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Abstract: Daylength-extension lighting (DE) is used in the cannabis industry to increase plant size
and produce cuttings by regulating flowering and extending the vegetative stage. Growers have
reported incomplete or transitional inflorescences in several Cannabis cultivars even when exposed
to long photoperiods. Cannabis sativa L. ‘Suver Haze’ has been reported to develop incomplete
inflorescences in North Carolina nurseries using photoperiods of 15 h. The objectives of this study
were to investigate the required light intensity and photoperiod to inhibit the flowering of ‘Suver
Haze’. In Experiment 1, DE of 1.0, 2.5, 5.8, and 10.3 µmol·m−2·s−1 of photosynthetic photon flux
density from incandescent lamps were used to extend the photoperiod of ‘Suver Haze’ from 9 to 15 h.
A 9 h photoperiod control was included. The results showed that all DE treatments stopped the full
transition to flowering compared to the control; however, all DE-treated plants showed the presence of
incomplete inflorescences. In Experiment 2, three photoperiod treatments of 15 h, 18 h, and 21 h were
tested. ‘Suver Haze’ under 18 h and 21 h photoperiods did not develop incomplete inflorescences
in contrast to plants in 15 h photoperiod. Therefore, a light intensity of at least 1.0 µmol·m−2·s−1

PPFD and an 18 h photoperiod are required to prevent incomplete inflorescences and flowering of
‘Suver Haze’.

Keywords: hemp; photoperiod; cannabis flower; day-extension; cannabis cuttings

1. Introduction

With the changing legal status of Cannabis sativa production, the market is expanding
in Europe, Oceania, and North America [1]. Cannabis has been widely cultivated due to
its industrial [2], ornamental [3], nutritional [4], medicinal, and recreational [5] potentials.
From regulatory and application perspectives, cannabis plants are categorized based on the
level of ∆9-tetrahydrocannabinol (THC), one of the most important phytocannabinoids [6].
Plants are generally classified and regulated as industrial hemp if it contains less than 0.3%
THC in the dried flower (this level varies by country) or drug-type with more than this
threshold [7]. In the United States, the cultivation of Cannabis sativa with less than 0.3% of
THC is legal at the federal level [8], and the recreational use of high-THC plants continues
to be legalized at the state level [9]. The current variability of plants from seeds leads to
high variability in flowering initiation [10,11]. Currently, the majority of Cannabis sativa
cultivated for medicinal and recreational markets is vegetatively propagated from stock-
plant cuttings. Commercial greenhouse nurseries providing rooted cuttings to the field
sometimes rely on natural or day-extension lighting to keep plants vegetative. However,
growers have observed that stock plants of some cultivars develop incomplete inflores-
cence (Figure 1) while still maintaining overall vegetative growth. Most of the cannabis
commercial materials are considered quantitative short day plants [12,13]. However, some
day-length sensitive plants do not flower with photoperiods longer than 13 to 14 h, while
others need 18 h or more to stop flowering [14]. In the United States (U.S.) a common CBD
Cannabis sativa cultivar ‘Suver Haze’ shows a partial transition to flowering in the nursery
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even under 15 h photoperiods. This partial transition is identified by the growers as the
development of incomplete inflorescences on all node positions of the plant (Figure 1),
which is accompanied by a reduction in the rate of stem extension and reduced apical
dominance. Even though this response is more likely attributed to photoperiod effects, it is
important to also consider the adequate intensity to trigger day-length extension responses
since this can vary between plant species [15].
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Figure 1. Incomplete or rudimentary inflorescent (A) and fully developing inflorescent (B) from the
top of the canopy of two plants (Cannabis sativa L., ’Suver Haze’) at the same age. (A) was grown
under a 15 h photoperiod and (B) under a 9 h photoperiod for 28 days. Both plants were grown
under the same daily light integral. Notice the incompletely developed flowers (arrows) and longer
internode lengths on (A) compared to (B).

