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Abstract: Picking robots have become an important development direction of smart agriculture, and
the position detection of fruit is the key to realizing robot picking. However, the existing detection
models have the shortcomings of missing detection and slow detection speed when detecting dense
and occluded grape targets. Meanwhile, the parameters of the existing model are too large, which
makes it difficult to deploy to the mobile terminal. In this paper, a lightweight GA-YOLO model
is proposed. Firstly, a new backbone network SE-CSPGhostnet is designed, which greatly reduces
the parameters of the model. Secondly, an adaptively spatial feature fusion mechanism is used to
address the issues of difficult detection of dense and occluded grapes. Finally, a new loss function
is constructed to improve detection efficiency. In 2022, a detection experiment was carried out on
the image data collected in the Bagui rural area of Guangxi Zhuang Autonomous Region, the results
demonstrate that the GA-YOLO model has an mAP of 96.87%, detection speed of 55.867 FPS and
parameters of 11.003 M. In comparison to the model before improvement, the GA-YOLO model has
improved mAP by 3.69% and detection speed by 20.245 FPS. Additionally, the GA-YOLO model has
reduced parameters by 82.79%. GA-YOLO model not only improves the detection accuracy of dense
and occluded targets but also lessens model parameters and accelerates detection speed.

Keywords: picking robot; computer vision; grape detection; GA-YOLO; dense and occluded target;
lightweight model

1. Introduction

Grapes, known as the queen of fruits, have high economic value. The short fruit
period of grapes means that timely picking is essential for quality. Currently, hand grape
harvesting is the most common method, which takes a lot of time and labor. With the
transfer of rural labor from agriculture to non-agricultural industries, the rural surplus
labor is gradually decreasing [1]. Therefore, developing grape-picking robots has important
research prospects. At present, picking robots mainly rely on the vision system to realize
the location of fruits. Accurately detecting the location of the fruit is the key to achieving
picking [2]. Especially in the complex environment of grape orchards, is disturbed by
factors such as illumination change, leaf occlusion, and fruit overlapping, which bring huge
challenges to picking robots.

Traditional fruit detection methods, such as support vector machine [3], template
matching [4], edge detection [5], and threshold segmentation [6], mainly extract inherent
features, such as geometric shape [7], color [8–10], spectral information [11], texture [12]
and edge [13], to realize the detection of the grape region. Liu et al. [14] used the least
square method to fit the elliptic boundary of pomelo, to realize the segmentation of pomelo.
Lin et al. [4] proposed a local template matching algorithm and trained a new vector
machine classifier by using color and texture, which can detect tomatoes, pumpkins,
mangoes, and oranges. Nazari et al. [15] designed an RGB classifier based on the color
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difference between red grapes and the background, which can segment red grapes. Pérez-
Zavala et al. [16] extracted the edge gradient information and surface texture information
of grapes as classification features and used the support vector machine classifier to realize
the segmentation of grapes and the background. Behroozi-Khazaei et al. [8] put forward a
method combining an artificial neural network and genetic algorithms, which can overcome
the problem that greens grapes are similar to the background. Traditional grape detection
methods can achieve good segmentation results when only a few fruits with a specified
color and shape. At the same time, traditional image processing techniques rely on high-
quality images and require complex artificial features. However, when there are complex
scenes, such as scenes with changing illumination, scenes with dense fruits, and scenes with
hidden fruits, the performance of fruit detection becomes poor. Under the circumstances,
multiple overlapping grapes may be detected as one.

In the recent ten years, with the wide application of deep learning, great breakthroughs
have been made in the object detection field [17–22]. Gao et al. [23] divided the blocked
apples into three categories, including apples occluded by leaves, apples occluded by
branches, and apples occluded by other apples, and used the Faster R-CNN algorithm
to detect the occluded apples. Tu et al. [24] proposed a multi-scale feature fusion MS-
FRCNN algorithm, which combined the semantic information of the deep network and
the location information of the shallow network to improve the detection accuracy in the
case of dense passion fruit. Mai et al. [25] increased the single classifier in Faster-RCNN
to three classifiers, which effectively enhanced the detection performance of dense fruit
targets. Ding et al. [26] improved the SSD model by using the receptive field block and at-
tention mechanism, which effectively reduced the missed detection rate of occluded apples.
Behera et al. [27] changed IOU to MIOU in the loss function of Fast RCNN, which improved
the recognition performance of occluded and dense fruits. Tu et al. [24] and Ding et al. [26]
improved the feature fusion module of the model, and Behera et al. [27] improved the loss
function to solve the issue of difficult recognition of occluded and dense targets. However,
due to the slow detection speed and a large number of parameters, the above models are
difficult to deploy on the mobile end of harvesting robots.

In order to solve the issues of large parameters and slow detection speed, some
scholars have studied in the field of lightweight. Generally speaking, the detection
speed increases with the decrease in the model parameters. The main methods to re-
duce the parameters are replacing the convolution module and reducing the convolution
layer [28–31]. Mao et al. [32] proposed the Mini-YOLOv3 model, which used depthwise sep-
arable convolution and point group convolution to decrease the parameters. A lightweight
YOLOv4 model was proposed by Zhang et al. [33], the backbone network Darknet-53 of
YOLOv4 is replaced with the GhostNet network and the basic convolution is replaced
with a depthwise separable convolution in the neck and head. Ji et al. [34] took YOLOVX-
Tiny as the baseline, adopted a lightweight backbone network, and proposed a method
for apple detection based on Shufflenetv2-YOLOX. Fu et al. [35] used 1 × 1 convolution
to decrease the parameters of the original model and proposed the DY3TNet model to
detect kiwifruit. Li et al. [36] reduced the calculations and parameters by introducing deep
separable convolution and ghost modules. Liu et al. [37] proposed the YOLOX-RA model,
which pruned part of the network structure in the backbone network and used depth
separable convolution in the neck network. Cui et al. [38] changed the backbone network
from CSPdarknet-Tiny to ShuffleNet in YOLOv4-tiny and reduced the three detection
heads to one detection head. Zeng et al. [39] replaced CSPdarknet with Mobilenetv3 and
compressed the neck network of YOLOv5s by pruning technology [40].

