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Abstract: Psidium friedrichsthalianum (Myrtaceae) is a small tree with antioxidant activity in its fruits
and antimicrobial activity in its leaves and thin branches. The present study analyzed the seasonal
variability in the yield and essential oil composition of a P. friedrichsthalianum population in Belém,
Brazil. Essential oils were obtained by hydrodistillation and analyzed by gas chromatography (GC)
coupled to mass spectrometer (MS) and flame ionization detector (FID). Chemometric analyses were
carried out to verify the climatic influence on the production and composition of the essential oil.
The average oil yield in the dry season (August–February) was 0.5 ± 0.0%, and in the rainy season
(March–May), it was 0.8 ± 0.0%, with statistical differentiation. There was a moderate correlation
between oil yield and the collection area’s relative humidity (r = 0.63). The PCA and HCA analyses
did not show differentiation between the P. friedrichsthalianum oil samples during the dry and rainy
seasons. However, the class of monoterpene hydrocarbons presented a negative correlation with
temperature (r = −0.81) and humidity (−0.80) of the sampled area. In the PCA and HCA studies, the
samples were classified into three groups: Group I (leaf oils) was characterized by a higher content
of α-pinene (6.3–18.0%), β-elemene (9.9–14.8%), caryophyllene oxide (4.3–16.3%), and β-pinene
(4.8–13.4%). Group II (leaf oils) was defined by a higher content of selin-11-en-4-α-ol (4.6–15.6%),
β-elemene (9.9–14.8%), α-pinene (6.3–18.0%), and E-caryophyllene (3.1–8.7%). Group III (fruits
volatile concentrate) was characterized by a higher content of α-pinene (17.6%), α-terpineol (13.7%),
and selin-11-en-4-α-ol (10.0%). There was significant seasonal variability in P. friedrichsthalianum,
whose responses are directly linked to abiotic factors such as precipitation, insolation, humidity,
and temperature.

Keywords: Costa Rican guava; Myrtaceae; volatiles; mono- and sesquiterpenes; environmental factors

1. Introduction

Myrtaceae has around 1200 species, comprising 29 genera of trees, shrubs, and sub-
shrubs, emphasizing Eugenia, Myrciaria, and Psidium found in Brazilian territory. Many
scientific reports about its pharmacological and cosmetic applications are present in the
literature [1,2]. The Psidium genus comprises 266 species, widely distributed worldwide
in tropical and subtropical regions. In Brazil, Psidium has 60 species of trees, from large to
small sizes. Among them, P. guineense Sw., known as “araçá-mirim”, P. acutangulum Mart.
ex DC., popularly called “araçá-pera”, and P. guajava L., the traditional “guava”, all used in
the treatment of coughs, diarrhea, stomach pain, vomiting, fever, and flu [3,4].

Myrtaceae essential oils have high variability in volatile compounds and have out-
standing biological activities [1]. Essential oils from Psidium species have antiproliferative,
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antioxidant, fungicidal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cyto-
toxic properties [1,5]. In addition, Psidium oils are abundant in terpene compounds, with
great emphasis on monoterpene hydrocarbons limonene and α-pinene [6,7].

Psidium friedrichsthalianum (O. Berg) Nied. (syn. Calyptropsidium friedrichsthalianum
O. Berg), known as “Costa Rican guava” or “sour guava”, is a small tree with fruits
with antioxidant activity and widely used to prepare juices, jellies, and sweets [8,9]. This
species originates from Central America, but its cultivation is currently carried out in
several tropical countries, including Colombia, Brazil, and Ecuador [10]. Phytochemical
and pharmacological studies with leaf and bark extracts of P. friedrichsthalianum reported
significant antimicrobial potential [11].

The present work aimed to analyze the seasonal variability in a Psidium friedrich-
sthalianum population sampled in Belém, Pará state, Brazil, based on the analysis of yield
and composition of its essential oils from August 2021 to May 2022 (10 months), using
chemometric tools.

2. Materials and Methods
2.1. Plant Material and Climatic Data

The leaves (250 g) and fruits (100 g) of a cultivated population of Psidium friedrich-
sthalianum were randomly collected in Belém city, Pará state, Brazil (coordinates: 1◦26′14.2′′

S/48◦26′30.2′′ W). The mature leaves for the seasonal study were sampled on day 10 of
each month, at 8 am, from August 2021 to May 2022. For its volatile concentrate anal-
ysis, the fruits were collected in November 2021, the month of fruiting of the species.
Plant identification was performed by comparison with an authentic specimen of Psidium
friedrichsthalianum. A specimen sample (MSF001848) was incorporated into the Herbarium
Marlene Freitas da Silva at Universidade do Estado do Pará, Belém, State of Pará, Brazil.
The specimen was collected in agreement with Brazilian laws concerning the protection of
biodiversity (Sisgen A47AD8F).