The objective of this study was to investigate the minimum light intensity and the
required photoperiod to prevent incomplete inflorescence development. Two experiments
were conducted: (1) to elucidate the required light intensity for daylength-extension (DE);
and (2) to identify the long-day photoperiod to prevent full and partial transitions to flower-
ing. Two hypotheses were tested: (1) low light intensity (1–10 µmol m−2 s−1 photosynthetic
photon flux density (PPFD)) is sufficient to prevent the transition from vegetative growth
to flowering of ‘Suver Haze’ (Experiment 1); and (2) ‘Suver Haze’ requires a photope-
riod longer than 15 h to fully prevent the transition from vegetative growth to flowering
(Experiment 2).

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Cannabis sativa stem cuttings were taken from vegetative stock plants of ‘Suver
Haze’ (© Oregon CBD). The stem cuttings were planted in a 72-cell tray (plant density
483 plants m−2) for rooting in a peat-based horticultural medium (Fafard 4P Mix; Sun Gro
Horticulture Co., Ltd., Agawam, MA, USA). During rooting, plants were maintained in a
growth chamber under an air temperature of 26 ◦C (average day temperature), a relative
humidity of 85–95%, and 120 µmol·m−2·s−1 PPFD with a 16 h photoperiod for two weeks.
The cuttings were irrigated with tap water once a day.
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2.2. Plant Growing Conditions

Rooted cuttings were transplanted to 1-gallon pots filled with sand medium and
placed inside a growth chamber (EGC, reach-in chamber, Environmental Growth Chambers,
Chagrin Falls, OH, USA). Plants were irrigated as needed with a complete hydroponic
solution with an electrical conductivity of 1.0 ds m−1 and a pH of 6.0. The nutrient solution
contained (mg L−1): 84 (N), 7.8 (P), 121 (K), 45/7 (Ca), 9.54 (Mg), 11.2 (S), 3.6 (Fe), 0.05 (Mn),
0.21 (Zn), 0.09 (Cu), 0.19 (B). The size of the growth chambers was 1.2 m in width, 0.9 m
in depth, and 1.2 m in height, and each was outfitted with a combination of cool-white
fluorescent and incandescent fixtures (Figure 2). For Experiment 1, the plant density
inside the chamber was 4 plants per square meter for a total of 20 plants (4 plants per
treatment/chamber) per replication. For Experiment 2, the final plant density was 6 plants
per meter square for total of 18 plants (6 plants per treatment/chamber).
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Figure 2. (A) represents the spectrum (cool-white-fluorescent fixture, T5 54 W) used for plant growth
under a photoperiod of 9 h (experiments 1 and 2). (B) represents the daylength-extension spectrum
(40 W incandescent fixtures) for four light intensity treatments of 1.0, 2.5, 5.0, 10.0 µmol·m−2·s−1

photosynthetic photon flux density. Detailed values (mean ± SD) for PPFD (400–700 nm) and total
photon flux (300–800 nm) are presented in Table 1.
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Table 1. Environmental conditions measured in the growth chambers (mean ± standard deviation) in
the two experiments. Light measurements were collected at the beginning and end of each repetition,
temperature and relative humidity were recorded every minute. In Experiment 1, five daylength-
extension lighting (DE) treatments were tested (two replications in time). In Experiment 2, three
different photoperiods were tested once.

Experiment 1 a DE-0 DE-1.0 DE-2.5 DE-5.0 DE-10

DE-PPFD (400–700 nm: µmol·m−2·s−1) 0 1.0 ± 0.3 2.5 ± 0.5 5.8 ± 1.2 10.3 ± 1.7
DE-FR (700–800 nm: µmol·m−2·s−1) 0 1.2 ± 0.3 3.0 ± 0.5 7.1 ± 1.2 12.0 ± 1.7
DE-PF (300–800 nm: µmol·m−2·s−1) 0 2.2 ± 0.6 5.5 ± 1.1 12.9 ± 2.8 22.2 ± 3.6
DE-R:FR 0 0.524 0.540 0.524 0.564
PPFD (µmol·m−2·s−1) 400.6 ± 2.6
DE-Photoperiod (h) 0 6 6 6 6
PPFD-Photoperiod (h) 9
Photoperiod (h) 9 15 15 15 15
Daily light integral (mol·m−2·d−1) 13.1 ± 0.1
Temperature (◦C) 24.5 ± 0.3
Relative humidity (%) 69.8 ± 6.9