Although these models achieve lightweight, the detection accuracy suffers. In the
vineyard, clusters of grapes grow densely and overlap each other, and the huge leaves
easily cover the grapes. The complex growing environment leads to a low recall rate of the
deep learning detection model for grape detection. In addition, the model parameters with
high detection accuracy are redundant, which makes it difficult to deploy to the mobile end
of the picking robots. The existing detection model can hardly meet the two advantages of
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detection accuracy and detection speed. To sum up, our research objective is to solve the
problem that targets are difficult to identify while ensuring the accuracy of model detection
and reducing the parameters of the model. In this paper, a GA-YOLO model with fast
detection speed, small parameters, and a low missed detection rate is proposed for dense
and occluded grapes.

In short, our innovations are as follows:

(1) A new backbone network SE-CSPGhostnet is designed, which greatly reduces the
parameters.

(2) ASFF mechanism is used to address the issues of difficult detection of occluded and
dense targets, and the model’s detection accuracy is raised.

(3) A novel loss function is constructed to improve detection efficiency.

The architecture of this paper is as follows: Section 1 introduces the background,
significance, and current status. Section 2 introduces dataset collection, annotation, and
augmentation. Section 3 introduces the GA-YOLO algorithm. Section 4 contains the
experimental process, the comparison of model performance, and the analysis of the results.
Section 5 describes the use of human–computer interaction interface. Section 6 discusses
the experimental results and points out the limitations of the algorithm. Section 7 concludes
the paper and provides future research plans.

In the paper, the full names and acronyms are displayed in Table 1.

Table 1. The acronyms and full names.

Acronyms Full Name

ASFF Adaptively Spatial Feature Fusion
CBL Convolution, Batch normalization and Leaky Relu activation function
CBM Convolution, Batch normalization and Mish activation function
CSP Cross Stage Partial

FLOPs Floating point operations per second
FPNet Feature Pyramid Network

FPS Frames Per Second
GBM Ghost convolution, Batch normalization and Mish activation functions
IOU Intersection over Union
mAP Mean Average Precision

PANet Path Aggregation Network
RCNN Regions with CNN features

Res element Residual element
SENet Squeeze-and-Excitation Networks

SPP Spatial Pyramid Pooling
SSD Single Shot MultiBox Detector

YOLO You Only Look Once

2. Datasets
2.1. Collection of Datasets

The study’s grape datasets were collected from 21 June 2022 to 26 June 2022 in Bagui
Garden, Nanning City, Guangxi Zhuang Autonomous Region, including three varieties of
grapes: “Kyoho”, “Victoria” and “Red Fuji”. We used Daheng Industrial Camera MER-132-
43U3C-L for the acquisition of datasets. All images were acquired under natural lighting at
8:30 am, 11:30 noon, 2:30 pm, and 5:30 pm on sunny and overcast days. The distance from
the camera lens to the grapes is 0.5 m~1.2 m. The camera’s shooting angles include flat,
up, and down. The camera is shown in Figure 1, and the basic parameters of the industrial
camera are displayed in Table 2.

In order to avoid the overfitting of the network model caused by the single fea-
ture of the datasets, 200 “Kyoho Grapes” images, 200 “Red Fuji Grapes” images, and
200 “Victoria Grapes” images were collected in consideration of different light inten-
sity, different occlusion degree, and different fruit sparseness. Figure 2 shows the im-
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ages of three grape varieties, and Table 3 shows the number of grape images in different
collection conditions.
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√ × √ × √ × 
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Figure 1. Daheng Industrial Camera: (a) overall camera; (b) camera base; (c) camera lens.

Table 2. The basic parameters of the industrial camera.

Parameter Value

Model MER-132-30UC
Frame rate 30 fps
Sensor type 1/3” CCD
Spectrum black/color

Data Interface USB2.0
Working temperature 0–60 ◦C

Working humidity 10–80%
Resolution ratio 1292 × 964
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Figure 2. Three grape varieties: (a) Kyoho; (b) Red Fuji; (c) Victoria.

Table 3. Number of grapes images in different collection conditions. (“
√

” indicates “yes”;
“×” indicates “no”).

Varieties Kyoho Red Fuji Victoria

Is the number of grape
clusters more than twelve?

√
×

√
×

√
×

Is there occlusion?
√

×
√

×
√

×
√

×
√

×
√

×
Number of images 100 100 50 50 50 50 100 100 50 50 50 50

2.2. Annotation of Datasets

This paper uses labelImg software [41] for labeling, annotation format is Pascal VOC.
LabelImg software is shown in Figure 3a, and the label format corresponding to the
labeled picture is shown in Figure 3b. Image labeling is based on the following principles:
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(1) unripe grapes are not labeled; (2) grapes falling on the ground will not be labeled;
(3) grapes with an occlusion area exceeding 4

5 are not labeled; (4) grape images that are
blurred, but the grape area is larger, it is also labeled; (5) when labeling, ensure that the
label box and the grape area overlap to the maximum.

 

2 

 
(a) 

 
(b) 

Figure 3. (a) LabelImg software; (b) XML label file.