The climatic parameters (insolation, relative air humidity, and rainfall precipitation) of
the mentioned area were obtained for each month from the website of the Instituto Nacional
de Meteorologia (INMET, http://www.inmet.gov.br/portal/, accessed on 5 December
2022), of Brazilian Government (INMET, 2022). Meteorological data were recorded through
the automatic station A-201, located in Belém, Pará state, Brazil, equipped with a Vaisala
system, model MAWS 301 (Vaisala Corporation, Helsinki, Finland).

2.2. Essential Oil and Volatile Concentrate Extraction

The leaves were dried for seven days at room temperature, then pulverized. The
dried leaves (100 g) were subjected to hydrodistillation (in duplicate) using a Clevenger-
type apparatus (3 h). The dry plant weights were used to calculate the oil yields (in
duplicate). The moisture content of the leaves samples was calculated in an infrared
moisture balance for water loss measurement. The fresh fruits were cut, homogenized (20 g),
and subjected to a distillation-simultaneous extraction (DES) system using a Nickerson and
Likens type extractor, in addition to water (150 mL) and n-pentane (2 mL) as solvents, for
2 h (in duplicate), to obtain its volatile concentrate (Vc). The oils (leaves) and the volatile
concentrate (fruits) were stored in dark bottles for later chromatographic analysis.

2.3. Oils and Volatile Concentrate Composition Analysis

The analyses of the oils and volatile concentrate were performed by GC-MS. A Shi-
madzu instrument Model QP-2010 ultra (Shimadzu, Tokyo, Japan) was used. An Rtx-5MS
(30 m × 0.25 mm; 0.25 µm film thickness) fused silica capillary column (Restek, Bella-
fonte, PA, USA) was used as the stationary phase. The carrier gas was helium adjusted to
1.0 mL/min at 57.5 Kpa. One µL of n-hexane solution (oil and volatile concentrate, 5 µL:
n-hexane, 500 µL) was injected in split mode (split ratio 1:20). The injector and interface
temperature was 250 ◦C, oven programmed temperature was 60 to 240 ◦C (3 ◦C/min),
followed by an isotherm of 10 min. EIMS (electron ionization mass spectrometry) at 70 eV.

http://www.inmet.gov.br/portal/
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The ion source temperature was 200 ◦C. The mass spectra were obtained by scanning every
0.3 s. The mass fragments were from 35 to 400 m/z. The retention index was calculated
for all components using C8-C40 n-alkanes series (Sigma-Aldrich, Milwaukee, WI, USA)
according to the van den Dool and Kratz linear equation [12]. Individual components
were identified by comparing their retention indices and mass spectra (molecular mass
and fragmentation pattern) with those in the GCMS-Solution system libraries [13,14]. The
quantitative data regarding the volatile constituents were obtained using a Shimadzu GC
2010 Series, operated under similar conditions to the Shimadzu GC-MS system. The rela-
tive amounts of individual components were calculated by peak-area normalization using
the flame ionization detector (GC-FID). GC-FID and GC-MS analyses were performed
in duplicate.

2.4. Statistical Analysis

The statistical analysis was performed according to Santos et al. [6]. The significance
was assessed by a Tukey test (p < 0.05). The GraphPad Prism software, version 5.0 was
used to calculate the Pearson correlation coefficients (r). The principal component analysis
(PCA) was applied to the oil components (>3.0%). The hierarchical cluster analysis (HCA)
was carried out considering the Euclidean distance and the Ward linkage [15].

3. Results and Discussion
3.1. Seasonal Effect on Oil Yields

Climatic factors, such as insolation, precipitation, temperature, and relative humidity,
were monitored from August 2021 to May 2022 to evaluate their influence on the production
and composition of the essential oil of P. friedrichsthalianum. The insolation values varied
between 105.4 (March) and 256.1 h (August), the monthly precipitation from 163.4 (October)
to 527.4 mm (March), the temperature from 25.9 ◦C (January) to 27.6 ◦C (October), and the
relative air humidity from 82.1% (October) to 93.0% (April). The dry period in the region
where the plant occurs comprised the months from August to February, with an average
precipitation of 253.7 ± 58.4 mm, and the rainy period from March to May, with an average
precipitation of 472.5 ± 60.2 mm (Figure 1). In previous work, in the seasonal study of the
essential oil composition of Lippia alba, the dry period occurred from August to February,
and the rainy period from March to May [16].

