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Abstract: Sustainable agriculture is the most desired solution to ensure food security for the growing
world population and to face climate change. Furthermore, sustainable agriculture seeks alternatives
to harmful pesticides and chemical fertilizers. This review presents an overview of recent scientific
research and potential applications of volatile organic compounds (VOCs) as pest biocontrol and
disease management during pre- and postharvest, along with possible limitations in scalability at
the agricultural level. According to the information reviewed, bacteria, fungi, yeast, and plants are
the principal organisms that produce VOCs with biotechnological potential. The main applications
reported for VOCs are enhanced resistance/tolerance to abiotic stressors, such as drought, cold,
and salinity, and an enhanced defense response against biotic stressors, such as viruses, bacteria,
fungi, nematodes, and insects. Some VOCs in particular present an antimicrobial effect on a wide
range of plant and human pathogens. Therefore, VOCs are considered a promising, sustainable
biocontrol strategy that can replace pesticides and fertilizers. However, future research needs to
promote collaboration with farmers and the development of applications for VOCs at the industrial
level.

Keywords: induced resistance; defense priming; parasitoids; intercropping; microbial volatiles; plant
volatiles; biofumigant; stress tolerance

1. Introduction

The growing world population demands a significant increase in agricultural produc-
tion. By 2050, the world population is estimated to reach 9.7 billion people [1]. According
to the United Nations Food and Agriculture Organization (FAO), an increase of 70% in
food production is necessary to supply future food demands [2]. Under this scenario, crop
protection against abiotic stress, diseases, and infestations is essential for maintaining and
improving crop yields [3]. Over the last few decades, pesticides have been and still are
a significant tool for agricultural intensification, contributing enormously to increased
food production [4]. However, the effectiveness and availability of pesticides are limited
and insufficient to counteract the increased resistance observed in pathogens, insects, and
weeds [5,6]. Furthermore, pesticides play a significant role in many human health problems
and have other adverse side effects, such as soil and water contamination, toxicity to
non-target species, and pesticide residues in food [7–9].

On the other hand, climate change affects crop production and pest and pathogen
resistance because it promotes extreme weather events, reduces the adaptation time, and
increases the ecosystem’s vulnerability [10]. Some extreme climate events, such as drought,
cause soil degradation and fertility loss, reducing agricultural area availability [11,12].
In addition, high temperatures are directly associated with increases in the spreading of
plant pathogens, which favors the infection of new hosts [10,11]. In the past few decades,
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there has been an increased interest in sustainable alternative agricultural techniques that
improve crop yields while reducing losses [13].

Volatile organic compounds (VOCs) are promising alternatives to synthetic pesticides
in pest and disease management. VOCs are gaining interest due to the various advantages
of their application, such as the reduction in residuals in the environment and their ease
of application in different agricultural systems [14]. Therefore, this review explores the
potential applications of VOCs emitted by fungi, bacteria, yeasts, and plants (Figure 1) as
sustainable alternatives that increase plant protection and productivity and the feasibility
of their use. To achieve this goal, we defined appropriate keywords to form a search string
(for example, sustainable agriculture, food security, pesticides, diseases management, pest
management, biocontrol and preharvest, biocontrol and postharvest, preharvest diseases,
postharvest diseases, fungal volatiles, bacterial volatiles, plant volatiles, yeast volatiles,
biotic stress, abiotic stress, induction resistance and drought, induction resistance and
cold, induction resistance and salinity, antimicrobial effect, climate change effect, herbivore-
induced plant volatiles (HIPVs), microbial volatile organic compounds (MVOCs), metabolic
pathways, volatile induction, phytohormone signaling pathway, defense priming, plant
defense, natural enemies, terpenoids, attract and reward, green leaf volatiles, parasitoids,
beneficial insects, predatory arthropods, induction mechanisms, intercropping, push–pull
system, genetically modified crops, biofumigant, biofumigation, stress tolerance). The
abbreviations of some keywords were also considered (for example, VOCs, HIPVs, and
MVOCs). Relevant articles were found in Scopus, Google Scholar, PubMed, ScienceDirect,
and Web of Science. A total of two hundred and ten articles were selected in the preliminary
search; forty-eight articles were excluded, and a total of one hundred and sixty-two articles
were used to build this review. The articles were selected in English, and the period
selected was from 2013–2022; however, we did not discard relevant articles published
before this period.
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Figure 1. Organism producers of volatile organic compounds with biocontrol applications.