2.3. Augmentation of Datasets

Data augmentation has the advantages of saving time for making labels, preventing
model overfitting, and improving model generalization ability. The augmentation methods
are shown in Figure 4, which contains 14 augmentation methods such as scaling, cropping,
rotation, brightness change, saturation change, contrast change, blurring process, and
mosaic data augmentation. Finally, 600 × 14 = 8400 valid images are obtained. According
to the ratio of 7:2:1, the photos are separated into training set, validation set, and test set.
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Figure 4. Image augmentation method: (a) original image; (b) crop and zoom; (c) rotate by 180 degrees;
(d) flip horizontally; (e) vertical turnover; (f) fuzzy median value; (g) Gaussian blur; (h) 50% increase
in saturation; (i) 50% reduction in saturation; (j) 50% increase in brightness; (k) 50% reduction in brightness;
(l) 50% increase in contrast; (m) 50% reduction in contrast; (n) mosaic data enhancement method.
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3. Methodologies
3.1. YOLOv4 and GA-YOLO

The YOLOv4 model’s structure is shown in Figure 5a. The GA-YOLO model is
improved on the basis of the YOLOv4 [22], as shown in Figure 5b. We propose a new
backbone network SE-CSPGhostnet and incorporate the ASFF mechanism into the head
network. Furthermore, a new loss function is used to improve the detection performance.
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In Figure 5a, the YOLOv4 network model consists of modules such as SPP, CBM,
CBL, and CSP. Among them, Spatial Pyramid Pooling [42] (SPP) fixes feature maps of any
size as feature vectors of the same length through a pooling of three scales. CBL contains
convolution, Batch normalization, and Leaky Relu activation functions, which are used
in the latter position of the backbone network to extract features. The CBM module is
composed of convolution, Batch normalization, and Mish activation functions, which are
used in the front position of the backbone network to extract features. We changed the
convolution in CBM to ghost convolution and proposed the GBM module. In order to
reduce parameters of model, the CBM and CBL modules in the backbone network are
changed to GBM modules.

Meanwhile, the CBL modules at the junction of the neck network and the head network
were changed to GBM modules. CBM, CBL, GBM, and SPP are shown in Figure 6.
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The CBM uses ordinary convolution, and convolution process is shown in Figure 7a.
GBM uses ghost convolution [28], which greatly reduces the number of parameters, as
shown in Figure 7b. The primary distinction between ghost convolution and ordinary
convolution is that ghost convolution has two convolution processes. Firstly, n

s intermediate
feature maps are obtained by ordinary convolution. Then, the intermediate feature map
is convoluted with a convolution kernel of d× d size to obtain (s− 1)× n

s feature maps.
Finally, the n

s intermediate feature maps acquired in the first step and the (s− 1)× n
s feature

maps acquired in the second step are superimposed on the channel dimension to obtain
a total of n feature maps. The parameter quantity of GBM is shown in Formula (1). In
contrast, the ordinary convolution in Figure 7a is a direct convolution to obtain n output
feature maps. The parameter quantity of CBM is shown in Formula (2). Obviously, the
amount of final feature maps of GBM convolution and ordinary convolution is the same.
The ratio of parameters of CBM and GBM is shown in Formula (3). Through calculation
and analysis, theoretically, the parameter quantity of GBM is 1

s of that of CBM.

P1 = h′ × w′ × n
s
× k× k× c + (s− 1)× h′ × w′ × n

s
× d× d (1)

P2 = h′ × w′ × n× k× k× c (2)

rs =
P2

P1
≈ s (3)

where, h′ represents the length of output feature map; w′ represents the width of output
feature map; n represents the number of channels for output feature map; k represents the
size of the convolution kernel; c represents the channel number of convolution kernel; s
represents the ratio of the number of channels of output feature map to the number of
channels of input feature map; d represents the size of convolution kernel in the second
convolution of ghost convolution.
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3.2. Improvement of GA-YOLO Backbone Network

The role of backbone network is to extract features, and its structure is shown in
Figure 5. We made three improvements to YOLOv4 backbone network CSPdarknet to
obtain the GA-YOLO backbone network CSPGhostnet: (1) change the CBM and CBL to
GBM; (2) change the CSP structure to SE-CSPG structure; (3) reduce the number of iterations
of the SE-CSPG module. The above three improved methods all greatly reduce parameters
and calculations.

The CSP structure [43] of CSPdarknet has a Res unit component that iterates X times,
as shown in Figure 8a. In Res unit, the CBM module is replaced with a GBM module. At
the same time, the insertion of Squeeze-and-Excitation Networks (SENet) improves the
performance of the Res element to solve the problem of gradient degradation. After adding
skip connection and Res element in SE-CSPG, the shallow feature information is integrated
into the deep feature information, which improves the generalization performance of
the model.
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Figure 8. (a) CSP structure (b) Res unit structure (c) SE-CSPG structure (d) Res element structure.

The attention mechanism can correct the features, make the network focus on impor-
tant local information. Useless feature information is filtered out, so as to simplify the
model and accelerate the calculation. SENet [44] mainly studies the relationship between
channels and realizes the effect of adaptively correcting channel characteristics. SENet is a
typical representative of the channel attention mechanism, as shown in Figure 9a.
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Figure 9. (a) SENet (b) the process of Excitation.

The input feature map F compresses the two-dimensional feature H×W of each chan-
nel into a real number through global average pooling. After this compression operation,
the size of the feature map is converted from the original H ×W × C to 1× 1× C. The
Excitation operation is performed on the obtained feature map Fg to generate a weight
value for each feature channel. The Excitation operation is to use two fully connected layers
to build the correlation between channels, as shown in Figure 9b. The normalized weight
is obtained after the activation function Sigmoid. The Fe represents the importance of the
channel, and it is weighted to the features of each channel in the F to obtain the channel
attention feature map Fc.
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3.3. Introduction of GA-YOLO Neck Network

The neck network is shown in Frame 2 of Figure 5. The role of the neck network is to
fuse the features of different feature layers. Feature Pyramid Networks (FPN) [45] and Path
Aggregation Networks [46] (PAN) are used as the feature fusion module, making full use of
the semantic information of high-dimensional feature maps and the location information of
low-dimensional feature maps. The feature fusion of neck network improves the detection
accuracy of dense and occluded targets.