Horticulturae 2023, 9, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 1. Relationship between climatic factors and Psidium friedrichsthalianum leaves essential oil 
yield during the seasonal study. 

The climate in the Brazilian Amazon is represented only by the dry and rainy seasons. 
With a hot and humid climate, the Amazon region has the highest rainfall from December 
to April, characterized by the rainy season, and the lowest rainfall from June to November, 
represented by the dry season. The year’s remaining months are considered transition pe-
riods between these two seasons [17,18]. However, from one year to another, these two 
seasons may change depending on the atmospheric phenomena that affect tropical re-
gions [19]. 

In the present seasonal study, the leaves essential oil yields of P. friedrichsthalianum 
ranged from 0.4% (October) to 0.8% (March to May), averaging 0.6 ± 0.1% for the annual 
period (Figure 1). The essential oil yield showed a significant difference (Tukey, p < 0.05) 
during the dry (0.5 ± 0.0%) and rainy (0.8 ± 0.0%) periods. Concerning the climatic factors 
vs. the essential oil yield, no significant correlation was observed (Tukey, p > 0.05) with 
the temperature (r = −0.32), while with the relative humidity (r = 0.63), the oil yield showed 
a moderate correlation. There was also a strong and negative correlation between the oil 
yield and the insolation (r = −0.70), as seen in Table 1.  

Table 1. Correlation between the yield, principal components, and classes of compounds of the Psid-
ium friedrichsthalianum oil and the climatic factors. 

Oil Yield/Components Temperature Humidity Insolation Precipitation 
Oil yield −0.32 0.63 * −0.70 * 0.57 
Caryophyllene oxide 0.51 0.57 0.16 0.63 * 
β-Pinene 0.26 0.36 −0.24 −0.43 
α-Pinene −0.44 0.33 −0.70 * 0.01 
β-Elemene 0.86 * 0.88 * 0.44 0.60 * 
α-Terpineol −0.99 * −0.99 * −0.66 * −0.65 * 
β-Selinene −0.75 * −0.72* −0.59 * −0.41 
Selin-11-en-4-α-ol −0.22 −0.27 0.16 −0.05 
Monoterpene hydrocarbons −0.29 −0.26 −0.49 −0.32 
Oxygenated monoterpenes −0.79 * −0.78* −0.47 −0.38 
Sesquiterpene hydrocarbons 0.41 0.36 0.36 0.10 
Oxygenated sesquiterpenes 0.28 0.35 0.13 0.42 
* Significant correlation (p < 0.05). 
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The climate in the Brazilian Amazon is represented only by the dry and rainy seasons.
With a hot and humid climate, the Amazon region has the highest rainfall from December
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to April, characterized by the rainy season, and the lowest rainfall from June to November,
represented by the dry season. The year’s remaining months are considered transition
periods between these two seasons [17,18]. However, from one year to another, these
two seasons may change depending on the atmospheric phenomena that affect tropical
regions [19].

In the present seasonal study, the leaves essential oil yields of P. friedrichsthalianum
ranged from 0.4% (October) to 0.8% (March to May), averaging 0.6 ± 0.1% for the annual
period (Figure 1). The essential oil yield showed a significant difference (Tukey, p < 0.05)
during the dry (0.5 ± 0.0%) and rainy (0.8 ± 0.0%) periods. Concerning the climatic factors
vs. the essential oil yield, no significant correlation was observed (Tukey, p > 0.05) with the
temperature (r = −0.32), while with the relative humidity (r = 0.63), the oil yield showed
a moderate correlation. There was also a strong and negative correlation between the oil
yield and the insolation (r = −0.70), as seen in Table 1.

Table 1. Correlation between the yield, principal components, and classes of compounds of the
Psidium friedrichsthalianum oil and the climatic factors.