Experiment 2 a 15 h 18 h 21 h

Photoperiod (h) 15 18 21
DE-Photoperiod (h) 6 9 12
PPFD-Photoperiod (h) 9
DE-PPFD (400–700 nm: µmol·m−2·s−1) 9.0 ± 0.2
DE-FR (700–800 nm: µmol·m−2·s−1) 10.5 ± 0.2
PPFDy (µmol·m−2·s−1) 463.0 ± 5.0
Daily temp (◦C) 25.5 ± 0.3
Relative humidity (%) 63.6 ± 2.2

a Incandescent lamps were used for the DE, and cool-white-fluorescent lamps were used to provide PPFD light
intensity (Figure 2).

2.3. Lighting

For both experiments, fluorescent fixtures and incandescent lamps were installed at
the top of the chamber (1.2 m height) to provide light for growth and daylength exten-
sion, respectively (Figure 2). Nine light measurements per chamber were taken using a
spectroradiometer (PS-200, Apogee Instruments, Logan, UT, USA), and their average per
treatment are presented in Table 1 and Figure 2. Plants were placed inside the chamber on
a height adjustable platform. The platform height was adjusted (lowered) twice a week to
adjust for increase in plant height and maintain the same PPFD and DE light intensities at
the apical meristem of the plant by maintaining the same distance between the plant and
the light fixtures. To achieve the different DE intensities, the 40W incandescent bulbs were
covered with different layers of black shad-cloth. A diagram depicting the chamber set up
is presented (Figure S1).

2.4. Treatments

In Experiment 1, all the plants were exposed to a similar PPFD of 400.6± 2.6µmol·m−2·s−1

for 9 h. In addition, plants were exposed for 6 h daily to five DE treatments of 0, 1.0, 2.5,
5.0, and 10 µmol·m−2·s−1 PPFD for a total of 28 days (Table 1 and Figure 2). One treatment
per chamber was used.

In Experiment 2, plants were exposed to three photoperiodic treatments (one treatment
per chamber) with the same 9 h at 463.0 ± 5.0 PPFD and different hours of DE. The three
photoperiods were: (1) 15 h (9 h PPFD and 6 h DE), (2) 18 h (9 h PPFD and 9 h DE, and
(3) 21 h (9 h PPFD and 12 h DE) (Table 1). The dark periods were 9, 6, and 3 h, respectively,
for a 24 h day. Experiment 2 was conducted for 24 days and only conducted one time.
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2.5. Measurement of Plant Growth Parameters

For Experiment 1, the number of visible flowers, stem length, and number of nodes
were counted at 0, 7, 14, 21 and 28 days after transplanting. Stem length was measured
from the base of the stem to the apical meristem and the final number of nodes was counted
from the fifth bottom leaf to the apical meristem. Shoot and root fresh mass were measured
using a micro weighing scale (CAS MW-II; CAS Co., Ltd., East Rutherford, NJ, USA) at
day 28. Shoot fresh mass was partitioned into stem fresh mass and leaf fresh mass. Shoot
and root samples were placed in a drying oven at 70 ◦C for 7 days and dry mass was
determined using a micro-weighing scale (CAS MW-II).

For Experiment 2, the presence or absence of incomplete inflorescences was recorded
at end of the experiment (24 days).

2.6. Statistical Analysis

For Experiment 1, four plants (subsamples) per chamber (experimental unit) and
two replications in time were used for analysis. For each replication, the chambers were
randomly assigned to the treatments. The number of flowers, stem length, and number of
nodes (Figure 3) were analyzed on days 0, 7, 14, 21, and 28. The treatment effect on fresh
and dry mass was analyzed for roots, stem, and canopy (leaves and flowers) using ANOVA
and Tukey’s HSD mean separation. All analyses were performed using JMP software 14.2
(SAS Institute, Cary, NC, USA).