2. General Aspects of VOCs and Possible Biotechnological Applications

In nature, VOCs are emitted by all living organisms and occur as a complex mixture
called “volatilome” [15]. For years, VOCs were considered non-essential to the functioning
of the organisms that produced them. However, in the last decades, the scientific com-
munity has elucidated the important role of VOCs at the ecosystem level because they
mediate intra- and interspecific interactions among all organisms [16]. VOCs typically
occur as a complex mixture produced by four major metabolic pathways, namely the shiki-
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mate/phenylalanine, the mevalonic acid (MVA), the methylerythritol phosphate (MEP),
and lipoxygenase (LOX) pathways [17,18] (Figure 2).
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Figure 2. Overview of main biosynthetic pathways to produce plant and microbial volatile organic
compounds. Different chemical classes of VOCs are depicted in colored rectangles. The four principal
biosynthetic pathways are: the shikimate, the methylerythritol phosphate (MEP), the mevalonic acid
(MVA), and the lipoxygenase (LOX) pathways.

Different studies demonstrated that VOCs modulate (suppress or stimulate) microbial
and plant growth [13,19], induce systemic resistance in plants against biotic and abiotic
stresses [20], and act as attractants or repellents of insects [16]. For these reasons, de-
veloping effective VOCs formulations for their biotechnological application in the field
could facilitate the emergence of strategies for sustainable plant disease and pest control
and productivity improvement [21]. However, we must consider that VOC emissions’
composition and quantity can be affected by different factors. For example, VOC emissions
in bacteria and fungi depend on microbial taxa, life stage, growth phase, substrate type,
and temperature [22]. For plants, high temperatures, high light intensities, and herbivore
attacks increase VOC emissions [23]. This issue could be solved by using pure volatiles,
thus improving reproducibility. However, the high vapor pressure at which VOCs would
have to be stored and their high diffusion rate make them unstable, shortening their help-
ful half-life under normal conditions [24]. These characteristics, as well as the long-term
exposure needed to obtain the beneficial effects of VOCs, are the main challenges for the
production of VOC formulations [25].

3. Microbial Volatile Organic Compounds as Biocontrol Alternatives for Postharvest
Diseases

Postharvest diseases result in considerable spoilage, lowering the quality and nutrient
composition of fruits and vegetables, which leads to losses of about 40–60% of global
production [26–29]. The most important pathogens causing postharvest losses are usually
bacteria and fungi, with fungi predominantly responsible for spoilage and losses in posthar-
vest products [30]. MVOCs are produced by various microorganisms such as fungi, bacte-
ria, and yeast and have essential roles in distant interactions and communication. Recent
evidence shows that MVOCs are an eco-friendly, sustainable strategy that enhances produc-
tivity and disease resistance and can be implemented in agricultural systems. Therefore, in
recent decades, the use of MVOCs with antimicrobial effects to control postharvest diseases
has received much attention [28,31]. MVOCs produced by different fungal species, such as
Muscodor spp. [32–38], Trichoderma spp. [19,39–45], Aspergillus spp. [46], Oxyporus spp. [47],
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and Daldinia cf. concentrica [48]; bacterial species of the genus Bacillus spp. [49–54], Pseu-
domonas spp. [54–57], and Streptomyces spp. [58,59]; and yeast of the genus Pichia spp. [60],
Hanseniaspora spp. [61], Candida spp. [62], and Clavispora spp. [63] have been widely studied
for their potential as biocontrols of postharvest diseases that affect mainly fruits, such as
bananas, muskmelons, apples, peaches, strawberries, citrus fruits, grapes, apricots, litchi,
among others, and also vegetables, such as lettuce, chilis, and potatoes, and seeds such as
rice, wheat, and barley.