Oil Yield/Components Temperature Humidity Insolation Precipitation

Oil yield −0.32 0.63 * −0.70 * 0.57
Caryophyllene oxide 0.51 0.57 0.16 0.63 *
β-Pinene 0.26 0.36 −0.24 −0.43
α-Pinene −0.44 0.33 −0.70 * 0.01
β-Elemene 0.86 * 0.88 * 0.44 0.60 *
α-Terpineol −0.99 * −0.99 * −0.66 * −0.65 *
β-Selinene −0.75 * −0.72 * −0.59 * −0.41
Selin-11-en-4-α-ol −0.22 −0.27 0.16 −0.05
Monoterpene hydrocarbons −0.29 −0.26 −0.49 −0.32
Oxygenated monoterpenes −0.79 * −0.78 * −0.47 −0.38
Sesquiterpene hydrocarbons 0.41 0.36 0.36 0.10
Oxygenated sesquiterpenes 0.28 0.35 0.13 0.42

* Significant correlation (p < 0.05).

A previous study evaluating the effect of seasonality on the leaves essential oil of
a Psidium acutangulum DC. population, collected in Belém, Pará, Brazil, did not show a
significant difference in the oils yield between the dry period (0.7 ± 0.3%) and the rainy
period (0.9 ± 0.2%) [6]. On the other hand, during the seasonal study of Psidium salutare
(Kunth). O. Berg leaves in Northeast Brazil, its leaf oil yield showed different percentages
during the dry (0.15%) and rainy (0.73%) seasons, with no significant correlation with the
precipitation [20].

3.2. Seasonal Effect on P. friedrichsthalianum Oil Composition

Table 2 lists eighty-nine (89) chemical constituents identified by GC and GC-MS in
the EOs from the leaves and volatile concentrate of P. friedrichsthalianum, in ascending
order of their respective retention indices. These constituents comprise about 89.5% of
the oils analyzed in the seasonal study and 85.0% of the components from the fruits’
volatile concentrate. The predominant classes of compounds in the leaf oil samples were
sesquiterpene hydrocarbons (19.1% to 45.7%), followed by oxygenated sesquiterpenes
(18.8 to 39.4%), monoterpene hydrocarbons (13.2 to 34.6%), and oxygenated monoterpenes
(1.3 to 9.6%). As for the volatile concentrate of the fruits, there was a predominance
of monoterpene hydrocarbons (31.2%), followed by oxygenated sesquiterpenes (20.9%),
sesquiterpene hydrocarbons (17.5%), and oxygenated monoterpenes (15.4%). The main
constituents identified in the leaf oils of the seasonal study were α-pinene (6.3 to 18.0%),
caryophyllene oxide (4.3 to 16.3%), selin-11-en-4-α-ol (4.6 to 15.6%), β-elemene (9.9 to
14.9%), β-pinene (4.8 to 13.4%), bicyclogermacrene (6.1 to 7.3%), linalool (0.1 to 7.1%), and
spathulenol (1.9 to 5.9%). In the volatile concentrate of the fruits, there was a predominance
of α-pinene (17.6%), α-terpineol (13.7%), selin-11-en-4-α-ol (10.0%), β-pinene (7.1%), β-
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selinene (6.0%), and E-caryophyllene (5.0%). The chemical structures of these compounds
are shown in Figure 2.

Table 2. Seasonal study of leaves essential oils (19 August–20 May) and fruits volatile concentrate
(19 November) composition of P. friedrichsthalianum.

RIC RIL
Oil Yield (%) 0.5 0.5 0.4 0.6 0.6 0.5 0.7 0.8 0.8 0.8 Vc

(%)Month/Constituents (%) Aug Sep Oct Nov Dec Jan Feb Mar Apr May

926 924 a α-Thujene n.d. 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 n.d.
934 932 a α-Pinene 6.3 9.1 14.0 17.2 11.5 10.8 18.0 12.9 14.9 10.8 17.6
947 945 a α-Fenchene n.d. 0.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.1
949 946 a Camphene n.d. 0.1 n.d. n.d. n.d. 0.1 n.d. n.d. 0.1 n.d. 0.2
974 969 a Sabinene 0.9 0.2 0.5 0.6 0.5 0.6 0.8 0.5 0.5 0.4 n.d.
978 974 a β-Pinene 4.8 6.9 11.0 11.9 9.5 8.9 13.4 9.8 10.5 8.4 7.1
991 988 a Myrcene n.d. 0.5 1.1 0.5 1.0 0.5 0.6 0.7 0.6 0.8 1.1
1017 1014 a α-Terpinene n.d. 0.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.2
1024 1020 a p-Cymene 0.4 0.4 0.1 0.2 n.d. 0.3 0.2 0.2 0.2 0.1 n.d.
1028 1024 a Limonene 0.7 1.4 1.5 1.4 1.4 1.3 1.5 1.3 1.2 1.2 2.2
1031 1026 a 1,8-Cineole n.d. n.d. n.d. n.d. 0.1 n.d. n.d. 0.2 n.d. n.d. n.d.
1046 1044 a E-β-Ocimene n.d. n.d. 0.1 n.d. 0.1 n.d. n.d. n.d. n.d. 0.1 0.2
1058 1054 γ-Terpinene 0.1 0.1 n.d. n.d. 0.1 n.d. n.d. n.d. n.d. 0.1 0.3
1072 1067 a cis-Linalool oxide (furanoid) 0.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.2 n.d.
1088 1084 a trans-Linalool oxide