For Experiment 2, six plants were assigned per chamber/treatment. Since the treat-
ment effect on the absence/presence of incomplete inflorescences was clearly recognizable
in every plant, it was conducted only one time. The photoperiod inflorescence results from
the experiments 1 and 2 were analyzed in an incomplete block design using generalized
regression with Poisson distribution and Lasso estimation method (lower AICc) in JMP Pro
17.0 from SAS.
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Figure 3. Effect of daylength-extension lighting with intensities of 0 (DE-0), 1 (DE-1.0), 2.5 (DE-2.5),
5 (DE-5.0), and 10 (DE-10) µmol·m−2·s−1 PPFD (400–700 nm) on the number of inflorescences (A),
stem length (B), and number of nodes per plant (C) of Cannabis sativa ’Suver Haze’ grown in a
growth chamber for 28 days after treatment. Arrows on (A) indicate the development of incomplete
inflorescences (see Figure 1). Data are presented as the mean ± SE. Different letters/asterisk show
significant differences between treatments on each day, n.s shows no significant differences (Tukey’s
test, α = 0.05). The DE treatments >0 µmol·m−2·s−1 extended the photoperiod from 9 to 15 h and
showed no significant differences between them in (A–C); therefore, only one mean error bar from
those treatments is presented per day.

3. Results and Discussion
3.1. Experiment 1: Daylength-Extension Experiment
3.1.1. Effect of Light Intensity on Flower Transition

Even though all plants under DE-1.0, DE-2.5, DE-5.0, and DE-10 showed the develop-
ment of incomplete inflorescences (Figure 1), the 15 h photoperiod in all treatments was
able to prevent the full flowering transition of ‘Suver Haze’ from the vegetative stage to the
reproductive stage (Figures 3A and 4) and associated effects (Figure 3B,C). In addition, no
differences were detected between 1 to 10 µmol·m−2·s−1. Figure 3A shows earlier flower
initiations in the control treatment (DE-0) on days 7 and 14 (a higher number of inflores-
cences than all other DE treatments), reaching the maximum number of inflorescences by
day 21. After Day 21, the biomass of existing flowers continued to increase in the control
treatment. In the 1 to 10 µmol·m−2·s−1 DE treatments (DE-1.0, DE-2.5, DE-5.0, and DE-10),
incomplete inflorescences started developing by day 14 and continued to develop until the
end of data collection (Day 28, Figures 1 and 3A); these flowers did not increase in biomass
and size (data not shown). In addition, plants in 1 to 10 µmol·m−2·s−1 DE treatments also
continued to increase stem length and number of nodes when compared to the control
(Figure 3B,C, respectively). This indicates that plants were still in vegetative development.
On day 14, plants under DE-1.0, DE-2.5, DE-5.0, and DE-10 started showing the develop-
ment of incomplete inflorescences, and apical dominance (stem height, node development)
was not reduced compared to the control (DE-0), suggesting that a uniform light inten-
sity of 1 µmol·m−2·s−1 PPFD (1.2 µmol·m−2·s−1 PF 700–800 nm; 2.2 µmol·m−2·s−1 PF
300–800 nm, Table 1) is sufficient to trigger photoperiodic responses and prevent a full
transitioning to flowering.

Research reports have shown that plants can perceive very low light intensities. For
example, Whitman et al. [16] showed that Coreopsis verticillate “Moonbeam” (long-day plant)
was able to detect light intensities as low as 0.05 µmol·m−2·s−1. Most short-day plants
can effectively perceive low light intensities to prevent flowering either as DE lighting or
night interruption lighting. In addition, short day plants can also detect light intensity
from a variety of spectra in both the PAR and far-red wavelengths [15]. The results of
the present study are in agreement with known photoperiodic responses of ornamental
plants [15,17]. Therefore, for ‘Suver Haze’, a uniform light intensity for day extension
of at least 1 µmol·m−2·s− (lowest tested in this experiment) is recommended to prevent
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flowering. Therefore, this study is in agreement with recent published reports in other
Cannabis cultivars [12,13].
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3.1.2. Incomplete Inflorescent Development

In the present study, the flowering under the control treatment (9 h photoperiod)
started at day 7, whereas incomplete inflorescent development (Figures 1 and 3A) was
present in all DE treatments starting at day 14. This incomplete inflorescent development
is known as the onset of the transition to the flowering stage (pers comm. J. Faust). In-
complete inflorescence development, during long-day conditions, is undesirable since
flowers do not fully develop leading to a decrease in flower quality and yield. Since all
the 15 h DE treatments had similar development of incomplete inflorescences, it was con-
cluded that insufficient light intensity was not the cause of the development of incomplete
inflorescences.