3.4. Improvement of GA-YOLO Head Network

The structure of the head network is shown in Frame 3 of Figure 5. The role of the
head network is to predict the class and location. In the head network, Adaptively Spatial
Feature Fusion [47] (ASFF) is added to the front of the prediction head. ASFF can adaptively
learn the spatial weight of each scale feature map fusion, which is used to solve the problem
of inconsistent scales in spatial feature fusion. The structure of ASFF is shown in Figure 10.
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Where, M1, M2 and M3 represent the feature map obtained by convolution of the
backbone network; x1, x2 and x3 represent the feature map after PANet feature fusion; y1,
y2 and y3 represent the feature maps after ASFF mechanism processing.

In Figure 10, the learning process of spatial weight of ASFF is shown in Formula (4).
Where, xl represents the l-layer feature map and xs→t

ij represents the feature map from

s-layer resize to t-layer. αl
ij,β

l
ij,γ

l
ij are the learned spatial weights, which represent the

importance of the pixel at the coordinate (i, j) in the feature map of the lth layer. Meanwhile,
αl

ij,β
l
ij,γ

l
ij satisfy αl

ij + βl
ij + γl

ij = 1 and αl
ij, βl

ij, γl
ij ∈ [0, 1]. αl

ij,β
l
ij,γ

l
ij can be obtained

according to Formula (5). In Formula (5), λl
α, λl

β, λl
γ are control parameters, which can be

learned by back-propagation of the network.

y3
ij = α1

ij · x1→3
ij + β2

ij · x2→3
ij + γ3

ij · x
3→3
ij (4)

αl
ij =

e
λl

αij

e
λl

αij + e
λl

βij + e
λl

γij

(5)

3.5. Improvement of GA-YOLO Loss Function

The YOLOv4 loss function before improvement includes three sections: confidence
loss, rectangular box loss and classification loss, as shown in Formula (6).

loss = a·losscon f + b · lossbox + c · lossclc (6)

Three improvements to the loss function are made: (1) Since there is only one class of
target to be detected, set c = 0, which removes the ineffective classification loss. (2) Increase
the weight of confidence loss, take a = 0.6, b = 0.4. (3) Confidence loss consists of target
confidence loss and background confidence loss. The weight of target confidence loss
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is increased, taking λobj = 0.7, λnoobj = 0.3. The loss of improved confidence is shown in
Formula (7).

losscon f = λobj
S2

∑
i=0

B
∑

j=0
1obj

i,j [Ĉ
j
i log(Cj

i ) + (1− Ĉj
i )log(1− Cj

i )]

+λnoobj
S2

∑
i=0

B
∑

j=0
1noobj

i,j [Ĉj
i log(Cj

i ) + (1− Ĉj
i )log(1− Cj

i )]

(7)

In Formulas (6) and (7), some proper nouns are defined as follows: confidence indicates
the confidence degree of the predicted rectangular box containing the target, and binary
cross entropy loss is employed for calculating confidence loss. S2 indicates the number of
divided grids in image, B indicates the number of prior frames in each grid, λobj indicates
the weight factor of the target’s confidence loss and λnoobj indicates the weight factor of

the background’s confidence loss. Ĉj
i is the label value of the prediction box’s confidence

and Cj
i is the predicted value of the prediction box’s confidence. 1obj

i,j indicates that if the ith

grid’s jth prediction box has a target, its value is 1, otherwise, it is 0. 1noobj
i,j indicates that

there is no target in the ith grid’s jth prediction box, and its value is 1, otherwise it is 0.
In Formula (6), rectangular box loss is employed to calculate the position error between

the predicted box and the ground-truth box, including the error loss of the central point
coordinate and the height and width of the rectangular box, which is calculated by using
CIOU loss function [48], as shown in Formula (8).

lossbox =
S2

∑
i=0

B

∑
j=0

1obj
i,j [1− IOU +

ρ2

c2 +
16
π4 (arctan wgt

hgt − arctan w
h )

4

1− IOU + 4
π2 (arctan wgt

hgt − arctan w
h )

2 ] (8)

In Formula (8), IOU represents the ratio of the area of the intersection region between
ground-truth rectangular box and predicted rectangular box to the area of the merged
region. ρ represents the distance between the central point of prediction rectangular box and
the central point of ground-truth rectangular box. c represents the length of the diagonal
of the external rectangular box of the prediction rectangular box and the ground-truth
rectangular box. wgt and hgt represent the width and height of the ground-truth rectangular
box. w and h represent the width and height of the prediction rectangular box.

4. Results of Experiment
4.1. Experimental Details

In order to confirm that the GA-YOLO substantially improve the detection perfor-
mance, 8400 grape datasets are used to conduct experiments. The experimental hardware
and software configuration parameters are displayed in Table 4.

Table 4. The basic parameters of the industrial camera.

Hardware/Software Configuration/Version

CPU Intel(R) Xeon(R) CPU E5-2680
GPU Tesla M40 24 G × 4

Memory DDR4 64G KF3200C16D4/8GX
Hard disk SSD 980 500 G

Operating system Ubuntu20.04.1
Python 3.9
Pytorch 1.8.1
CUDA 10.0.3

To ensure the fairness of the experimental comparisons, all models are trained under
the same hardware condition and the same initial training parameters. The learning rate
is adopted by means of the cosine annealing decay method. The weights are saved every
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10 epochs during the training process. The specific training initial parameters are displayed
in Table 5.

Table 5. Initial training parameters.

Parameter Form/Value

Init-learning rate 0.01
Min-learning rate Init-lr × 0.01
Optimizer-class SGD

momentum 0.937
Lr-decay-class Cos
Weight decay 0.0005
Num-works 4
Batch size 64

Epoch 50

4.2. Metrics for Evaluation

FPS refers to the number of images that can be detected per second, which is employed
to assess the network model’s detecting speed. Parameters represent the volume of parame-
ters that require training in the network model. Weights represent the size of the weight file
obtained by the final training of the network model. Parameters and weights are employed
to evaluate the size of the network model, and the size of the weights is generally four
times the size of the parameters. The smaller the parameters and weights, the easier the
model to be deployed to the mobile terminal of the picking robot. Floating-point operations
per second (FLOPs) are employed to evaluate the calculation effort of the model. The
precision rate, recall rate, F1 score, and AP are employed to evaluate the accuracy of the
target detection method.