(furanoid) 0.2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.1 n.d.
1089 1086 a Terpinolene n.d. 0.2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2.2
1100 1095 a Linalool 0.5 0.1 0.4 0.3 0.5 1.7 0.9 0.7 0.6 7.1 0.2
1113 1114 a endo-Fenchol 0.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.5
1126 1122 a α-Campholenal 0.3 n.d. n.d. 0.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d.
1137 1135 a Nopilone 0.2 n.d. n.d. 0.1 n.d. 0.1 n.d. n.d. n.d. n.d. n.d.
1139 1135 a trans-Pinocarveol 1.3 n.d. 0.1 0.7 0.1 0.6 0.3 0.3 0.6 n.d. n.d.
1145 1140 a trans-Verbenol 1.5 n.d. n.d. 0.4 n.d. 0.3 n.d. 0.1 0.3 n.d. n.d.
1162 1160 a Pinocarvone 0.7 n.d. n.d. 0.2 n.d. 0.4 0.2 0.2 0.4 n.d. n.d.
1166 1165 a Borneol 0.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.3
1177 1174 a Terpinen-4-ol 0.1 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.1 n.d. 0.7
1191 1186 a α-Terpineol 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 13.7
1196 1195 a Myrtenal n.d. n.d. n.d. n.d. n.d. n.d. 0.3 0.3 0.5 n.d. n.d.
1197 1197 b Myrtenol 1.4 n.d. n.d. 0.7 n.d. 0.7 n.d. n.d. n.d. n.d. n.d.
1209 1204 a Verbenone 0.9 n.d. n.d. 0.1 n.d. 0.2 n.d. n.d. 0.1 n.d. n.d.
1219 1215 a trans-Carveol 0.2 n.d. n.d. 0.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d.
1221 1218 a endo-Fenchyl acetate 0.1 0.1 n.d. n.d. 0.1 0.1 n.d. 0.1 0.1 n.d. n.d.
1243 1241 b Methyl phenethyl ketone n.d. 0.1 0.2 0.3 0.1 0.1 n.d. 0.2 0.3 n.d. n.d.
1286 1287 a Bornyl acetate 0.4 0.2 0.2 0.2 0.2 0.4 0.1 0.3 0.3 0.1 n.d.
1300 1298 a trans-Pinocarvyl acetate n.d. 0.1 0.1 0.1 0.1 n.d. 0.1 0.2 0.2 0.1 n.d.
1323 1325 a p-Mentha-1,4-dien-7-ol 1.0 n.d. n.d. 0.2 n.d. n.d. n.d. 0.1 n.d. n.d. n.d.
1326 1326 b Myrtenyl acetate 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 n.d.
1338 1335 a δ-Elemene n.d. 0.3 0.3 0.1 0.4 n.d. n.d. 0.1 n.d. 0.3 n.d.
1351 1345 a α-Cubebene n.d. 0.1 n.d. 0.1 n.d. n.d. n.d. 0.1 n.d. 0.1 n.d.
1377 1374 a α-Copaene 2.2 2.6 2.2 3.1 2.5 2.8 2.6 2.7 2.1 2.3 0.9
1385 1387 a β-Bourbonene 0.4 n.d. n.d. n.d. n.d. 0.5 0.3 n.d. 0.4 n.d. n.d.
1394 1389 a β-Elemene 11.4 9.9 13.0 14.9 14.8 11.0 14.7 14.5 10.7 14.8 1.8
1422 1417 a E-Caryophyllene n.d. 8.5 8.3 3.6 8.7 1.9 4.4 6.4 3.1 8.3 5.0
1430 1430 a β-Copaene 0.1 0.1 0.1 0.1 0.1 0.1 n.d. 0.1 0.1 0.1 n.d.
1436 1432 a trans-α-Bergamotene n.d. 0.1 n.d. 0.2 n.d. n.d. n.d. n.d. n.d. n.d. n.d.
1440 1439 a Aromadendrene 0.4 0.2 0.2 0.4 0.3 0.4 0.1 0.3 0.3 0.2 n.d.
1455 1452 a α-Humulene n.d. 1.3 1.2 0.7 1.3 0.4 0.5 1.0 0.6 1.1 0.7
1458 1454 a E-β-Farnesene n.d. 0.1 n.d. n.d. 0.1 n.d. n.d. 0.1 n.d. n.d. n.d.
1462 1464 a 9-epi-E-Caryophyllene 0.1 0.4 0.3 0.3 0.4 0.3 n.d. 0.3 0.2 0.3 n.d.
1477 1476 a Selina-4,11-diene n.d. n.d. n.d. n.d. 0.3 n.d. n.d. n.d. n.d. n.d. 2.0
1478 1478 a γ-Muurolene 0.6 0.7 0.6 0.8 0.5 0.8 0.5 0.8 0.7 0.6 n.d.
1482 1480 a Germacrene D n.d. 2.6 2.4 n.d. 2.9 n.d. n.d. 0.4 n.d. 2.6 n.d.
1488 1489 a β-Selinene 2.2 3.7 1.3 1.7 3.0 3.4 3.0 3.3 1.3 3.4 6.0
1493 1493 a trans-Muurola-4(14),5-diene n.d. 0.2 0.2 n.d. 0.2 n.d. n.d. n.d. n.d. 0.1 n.d.
1496 1498 b epi-Cubebol 0.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.0 n.d. n.d.
1498 1500 a Bicyclogermacrene n.d. 6.1 7.3 n.d. 6.4 n.d. n.d. n.d. n.d. 6.5 n.d.
1501 1500 a α-Muurolene 0.2 0.5 0.5 0.3 0.4 0.4 0.1 0.3 0.3 0.3 n.d.
1506 1509 a α-Bulnesene n.d. 0.6 n.d. 0.1 1.1 n.d. n.d. 0.5 n.d. n.d. n.d.
1516 1514 a Cubebol n.d. 0.8 n.d. 1.1 1.1 n.d. n.d. 1.1 1.1 0.7 n.d.
1525 1522 a δ-Cadinene n.d. 2.5 1.9 n.d. 1.9 n.d. n.d. n.d. n.d. 1.9 1.1
1534 1533 a trans-Cadina-1,4-diene n.d. 0.1 0.1 n.d. 0.1 n.d. n.d. n.d. n.d. 0.1 n.d.
1539 1537 a α-Cadinene 0.9 0.1 n.d. 0.1 0.1 n.d. n.d. 0.1 n.d. n.d. n.d.
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Table 2. Cont.