Different trials have demonstrated that biofumigation (Figure 3) with MVOCs pro-
duced by these organisms, both naturally-produced and synthetic and as mixtures or a
single MVOC, contributes to controlling important plant pathogen species responsible
for losses in postharvest, such as Fusarium spp., Tilletia spp., Pythium spp., Phytophthora
spp., Sclerotinia spp., Penicillium spp., Colletotrichum spp., Rhizoctonia spp., Aspergillus spp.,
Alternaria spp., Botrytis spp., Monilinia spp., Verticillium spp., among others. MVOCs
produced by Muscodor crispans demonstrated effectiveness against plant pathogens such
as Xanthomonas spp. and human bacterial pathogens with medical importance, such as
Yersinia pestis and Staphylococcus aureus, including drug-resistant strains of Mycobacterium
tuberculosis (Table 1) [34]. In addition, MVOCs produced by different strains of Bacillus
spp., Pseudomonas spp., Streptomyces spp., Pichia spp. and Candida spp. have demonstrated
the capacity to inhibit the production of the mycotoxins that are significant contaminants
of the agricultural and food industries, produced mainly by species of Aspergillus spp.,
Penicillium spp. and Fusarium spp. For example, Aspergillus flavus LA1, a non-aflatoxigenic
strain, emitted 3-octanone and trans-2-methyl-2- butenal. These MVOCs can reduce the
aflatoxins B1, G1, and cyclopiazonic acid (CPA) levels in A. flavus LA2, LA3, and As-
pergillus parasiticus LA4 aflatoxigenic strains. Another two compounds emitted by this
strain, 2,3-dihydrofuran and decane, can reduce aflatoxin levels and completely inhibit
CPA production in A. flavus in LA3 by interfering with fatty acid synthases or polyketide
synthases in aflatoxin biosynthesis [46]. Another example is the volatilome of Bacillus
megaterium, which can inhibit the aflatoxins (B1, G1, and G2) produced by A. flavus as
well as other mycotoxins such as ochratoxin A produced by Penicillium verrucosum and
Fumonisin B1 produced by Fusarium verticillioides [53]. On the other hand, volatilome
emitted by Trichoderma koningiopsis PSU3-2 inhibits the fungal growth of Colletotrichum
gloeosporioides, responsible for postharvest anthracnose in chili pepper, by increasing the
activity of cell-wall degrading enzymes (CWDEs) chitinase and β-1,3-glucanase [43]. Sim-
ilar results show MVOCs emitted by Trichoderma asperellum T1 strain on leaf spot fungi
Corynespora cassiicola and Curvularia aeria by inducing a defense response in lettuce through
the increase of activity of CWDEs, chitinase, and β-1,3-glucanase [40]. One example of
synthetic MVOCs used as a biocontrol is phenylethyl alcohol (PEA), which demonstrated
in in vivo assays its ability to effectively control Fusarium incarnatum, a causal agent of a
destructive postharvest disease of muskmelon that causes abnormal changes in the fungal
mycelia [39]. Moreover, PEA is effective in controlling Botrytis cinerea by slowing down
its growth, and it can also maintain the fresh aroma in a strawberry after being stored for
15 days, demonstrating this fruit’s prolonged shelf-life and quality [64]. Biofumigation
with MVOCs has advantages in comparison with traditional disease control; for example,
MVOCs are effective at low concentrations and easily dispersed in closed spaces due to
their high vapor pressure and low molecular weight. In addition, the inhibitory activity
of MVOCs does not require direct physical contact with the product; therefore, they do
not leave toxic residues in the products [18,65–68]. These characteristics turn MVOCs into
potential biofumigant candidates for biocontrol in postharvest agricultural products, such
as fruits, vegetables, and seeds.
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Table 1. Microbial volatile organic compounds with application in postharvest diseases control.