The precision rate indicates the ratio of being a positive sample among predicted
positive samples, as shown in Formula (9):

Precision =
TP

TP + FP
× 100% (9)

The recall rate indicates the ratio of correctly predicted positive samples to labeled
positive samples, as shown in Formula (10):

Recall =
TP

TP + FN
× 100% (10)

The harmonic mean of the precision rate and recall rate is the F1 score, as shown in
Formula (11):

F1 =
2× Precision× Recall

Precision + Recall
(11)

The two indicators of precision rate and recall rate show a negative correlation. There-
fore, to comprehensively assess the quality of the algorithm, the PR curve is usually drawn
with the recall rate as the horizontal axis and with the precision rate as the vertical axis.
The area below the PR curve is average precision (AP) value, as shown in Formula (12):

AP =
∫ 1

0
p(r)dr (12)

4.3. Comparison of Network Models
4.3.1. Calculation Volume, Parameter Volume, and the Size of Weight File

The GA-YOLO network model is compared with mainstream detection network
models such as Faster RCNN, YOLOv3, YOLOv4, SSD, YOLOv4-MobileNetv1, YOLOv4-
MobileNetv2, YOLOv4-MobileNetv3, YOLOv4-tiny, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x.
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On account of the large number of network models engaged in the comparison, the
models are divided into the light network model (0 < FLOPs ≤ 50 G), medium network
model (50 < FLOPs ≤ 100 G), and large network model (FLOPs > 100 G) according to the
calculation volume of the network model. Therefore, in Table 6, the light network model
contains YOLOv4-MobileNetv1, YOLOv4-MobileNetv2, YOLOv4-MobileNetv3, YOLOv4-
tiny, GA-YOLO, and YOLOv5s, the medium network model contains YOLOv3, YOLOv4,
and YOLOv5m, and the large network model contains Faster RCNN, SSD, YOLOv5l, and
YOLOv5x. The comparison results on calculation volume, parameter volume, and the size
of the weight file are displayed in Table 6.

Table 6. Comparison of calculation volume, parameter volume, and weight file of different network models.

Network Models FLOPs (G) Parameters (M) Weights (M)

Faster RCNN 252.676 136.689 108
SSD 115.513 23.612 90.6

YOLOv3 65.520 61.524 235
YOLOv4 59.7758 63.938 244

YOLOv4-MobileNetv1 21.285 14.267 57.1
YOLOv4-MobileNetv2 16.185 12.376 49.4
YOLOv4-MobileNetv3 14.999 11.304 53.6

YOLOv4-tiny 16.438 7.057 28.4
GA-YOLO 13.860 11.003 32.5
YOLOv5s 16.377 8.064 32.1
YOLOv5m 50.404 21.056 80.6
YOLOv5l 114.240 46.631 178
YOLOv5x 217.323 87.244 333

Faster RCNN 252.676 136.689 108

The data are analyzed in Table 6. Firstly, the calculation volume, parameter volume
and weight file size of the GA-YOLO model are 13.860 G, 11.003 M, and 32.5 M, respectively,
which are 76.81%, 82.79%, and 86.68% lower than YOLOv4. Secondly, GA-YOLO is 34.88%,
14.37%, 7.59%, 15.68%, and 15.68% lower in calculation volume than light networks such
as YOLOv4-MobileNetv1, YOLOv4-MobileNetv2, YOLOv4-MobileNetv3, YOLOv4-tiny,
and YOLOv5s, respectively. At the same time, GA-YOLO is 22.88%, 11.09%, and 2.66%,
lower in parameter volume than light networks such as YOLOv4-MobileNetv1, YOLOv4-
MobileNetv2, and YOLOv4-MobileNetv3, respectively. Again, GA-YOLO is at least 78.85%,
47.74%, and 59.68% lower than medium-sized networks such as YOLOv3, YOLOv4, and
YOLOv5m on calculation volume, parameter volume and the size of the weight file. Finally,
GA-YOLO is at least 87.87%, 53.40%, and 64.13% lower than large networks such as Faster
RCNN, SSD, YOLOv5l, and YOLOv5x on GFLOPs, params, and weights. This shows that
the use of ghost convolution greatly decreases the volume of parameters and calculations.

4.3.2. Comparison of Convergence Speed

In order to confirm that the training convergence speed of the GA-YOLO has been
improved after being lightweight, it is compared with other network models in Table 6.
The loss value of each epoch of training is recorded, and the loss value change graph is
drawn, as shown in Figure 11. Where the horizontal and vertical axes are epoch and loss
values, respectively. For the convenience of comparison, we draw network models with
similar convergence speed and loss value in one graph. The statistics of the convergent
algebra are shown in Table 7.

According to Figure 10 and Table 7, the SSD has the slowest convergence speed, and
it converges at the 50th epoch. The convergence speed of Faster RCNN and YOLOv5s is
also relatively slow, reaching convergence after the 35th epoch and 40th epoch, respectively.
YOLOv4-MobileNetv1, YOLOv4-MobileNetv2, and YOLOv4-MobileNetv3 have basically
the same convergence speed, and they all reach convergence around the 30th epoch.
YOLOv4-tiny has the fastest convergence speed and has basically converged in the 12th
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epoch. GA-YOLO completed the convergence at the 15th epoch, which is about 7 epochs
faster than the YOLOv4 network before the improvement, which shows that GA-YOLO
saves the training time of the model.
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YOLOv4-MobileNetv2 and YOLOv4-MobileNetv3; (e) Loss convergence graphs of YOLOv5s; (f) Loss
convergence graphs of YOLOv5m, YOLOv5l and YOLOv5x.