RIC RIL
Oil Yield (%) 0.5 0.5 0.4 0.6 0.6 0.5 0.7 0.8 0.8 0.8 Vc

(%)Month/Constituents (%) Aug Sep Oct Nov Dec Jan Feb Mar Apr May

1542 1539 a α-Copaen-11-ol n.d. 0.1 n.d. 0.1 0.1 0.2 n.d. 0.1 0.1 n.d. n.d.
1550 1548 a Elemol 0.2 0.1 0.1 0.2 0.2 0.2 n.d. 0.2 0.2 0.1 n.d.
1558 1559 a Germacrene B 0.2 0.1 0.1 n.d. 0.2 0.2 n.d. n.d. 0.1 0.1 n.d.
1565 1561 a E-Nerolidol n.d. 0.1 0.1 0.1 0.1 0.1 n.d. 0.1 0.1 0.1 n.d.
1568 1566 a Maaliol 0.5 0.2 0.1 0.2 0.2 0.3 n.d. 0.2 0.2 0.2 n.d.
1571 1570 a Caryophyllenyl alcohol 0.4 0.4 0.2 0.1 0.3 0.2 n.d. 0.3 0.3 0.2 n.d.
1579 1577 a Spathulenol 5.0 2.0 n.d. 2.4 3.7 5.7 5.9 4.0 3.1 2.6 1.9
1585 1582 a Caryophyllene oxide 16.3 4.7 4.3 11.2 4.3 13.6 13.6 9.5 12.4 4.4 n.d.
1588 1590 a β-Copaen-4α-ol n.d. 0.3 0.3 0.1 0.3 0.3 n.d. 0.3 0.3 0.2 n.d.
1593 1592 a Viridiflorol 1.0 0.5 0.4 0.5 0.4 0.8 0.4 0.5 0.5 0.5 2.8
1595 1595 a Cubeban-11-ol 0.3 0.3 0.3 0.2 0.3 0.3 0.1 0.3 0.3 0.2 0.4
1599 1600 a Guaiol n.d. 0.2 0.2 n.d. 0.2 n.d. n.d. 0.1 n.d. 0.1 n.d.
1604 1602 a Ledol n.d. 0.8 n.d. 0.6 n.d. 0.6 0.3 0.8 0.7 0.6 n.d.
1610 1608 a Humulene epoxide II 1.7 0.3 0.3 1.1 n.d. 1.2 0.7 0.9 1.0 0.2 n.d.
1619 1618 a Junenol n.d. 0.5 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
1630 1630 a Muurola-4,10(14)-dien-1β-ol 0.8 1.6 1.2 0.8 1.3 1.4 1.1 1.5 1.4 1.0 n.d.
1632 1630 a γ-Eudesmol n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.7