Organism
Emitter

Organism
Target

Emitted
Volatile Activity Crop Reference

Muscodor albus Worapong et al.

Fusarium sambucinum Fukel,
Helminthosporium solani Durieu

and Mont,
Pectobacterium atrosepticum van Hail,
Tilletia horrida Padwick and A. Khan,

Tilletia indica Mitra,
Tilletia tritici (DC.) Tul. and C. Tul

Volatilome Fungal growth inhibition

Potato
( Solanum tuberosum L.), Rice

(Oryza sativa L.),
Wheat

( Triticum aestivum L.)

[32,33]

Muscodor crispens.
Mitchell et al.

Pythium ultimum Trow,
Phytophthora cinnamomic Rands,

Sclerotinia sclerotiorum (Lib.) de Bary,
Mycosphaerella fijiensis

Morelet,
Xanthomonas axonopodis pv. Citri Hasse,
Yersinia pestis Lehmann & Neumann,

Mycobacterium tuberculosis Zopf,
Staphylococcus aureus

Rosenbach

Volatilome
Fungal and

bacterial growth
inhibition

Banana
(Musa × paradisiaca L.) [34]

Muscodor brasiliensis Pena et al. Penicillium digitatum Pers Volatilome Fungal growth inhibition Orange
(Citrus × sinensis L.) [35]

Muscodor sutura
Kudalkar et al.

Phyllosticta citricarpa
McAlpine Volatilome Fungal growth inhibition Citrus [36]

Muscodor albus Worapong et al. Phthorimaea operculella Zeller Volatilome Insecticidal
effect

Potato
(Solanum tuberosum L.) [37]

Muscodor heveae
Siri-udom et al. Rigidoporus microporus Swartz Volatilome Fungal growth

inhibition
Rubber trees

(Hevea brasiliensis Müll. Arg.) [38]

Trichoderma asperellum Samuels et al.

Fusarium incarnatum Desm.,
Corynespora cassiicola Berk.

and M.A. Curtis,
Curvularia aeria Bat et al.

Phenylethyl
alcohol

Fungal growth
inhibition

Muskmelon
(Cucumis melo L.),

Lettuce
(Lactuca sativa L.)

[39,40]



Horticulturae 2023, 9, 441 6 of 24

Table 1. Cont.

Organism
Emitter

Organism
Target

Emitted
Volatile Activity Crop Reference

Trichoderma harzianum Rifai
Pyrenophora teres Drechsles,

Fusarium moniliforme
Sheldon

6-pentyl-alpha-
pyrone (6PAP)

Fungal growth
inhibition

Barley
(Hordeum vulgare L.) [41,42]

Trichoderma spp. Persoon
Longibrachiatum Rifai

Sclerotium rolfsii Curzi,
Macrophomina phaseolina Tassi Volatilome Fungal growth

inhibition Generalist [44]

Trichoderma koningiopsis
Samuels et al.

Colletotrichum
gloeosporioides Penz Volatilome Fungal growth

inhibition
Chili pepper

(Capsicum annuum L.) [43]

Trichoderma atroviride
Bissett Phytophthora infestans Mont.

6-pentyl-2-
pyrone (6-PP),

isoamyl alcohol,
isobutyl alcohol

Fungal growth
inhibition

Potato
(Solanum tuberosum L.) [19]

Trichoderma viridens Pers. Rhizoctonia solani J.G.Kühn Volatilome Fungal growth
inhibition Generalist [45]

Aspergillus flavus Link Aspergillus flavus Link
Aspergillus parasiticus Speare

3-octanone,
trans-2-methyl-2- butenal,
2,3- dihydrofuran, decane

Mycotoxin
inhibition [46]