Table 7. Convergence epochs of different network models.

Network Models Epoch Network Models Epoch

Faster RCNN 35 SSD 50
YOLOv3 25 YOLOv4 22

YOLOv4-tiny 13 GA-YOLO 15
YOLOv5s 40 YOLOv5m 32
YOLOv5l 33 YOLOv5x 35

YOLOv4-MobileNetv1 30 YOLOv4-MobileNetv2 30
YOLOv4-MobileNetv3 30

4.3.3. Ablation Experiment

The ablation experiment aims to verify the role played by the SE-CSPGhostnet back-
bone network module, ASFF module, and improved loss function in the GA-YOLO network
model. The definitions are as follows: YOLOv4-a indicates that the SE-CSPGhostnet back-
bone network is employed on the basis of YOLOv4. YOLOv4-b indicates that the ASFF
module is employed on the basis of YOLOv4-a. GA-YOLO indicates that an improved loss
function is employed on the basis of YOLOv4-b. The comparison of the mAP and F1 values
of the grape detection results of the ablation experiment is displayed in Table 8. Where,
× indicates that the improved module of the corresponding column is not used. Conversely,√

indicates that the improved module of the corresponding column was adopted.
In Table 8, the mAP and F1 score of YOLOv4-a are 92.24% and 90.20%, respectively,

which are 0.94% and 0.96% lower than that of YOLOv4, respectively. This demonstrates
that after YOLOv4 is lightweight, the detection accuracy is only slightly affected. However,
as displayed in Table 6, the GA-YOLO network model reduces the volume of calculation,
the volume of parameter, and the weight file by 76.81%, 82.79%, and 86.68%, respectively,
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compared with YOLOV4. The loss of accuracy is acceptable relative to the improvement
in the volume of parameters and calculations. The mAP and F1 scores of YOLOv4-b are
95.22% and 93.21%, respectively, which are 2.98% and 3.01% superior to that of YOLOv4-a,
respectively. This is because the ASFF module improves the detection accuracy of the
model for dense targets. ASFF enables the network to filter out contradictory and useless
information, thereby retaining only useful information for combination, which solves the
issue of poor detection accuracy of dense targets. The mAP and F1 scores of GA-YOLO are
96.87% and 94.78%, respectively, which are 1.65% and 1.57% higher than that of YOLOv4-b,
respectively. This demonstrates that application of an improved loss function improves the
detection accuracy. In fact, the original loss function meets the highest accuracy conditions
for the detection of 80 classes of targets in the MS COCO dataset but does not meet the
highest accuracy conditions for single-target detection. Therefore, the improvement of the
loss function is effective.

Table 8. The grape detection results of the four network models.

Network Model SE-CSPGhostblock ASFF Improved Loss Function mAP (%) F1

YOLOv4 × × × 93.18 91.16
YOLOv4-a

√
× × 92.24 90.20

YOLOV4-b
√ √

× 95.22 93.21
GA-YOLO

√ √ √
96.87 94.78

4.3.4. Comparison of Detection Performance

In order to express the performance of the 13 models more intuitively, we draw the
PR curves of the 13 network models, as depicted in Figure 12a. Where, the horizontal
and vertical axes are the recall rate and the precision rate, respectively. It is evident from
Formula (9) that the mAP value of the network model is the area enclosed by the PR
curve and the axis of coordinates. The mAP values of the 13 network models are shown
in Figure 12b. In the meantime, the parameters such as the precision rate, the recall rate,
F1 score and FPS of 13 network models are listed in Table 9.
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In Figure 12a, the relation of the area enclosed by the PR curves of each model can be
clearly seen. mAP is the average of multiple category AP, so in single object detection, it is
equal to the value of AP.

In Figure 12b, the mAP of the GA-YOLO model is 96.87%, which is 0.92% and 1.31%
lower than that of the YOLOv5l model and YOLOv5x model, respectively. However,
according to Table 9, the detection speed of the GA-YOLO model is 55.867 FPS, which
is 35.802 FPS and 43.293 FPS higher than the YOLOv5l model and YOLOv5x model,
respectively. At the same time, in Table 6, the calculation volume, parameter volume, and
weight file of the GA-YOLO model are 13.860 G, 11.003 M, and 32.5 M, respectively, which
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are 93.62%, 87.39%, and 90.24% lower than the YOLOv5x model, respectively. Therefore, as
a lightweight model, the GA-YOLO model is more appropriate for application to grape-
picking robots when it comes to storage space and detection speed.

Table 9. Comparison of calculation volume, parameter volume, and weight file of different network models.

Network Models F1 Precision Recall FPS

Faster RCNN 0.9310 0.9491 0.9136 10.375
SSD 0.9221 0.9534 0.8929 54.858

YOLOv3 0.8570 0.9636 0.8150 27.254
YOLOv4 0.9116 0.9426 0.8826 35.622

YOLOv4-MobileNetv1 0.8870 0.9595 0.8247 33.512
YOLOv4-MobileNetv2 0.8943 0.9651 0.8331 27.917
YOLOv4-MobileNetv3 0.9023 0.9399 0.8675 25.859

YOLOv4-tiny 0.8495 0.9301 0.7818 121.374
GA-YOLO 0.9478 0.9533 0.9422 55.867
YOLOv5s 0.9292 0.9517 0.9078 44.430
YOLOv5m 0.9378 0.9482 0.9278 29.160
YOLOv5l 0.9550 0.9697 0.9407 12.574
YOLOv5x 0.9567 0.9675 0.9462 20.065

4.3.5. Object Detection Experiment in Actual Natural Environment

For the sake of further confirm the detection accuracy and robustness of the GA-YOLO,
this paper conducts object detection experiments in the actual vineyard environment. The
grape image with leaf occlusion, illumination change, and dense targets is selected for
detection experiment. The grape image to be tested is shown in Figure 13.