1638 1636 b Caryophylla-4(12),8(13)-dien-
5β-ol 0.3 0.5 0.5 0.2 0.6 0.5 0.2 0.6 0.4 0.5 0.8

1644 1640 a epi-α-Muurolol (=
τ-Muurolol) 1.5 1.9 1.8 1.6 1.7 1.8 1.7 1.9 2.0 1.7 2.0

1649 1644 b -Muurolol (= Torreyol) 1.5 1.7 1.5 1.3 1.3 1.4 1.4 1.5 1.7 1.3 1.3
1658 1651 Selin-11-en-4α-ol 8.0 15.6 7.5 n.d. 4.6 6.8 7.6 5.3 9.1 5.5 10.0
1669 1668 a trans-Calamenen-10-ol 0.1 n.d. n.d. 0.2 n.d. 0.2 n.d. n.d. 0.1 n.d. n.d.
1676 1675 a Cadalene 0.4 0.1 n.d. n.d. n.d. n.d. n.d. 0.1 0.2 n.d. n.d.
1677 1676 a Muskatone 0.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
1687 1685 a α-Bisabolol n.d. 0.3 n.d. 0.3 0.4 n.d. n.d. n.d. n.d. n.d. n.d.
1691 1688 a Shyobunol n.d. n.d. n.d. n.d. 0.3 n.d. n.d. n.d. n.d. n.d. n.d.
1691 1692 a Acorenone 0.6 n.d. n.d. n.d. n.d. 0.4 n.d. n.d. n.d. n.d. n.d.
1738 1739 a Oplopanone n.d. n.d. n.d. 0.2 n.d. 0.2 n.d. n.d. n.d. n.d. n.d.

Monoterpene hydrocarbons 13.2 19.2 28.4 31.9 24.2 22.6 34.6 25.5 28.1 22.0 31.2
Oxygenated monoterpenes 9.6 1.3 1.5 4.0 1.7 5.3 2.4 3.3 4.0 8.1 15.4
Sesquiterpene hydrocarbons 19.1 40.9 40.0 26.5 45.7 22.2 26.2 31.1 20.1 43.1 17.5
Oxygenated sesquiterpenes 39.4 32.9 18.8 22.5 21.4 36.2 33.0 29.2 36.0 20.1 20.9

Total (%) 81.3 94.3 88.7 84.9 93.0 86.3 96.2 89.1 88.2 93.3 85.0

RIC = Calculated retention index; RIL = Literature retention index; Vc = Volatile concentrate; a = Adams (2007);
b = Mondello (2011); n.d. = not detected; Main constituents in bold; Standard deviation was less than 2.0 (n = 2).
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P. friedrichsthalianum.

The chemical constituents that significantly correlated with climatic factors were α-
pinene with insolation (r = −0.70), the caryophyllene oxide with precipitation (r = 0.63), the
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β-elemene with mean temperature (r = 0.86), relative humidity (r = 0.88), and precipitation
(r = 0.60), the α-terpineol with temperature (−0.99), relative humidity (−0.99), insolation
(r = −0.66), and precipitation (r = −0.65), the β-selinene with temperature (−0.75), relative
humidity (−0.72), and insolation (r = −0.59). The constituents that did not significantly
correlate with climatic factors were selin-11-en-4-α-ol and β-pinene. On the other hand,
the class of oxygenated monoterpenes showed a strong negative and significant correlation
with temperature (r = −0.79) and relative humidity (−0.78) (see Table 1).