Daldinia cf. concentrica Bolton

Aspergillus niger P.E.L. van Tieghem,
Alternaria alternata Fr.,

Botrytis cinerea Whetzel,
Colletotrichum sp. Corda,

Coniella sp. Höhnel,
Fusarium euwallaceae

Freeman et al.,
Fusarium mangiferae Britz et al.,

Fusarium oxysporum Schltdl,
Lasiodiplodia theobromae Pat., Penicillium

digitatum Pers.,
Phoma tracheiphila Petri,
Pythium ultimum Trow,

Pythium aphanidermatum
Edson,

Rhizoctonia solani J.G.Kühn,
Sclerotinia sclerotiorum (Lib.) de Bary

Volatilome;
mixture of

4-heptanone and
trans-2-octenal

Fungal
growth

inhibition

Dried fruits,
Peanuts

(Arachis hypogaea L.)
[48]
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Table 1. Cont.

Organism
Emitter

Organism
Target

Emitted
Volatile Activity Crop Reference

Oxyporus latemarginatus
Durieu & Mont.

Botrytis cinerea Whetzel,
Rhyzoctonia solani J.G.Kühn 5-pentyl-2-furaldehyde

Fungal
growth

inhibition

Apple
(Malus domestica Borkh) [47]

Bacillus subtilis Ehrenberg

Botrytis cinerea Whetzel,
Colletotrichum gloeosporioides Penz,

Penicillium expansum Link,
Monilinia fructicola Winter,

Alternaria alternata (Fr.) Keissl,
Fusarium oxysporum Schltdl

Volatilome;
individual

compounds
2,4-di-tert-

butylphenol,
benzothiazole

Fungal
growth

inhibition

Peach
(Prunus cv. DaJiubao),

Litchi
(Litchi chinensis Sonn.)

[52]

Bacillus amyloliquefaciens Priest et al. Fusarium solani Mart. Volatilome
Fungal
growth

inhibition
[49]

Bacillus velezencis Ruiz-García et.al.

Verticillium dahlia Kleb,
Fusarium oxysporum Schltdl,

Botrytis cinerea Whetzel,
Monilinia fructicola Winter,

Monilinia laxa Honey,
Penicillium italicum Wehmer,
Penicillium expansum Link

Decanal,
3-undecanone,
2-undecanone,
2-undecanol,
undecanal,

2,4-dimethyl-6-tert-
butylphenol, benzothiazole,

benzaldehyde,
diacetyl,

1,3-butadiene, N,
N-dimethyldodecylamine

Fungal
growth

inhibition

Strawberry
(Fragaria × ananassa Duch.),

Apricot
(Prunus persica L.),

Grape
(Vitis vinifera L.),

Mandarin
(Citrus reticulata L.)

[50,51]

Bacillus megaterium
de Bary

Aspergillus flavus Link,
Penicillium verrucosum Dierckx,

Fusarium verticillioides Sacc.
Volatilome Mycotoxin

inhibition [53,54]

Pseudomonas fluorescens Migula Penicillium italicum Wehmer

Dimethyl
disulfide (DMDS),

dimethyl
trisulfide
(DMTS)

Fungal
growth

inhibition
Citrus fruits [55]
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Table 1. Cont.

Organism
Emitter

Organism
Target

Emitted
Volatile Activity Crop Reference

Pseudomonas protegens Flügge Aspergillus flavus Link Volatilome Mycotoxin
Inhibition

Rice
(Oryza sativa L.) [54]

Pseudomonas chlororaphis subsp.
aureofaciens Kluyver

Ceratocystis fimbriata
Ellis and Halst

3-methyl-1-
butanol,

phenylethyl
alcohol,

2-methyl-1-
butanol

Fungal
growth

inhibition

Sweet potato
(Ipomoea batatas L. Lam.) [57]

Streptomyces alboflavus Waksman
and Curtis Aspergillus flavus Link Dimethyl

trisulfide, benzenamine
Mycotoxin
Inhibition [58]

Streptomyces philanthi Colletotrichum
gloeosporioides Penz Volatilome

Fungal
growth

inhibition

Chili
(Capsicum annuum L.) [59]

Pichia anomala Hansen Aspergillus flavus Link 2-phenylethyl
ethanol

Mycotoxin
Inhibition Tree nuts [60]

Hanseniaspora uvarum Niehaus Botrytis cinerea Whetzel Volatilome
Fungal
growth

inhibition

Strawberry
(Fragaria × ananassa Duch.),

Cherries
(Prunus subsp. cerasus L.)