Other environmental stimuli can also trigger the transition to flowering. For example,
the temperature during the vegetative stage is known to affect the flowering capacity
of cannabis plants [18–21]; research on fiber hemp cultivars has shown that the optimal
temperature for growth is 29 ◦C, and 306 to 636 ◦C degree days (base temperature of
1 ◦C) are required for the completion of the thermal requirements to initiate the day-length
(photoperiod) dependent stage [19]. In the present study, vegetative cuttings from mature
cloned stock plants were rooted and grown under average temperatures of 26 ◦C during
the rooting stage (14 days) and 24.5 ◦C during the first week of the experiment with a total
of 535 degree days. Moreover, under greenhouse non-supplemental lighting conditions,
‘Suver Haze’ cuttings in misting systems show flowers with only three weeks after sticking
for rooting; while the visualization of flowers takes between 2 and 3 weeks for ‘Suver
Haze’ plants after photoperiod is reduced from 18 h, or longer, to 12 h (Collado and
Hernández, unpublished data). Therefore, it is unlikely the temperature in the present
study influenced any unexpected flowering responses. Other stressors can also trigger
the flowering transition, including root restriction (root-bound), water stress, and nutrient
stress [22–24]. In the present experiment, the pot size was adequate and fertigation was
properly managed during the experiment, hence these restrictions are unlikely to occur.
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A more plausible explanation for the development of incomplete inflorescences in
the present experiment is that the long-day critical photoperiod to fully prevent flowering
for ‘Suver Haze” is longer than 15 h. Therefore, Experiment 2 investigated the impact of
different photoperiods on flower initiation.

3.1.3. Growth and Morphology

As expected, plants under the DE treatments had different morphological character-
istics than those under the 9 h photoperiod control, including longer and heavier stems,
greater number of nodes, and root mass (Figures 3C, 4 and 5). However, leaf and flower
biomass (fresh mass and dry mass) were similar in all treatments and the control. After
transitioning to flowering, short-day plants change photo-assimilate partitioning to favor
developing flowers; consequently, other organs, such as leaves, nodes, stems, and roots
have a reduction of growth rate and development [25]. This is consistent with the present
results. The similarity in total flower mass between the short and longer photoperiod plants
is likely caused by a maximum yield potential based on fewer sites for flower induction
(i.e., nodes) in plants under 9 h photoperiod, while more nodes should have compensated
the smaller inflorescences under 15 h conditions. Therefore, additional research focused
on the optimal plant size (number of primary and secondary branches, leaves, etc.) for
the optimal transition point to the reproductive stage is needed to maximize flower yield.
Currently, the industry relies on the “number of weeks” as the quantitative measurement
to change the photoperiod and initiate flowering. However, environmental conditions and
agronomic practices greatly affect plant size, making the “number of weeks” prediction
very inconsistent between growing systems.
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Figure 5. Effect of daylength-extension lighting (DE) with intensities of 0 (DE-0), 1.0 (DE-1.0), 2.5
(DE-2.5), 5.0 (DE-5.0), and 10 (DE-10) µmol·m−2·s−1 PPFD (400–700 nm) on shoot fresh mass (A),
and shoot dry mass (B) of Cannabis sativa ‘Suver Haze’ grown in a growth chamber for 28 days. Data
are presented as the mean ± SE. Different letters show significant differences between treatments
(Tukey’s test, α = 0.05).
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3.2. Experiment 2: Photoperiod