3.3. Multivariate Analysis of P. friedrichsthalianum

Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were
plotted with volatile constituents above 3%. Applying hierarchical cluster analysis (HCA)
provided the dendrogram shown in Figure 3, which presents the P. friedrichsthalianum
oil volatiles in three groups and zero similarity. Group I comprised oils from August,
November, January, February, March, and April. Group II included September, October,
December, and May oils. Group III concerned only the volatile concentrate of the fruits.
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Principal Component Analysis (PCA) (Figure 4) clarified 79.81% of the data variabil-
ity. The PC1 component explained 36.33% and was positively correlated with α-pinene
(r = −0.11), α-terpineol (r = −0.50), and β-selinene (r = −0.39). The PC2 component ex-
plained 24.54% and showed a negative correlation with α-pinene (r = −0.13), β-pinene
(r = −0.09), β-elemene (r = −0.07), α-copaene (r = −0.10), and spathulenol (r = −0.45).
The PC3 component explained 18.94% of the data and showed a positive correlation with
α-pinene (r = 0.68), β-pinene (r = 0.60), α-terpineol (r = 0.14), β-elemene (r = 0.03), and
E-caryophyllene (r = 0.19). As with the HCA, the analysis of the PCA confirmed the
formation of three distinct groups. Group I was characterized by the highest content
of α-pinene (6.3–18.0%), β-elemene (9.9–14.9%), caryophyllene oxide (4.3–16.3%), and β-
pinene (4.8–13.4%). Group II was characterized by the highest content of selin-11-en-4-α-ol
(4.6–15.6%), β-elemene (9.9–14.9%), α-pinene (6.3–18.0%), and E-caryophyllene (3.1–8.7%).
Group III was characterized by the highest content of α-pinene (17.6%), α-terpineol (13.7%),
and Selin-11-en-4-α-ol (10.0%).
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PCA and HCA analyses did not differentiate between P. friedrichsthalianum oil sam-
ples during dry and rainy seasons. A previous study about the seasonality of Psidium
acutangulum leaves essential oils from Brazil showed no sample separation from dry and
rainy seasons [6]. Indeed, some species show variation in the constituents contents but
cannot be separated in chemometric analyses due to their metabolism not correlating with
climatic parameters or other factors, biotic or abiotic, which may interfere with metabolic
pathways [6,15]. However, correlations were observed between climatic parameters and
constituents of oils and their classes of compounds, as mentioned before (see Table 1).

About eighteen Psidium species are grown worldwide, and the chemical composi-
tions of more than one hundred of their essential oils have been reported in the literature,
with significant variability of volatile constituents and according to seasonality and col-
lection sites [1]. Previously, the essential oils composition of the leaves and the volatile
concentrate of the fruits of P. friedrichsthalianum were reported: The leaves of a specimen
collected in San Jose, Costa Rica, having E-caryophyllene, α- and β-pinene, and β-elemene
as main constituents [21], the fruits of a specimen sampled in Havana, Cuba, with the
predominance of E-caryophyllene, α-terpineol, α-pinene, α- and β-selinene, δ-cadinene,
and α-copaene [22], and the leaves of a specimen collected in Alegre, Espírito Santo, Brazil,
having E-caryophyllene, caryophyllene oxide, α-humulene, and α-copaene as significant
components [23].

The extracts of leaves and fruits of P. friedrichsthalianum, the Costa Rican guava, proved
to be a rich source of phenolic compounds, mainly quercetin derivatives, and proantho-
cyanidins derived from epicatechin units, besides other compounds such as ellagitannins,
and benzophenones [24,25].

4. Conclusions

The main constituents identified in the leaf oils of the seasonal study of Psidium
friedrichsthalianum were α-pinene, caryophyllene oxide, selin-11-en-4-α-ol, β-elemene, β-
pinene, bicyclogermacrene, linalool, and spathulenol. In the volatile concentrate of the
fruits, there was a predominance of α-pinene, α-terpineol, selin-11-en-4-α-ol, β-pinene, β-
selinene, and E-caryophyllene. The essential oil exhibited a significantly strong correlation
with humidity and insolation, and the constituents of the oil were correlated with climatic
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parameters. Furthermore, the class of monoterpene hydrocarbons showed a moderate
negative correlation with temperature and humidity. Thus, the present study contributes
to the knowledge on the chemical variability of P. friedrichsthalianum essential oils.
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