Horticulturae 2023, 9, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 13. Image of grapes to be tested in the actual natural environment. 

In Section 4.3.1, network models are divided into three classes according to the vol-

ume of calculation: light network models, medium network models, and large network 

models. The detection results of light networks, medium networks, and large networks 

are shown in Figures 14–16, respectively. Meanwhile, the number of grape clusters de-

tected by 13 network models is counted as displayed in Table 10. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 14. Actual grape detection results of the light network model: (a) YOLOv4-MobileNetv1; (b) 

YOLOv4-MobileNetv2; (c) YOLOv4-MobileNetv3; (d) YOLOv4-tiny; (e) GA-YOLO; (f) YOLOv5s. 

The yellow ellipse represents the missed detection of grapes. 

 
(a) 

 
(b) 

 
(c) 

Figure 15. Actual detection grape results of the medium network models: (a) YOLOv3 (b) YOLOv4 

(c) YOLOv5m. The yellow ellipse represents the missed detection of grapes. 

Table 10. Number of grape clusters detected by 13 network models. 

Figure 13. Image of grapes to be tested in the actual natural environment.

In Section 4.3.1, network models are divided into three classes according to the volume
of calculation: light network models, medium network models, and large network models.
The detection results of light networks, medium networks, and large networks are shown
in Figures 14–16, respectively. Meanwhile, the number of grape clusters detected by
13 network models is counted as displayed in Table 10.

Table 10. Number of grape clusters detected by 13 network models.

Network Models Cluster Network Models Cluster

Faster RCNN 24 SSD 19
YOLOv3 16 YOLOv4 17

YOLOv4-tiny 15 GA-YOLO 22
YOLOv5s 17 YOLOv5m 20
YOLOv5l 24 YOLOv5x 24

YOLOv4-MobileNetv1 16 YOLOv4-MobileNetv2 16
YOLOv4-MobileNetv3 18
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The yellow ellipse represents the missed detection of grapes.
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Figure 15. Actual detection grape results of the medium network models: (a) YOLOv3 (b) YOLOv4
(c) YOLOv5m. The yellow ellipse represents the missed detection of grapes.

In Figure 14, the GA-YOLO network model detects 22 clusters of grapes, which are
6 clusters, 6 clusters, 4 clusters, 7 clusters, and 5 clusters more than YOLOv4-MobileNetv1,
YOLOv4-MobileNetv2, YOLOv4-MobileNetv3, YOLOv4-tiny, and YOLOv5s, respectively,
indicating that it significantly outperforms other light networks in occluded and dense
targets detection performance. In Figure 15, medium network models such as YOLOv3,
YOLOv4, and YOLOv5m detected 16 clusters, 17 clusters, and 20 clusters of grapes, respec-
tively. They have the phenomenon of missing detection in occluded target detection, which
may be due to the defects of their feature fusion module. In Figure 16 and Table 10, large
networks such as YOLOv5l and YOLOv5x detect the highest number of grape clusters,
which detect 24 clusters. This is because large networks have deeper convolutional layers,
which can extract richer features. At the same time, the Faster RCNN network model
detects 24 clusters. Although it successfully detects most of the dense targets, it incorrectly
detects the leaves as grapes in the first red oval on the left. This shows that Faster RCNN
has the risk of false detection, which will reduce the picking efficiency of the robot. Among
the 13 models, the GA-YOLO model can not only meet the demands of lightweight and
real-time grape detection performance but also ensure the accuracy of grape detection.
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Figure 16. Actual grape detection results of the large network models: (a) Faster RCNN (b) SSD
(c) YOLOv5l (d) YOLOv5x. The yellow circle represents the missed detection of grapes. The yellow
circle represents the missed detection of grapes.

5. Interactive Interface

In order to make it convenient for non-professionals to use the detection model, an
interactive interface based on PyQt5, as shown in Figure 17. The interface includes a
detection toolbar, image detection results, and text information. There are three detection
models built into the detection interface: YOLOV4, GA-YOLO, and YOLOv5s. We can
choose any model for testing. The detection modes include image detection and video
detection. Function buttons include start, pause, and exit systems. The text information
includes four parameters: AP, FPS, precision, and recall. The running process of the whole
interactive interface is divided into three steps: Step 1: Select the detection model and
detection mode. Step 2: Click the Start button and call the trained weights to detect the
grape targets. Step 3: save the detected results to the hard disk of the local computer.
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6. Discussion of Experiment

The problems of agricultural health monitoring [49–55] and harvesting [56,57] have
always been hot spots of scientific research. In particular, the deep learning algorithm has
become the mainstream research algorithm of the vision system of fruit-picking robots.
Compared with the Faster RCNN algorithm [20], the YOLO algorithm [17–19,22] has the
advantage of high speed because it unifies regression and classification into one stage.
In recent years, some scholars [28–39] have applied the YOLO algorithm to the visual
detection of fruit-picking robots, which provides technical help to solve the picking problem
in agriculture. However, the YOLO algorithm still has some shortcomings, such as large
parameters and low detection accuracy of occluded targets, which are exactly what we
want to solve.