To investigate the photoperiod to completely prevent the development of inflorescence
in “Suver Haze”, plants were exposed to three long-day photoperiods: (1) 15 h (9 h PPFD
and 6h DE), (2) 18 h (9 h PPFD and 9 h DE, and 3) 21 h (9 h PPFD and 12 h DE) using
incandescent lamps (Figure 2, Table 1). All plants under the 15 h photoperiod treatment
developed incomplete inflorescences (Figure 6) consistent with the previous experiment
(Figures 1 and 4). In contrast, all plants under the 18 h and 21 h photoperiod treatments did
not develop incomplete inflorescences (α = 0.05). Based on the previous DE experiment
results, such as the presence of incomplete inflorescences and greater stem lengths, plants
in 15 h treatment (Experiment 2) had partial transitioning to flowering. Therefore, the
photoperiod to prevent flowering of ‘Suver Haze’ is greater than 15 h. In this experiment,
18 h was sufficient to prevent any incomplete inflorescences development.
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Figure 6. Cannabis sativa ‘Suver Haze’ under different photoperiod treatments composed of 15 hour
(15 h), 18 hour (18 h), and 21 hour (21 h). Note the development of incomplete inflorescences under
the 15 h treatment.

Cannabis sativa is considered a quantitative short-day plant and at least 10.8 h of an
uninterrupted dark period is required to induce flowering [13,23]. However, research has
documented high variability in the critical short-day photoperiod for flowering in Cannabis
sativa [13,14,20,23,24]. For example, for field-grown Cannabis sativa, it has been reported
that genotypes from different geographical origins have different critical photoperiods
for flowering [26–28] ranging from 11 to 15 h. A recent study investigated the impact of
photoperiod on flowering using a tissue culture system and found that 12–13.2 h was the
critical photoperiod to initiate flowering, while 14.4 h or greater was suitable for preventing
flowering [23]. In another study, Zhang et al. [24] found that the critical photoperiod
to initiate flowering varied among 27 cultivars and within cultivars from different loca-
tions. This highlights the importance of understanding the photoperiodic responses of
specific genotypes. Zhang et al. [24] also reported that small changes in the photoperiod
(15 min increments) can be enough to affect the transition to flowering. In general, all
the cultivars studied (except for day neutrals) had a critical photoperiod of 15 h or less to
initiate flowering.

Several research studies have focused on the critical photoperiod to initiate flowering;
however, less research reports are available on the adequate photoperiod to fully prevent
flowering [13,29,30]. Such information is important for the nursery industry, which seeks
to maximize the vegetative output (branching). In the present study, ‘Suver Haze’ required
more than 15 h of light to prevent flowering, and even though additional research is
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needed to find the exact critical photoperiod, 18 h of light was adequate to prevent the
development of any incomplete inflorescences. Therefore, with the current information,
our photoperiodic recommendation to prevent incomplete inflorescent formation in ‘Suver
Haze’ is to use an 18 h photoperiod.

4. Conclusions

A photoperiod of 15 h and a daylength-extension lighting of 1 µmol·m−2·s−1 PPFD
(1.2 µmol·m−2·s−1 PF 700–800 nm; 2.2 µmol·m−2·s−1 PF 300–800 nm; lowest intensity
tested in this experiment) maintained plants vegetative but with production of incomplete
inflorescences; however, a photoperiod of 18 h and a DE light intensity of 1 µmol·m−2·s−1

prevented ’Suver Haze’ from flowering. Increasing the daylength-extension levels from
1 to 10 µmol·m−2·s−1 PPFD did not reduced the growth of incomplete inflorescences. In
the current study, the DE lighting was provided using incandescent fixtures which are
rich in far-red light. However, research has shown that the inhibition of flowering in
short-day plants can be accomplished with most electric lamps [15]. Therefore, LEDs
can be a more efficient lighting technology since the inhibition of flowering of short-day
plants is less influenced by spectrum [15]. However, the effects of different light spectrums
under extreme low light levels have not been studied yet for ’Suver Haze’ or other short-
day cultivars.

Additional research is required to further understand and characterize (1) the impact of
light pollution (less than 1 µmol·m−2·s−1) on flower crops and (2) the critical photoperiods
to prevent incomplete inflorescences for common cannabis cultivars in the US. In addition,
efforts must be made in new studies to use the same genotypes or cultivars from the
same sources.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae9050526/s1, Figure S1. Schematic of chamber set up.
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