under LD after SPL3/4/5 gene knockout [52].
This study provides a reference for the regulation of plant flower and fruit development by
TCP transcription factors. However, whether TCP and its interacting transcription factors
(SPL and FT) can promote the expression of genes such as SOC1, AP, and XTH, and thus
integrate into the flower- and fruit-forming pathways, needs further validation.

5. Conclusions

During the course of this research, a total of nine AcTCP members were successfully
identified in pineapple. Their chromosomal mapping, phylogenetic, gene structure and
motif, multiple-sequence alignment, covariance, promoter cis-acting elements, and protein
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interaction prediction were systematically analyzed. The transcriptomic data and qRT-PCR
analysis demonstrated an upregulation of AcTCP5 and AcTCP7 during the later stages of
floral bud development, AcTCP8 expression was significantly higher in the pistil than in
other floral organs, and AcTCP6 and significantly decreased in late fruit development. The
yeast two-hybrid assay verified that TCP interacts with SPL and FT proteins, and some
members of AcTCP may play important roles in pineapple flower and fruit development.
This paper lays the foundation for further studies on the functions of the AcTCP gene
family in pineapple flower and fruit development.
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