In fact, in recent years, some scholars have begun to study the lightweight model while
ensuring the detection accuracy of complex objects. Zhao et al. [58] changed the backbone
network in YOLOV4 from CSPdarknet53 to MobileNet53 to obtain a lightweight model, and
at the same time, the deformable convolution was used to achieve dense target detection.
Betti [59] and others pruned Darknet53 and compressed the backbone network from
53 layers to 20 layers. In addition, YOLO-S replaces the maximum pooling with cross-border
convolution, which reduces the information loss in the transmission process and improves
the detection accuracy of small targets. Huang et al. [60] proposed a GCS-YOLOv4-tiny
model based on YOLOV4-Tiny. In this model, grouping convolution is used to reduce the
parameter of the model by 1.7 M, and the attention mechanism is used to improve the mAP
of F. margarita to 93.42%. Sun et al. [61] designed a shuffle module, lightened YOLOv5s
and obtained the YOLO-P model. What is more, the YOLO-P model adopts a Hard-
Swish activation function and CBAM attention mechanism. The research methods of the
above scholars mainly use lightweight modules to partially replace the original network to
achieve the purpose of reducing parameters. Meanwhile, methods such as the replacement
of activation functions and the addition of attention mechanisms ensure the detection
accuracy of the model for occlusions and dense objects. To conclude, using lightweight
convolution modules (such as depth separable convolution, group convolution, etc.), and
replacing backbone networks are the most frequently used to reduce the parameters of
the model. Mao et al. [32], Fu et al. [35], Li et al. [36], and Liu et al. [37] used depth
separable convolution to reduce the parameters of the model by 77%, 18.18%, 49.15%,
and 10.03%, respectively. Moreover, Zhang et al. [33], Cui et al. [38], Zeng et al. [39], and
Zhao et al. [58] replaced the backbone network to reduce the parameters of the model by
82.3%, 52.3%, 78%, and 82.81%, respectively. Replacing backbone networks can reduce
more parameters than using lightweight convolution modules, but the accuracy drops
even more. Similar to using deep separable convolution to replace ordinary convolution,
we use a ghost module to replace ordinary convolution, which reduces the parameters of
the model by 82.79%, and the accuracy loss is less affected than replacing the backbone
network. In order to solve the problem of decreasing accuracy, attention mechanisms
and improving loss function are common methods, which have been adopted by most
researchers [26,27,33,34,36–38,60,61]. In addition to these two improved methods, we adopt
the ASFF method [42] in the head network to effectively improve the detection accuracy of
the model. ASFF performs spatial filtering on the feature maps at all levels, thus retaining
only useful information for combination. GA-YOLO is proposed under the guidance of
similar design ideas. The GA-YOLO model is of great significance for improving the
picking speed and picking quality (low missing picking rate) of the picking robot.

The model proposed in this paper mainly aims at the target detection of dense and
occluded grapes. The model can also be used for other fruits in the same growth state (clus-
ters) such as tomatoes, bananas, and strawberries. According to the ablation experiments
in Section 4, we found that the detection accuracy of the model decreased by 0.94% after
the model was lightened by 82.79%. Yet, we can add an ASFF module and improve the
loss function to heighten accuracy. The model is lightweight, which is of great significance
to solve the deployment problem of the mobile end of the model. In addition, the recall
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rate of the GA-YOLO model and other target detection models is lower than the precision
rate, which shows that the problem of missed detection is puzzling grape detection. By
lowering the confidence threshold for prediction, it is easier for the model to detect grapes
and reduce the missed detection rate. However, this will increase the risk of false detection,
so subsequent debugging of the model is required. Finally, it may be possible to increase
the size of the input image to obtain more abundant location features and semantic features
to reduce the missed detection rate, but this method will increase the number of parameters
of the model, so it is necessary to find the optimal input image size.

There are still some problems to be considered when picking grapes by picking robots.

(1) We need to distinguish the maturity of grapes to avoid picking immature grapes.
(2) The detection of grape clusters is only a part of picking steps, and we also need

to realize the detection of picking points. Some scholars [62–64] have developed
the detection algorithm of grape picking points, the position errors between most
predicted picking points and real points are within 40 pixels. However, the detected
grapes are not in dense and shaded conditions, and the detection accuracy is low,
so there is much room for improvement. The occlusion problem is not only solved
by visual models but also requires appropriate planting strategies, such as farmers
paying attention to thinning leaves and fruits when planting.

(3) The picking robot can work 24 h a day, so it is necessary to obtain the grape dataset at
night. In fact, when the fruit is picked at night, it will not be exposed to the sun to
cause water loss, so the quality of the fruit will be better. In addition, a richer dataset
can increase the robustness of GA-YOLO.

Overall, the development of deep learning-based methods for fruit detection in agri-
cultural settings has shown great promise in recent years. Other deep learning models
(such as Faster RCNN and SSD, etc.), have their own unique advantages in specific fruit
detection. In the future, we can also combine the design ideas of these models to better
solve the identification problem of tropical fruits.

7. Conclusions

The goal of this paper is to decrease the parameters and calculations and raise the
detection accuracy of the model. In this research, a lightweight network model named GA-
YOLO was proposed. This model uses a backbone network of SE-CSPGhost, which reduces
the parameter amount of the original model by 82.79% and improves the detection speed
of the model by 20.245 FPS. This lightweight approach is of great significance for model
deployment to mobile terminals. At the same time, although the lightweight model reduces
the detection accuracy of dense and occluded grapes by 0.94%. By adding the attention
mechanism and ASFF mechanism, and improving the loss function, the accuracy rate is
increased by 3.69%. In short, the parameter quantity of the GA-YOLO model is 11.003 M,
the mAP is 96.87%, the detection speed is 20.245 FPS and the F1 value is 94.78%. Compared
with YOLOv4 and the other 11 commonly used models, the GA-YOLO has the advantages
of high detection accuracy and low model parameters. It has excellent comprehensive
performance and can meet the precision and speed requirements of picking robots. Finally,
we use PyQt5 to design a human–computer interaction interface to facilitate the use of the
GA-YOLO model by non-professionals. In future research, we will consider the mobile
deployment of the model, and deploy the GA-YOLO model on small computing devices
(Raspberry Pie, developed by the Raspberry Pie Foundation in Cambridge, England; Jetson
Nano, developed by the NVIDIA Corporation in Santa Clara, CA, USA; Intel NCS 2,
developed by the Intel Corp in Santa Clara, CA, USA), using the deep learning inference
framework NCNN and TensorRT. In addition, we will consider collecting grape datasets
under night illumination and training a widely used GA-YOLO model.
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