[61]

Candida nivariensis Alcoba-Florez Aspergillus flavus Link Volatilome

Fungal
growth

inhibition,
Mycotoxin
inhibition

[62]

Clavispora lusitaniae Uden &
Carmo Souza Penicillium digitatu m Pers. Volatilome

Fungal
growth

inhibition

Lemon
(Citrus × limon L.) [63]
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Figure 3. Biofumigation with MVOCs strategy for biocontrol of postharvest disease can enhance the
shelf-life and quality of food.

4. Herbivore-Induced Plant Volatiles (HIPVs) as Biocontrol Alternatives in Agriculture

Plants’ response to herbivore attacks is to synthesize different defensive VOCs, so-
called HIPVs. HIPVs are complex mixtures shaped basically by green leaf volatiles (GLVs),
terpenoids, aromatics, and amino acid volatile derivatives, and they vary according
to the plant and herbivore species, as well as the development stage and condition of
them [66,69,70]. The induction of HIPVs occurs for different reasons (herbivores feeding
on leaves, the deposition of insect eggs on plant parts, and feeding by insect larvae on
roots [71]), and they are emitted from infested and non-infested leaves, flowers, fruits, and
roots [69,72]. Different plant hormones are involved in the regulation of the emission of
HIPVs, particularly jasmonate (JA), salicylic acid (SA), and ethylene (ET), and crosstalk
among these phytohormones’ signaling pathways is necessary for adjusting the plant
responses. These phytohormone signaling pathways are the octadecanoic pathway (JA
biosynthesis), the shikimate pathway (SA biosynthesis), and the ethylene pathway (ET
biosynthesis). The activation of these pathways depends on the herbivore’s nature [73–76].
For example, when plants are damaged by sucking arthropods, such as aphids and spider
mites, the regulation of HIPV emission from infested leaves is given through antagonistic
crosstalk between SA and JA [77,78]. Another example is when mechanical damage is
applied to lima bean leaves that mimics the damage caused by chewing arthropods: JA
accumulates locally in response to damage, immediately activating the up-regulation of
the β-ocimene synthase gene (PlOS) [79].

HIPVs can act as an indirect form of plant defense in different ways, for example, by
directly or indirectly affecting herbivore performance [70], inducing defense responses in
the undamaged parts of the plant (interplant), alerting neighboring undamaged plants
to the forthcoming danger (intraplant), a phenomenon called “priming” [70,80–83], and
acting as oviposition and feeding deterrents to herbivores [66,69]. In addition, some HIPVs
can attract natural enemies, such as predators and parasitoids (an organism whose larvae
feed and develop inside or on the body surface of another organism), that serve as a
defense against herbivores and weeds [71]. Recognition of the importance of HIPVs in
natural communities has turned them into a sustainable alternative for pest management in
agriculture in different ways: (I) the recruitment of natural enemies to plantations mediated
using synthetic HIPVs; (II) the release of synthetic HIPVs to repel or attract herbivores; (III)
the use of synthetic HIPVs that elicit resistance in plants; (IV) the use of plant varieties that
emit HIPVs that induce resistance in neighboring plants.

HIPVs as a Tool for Recruitment of Natural Enemies as a Biocontrol of Pests

The use of HIPVs for the attraction of natural enemies of herbivores, such as carnivo-
rous arthropods (parasitoids and predators) and entomopathogenic agents (nematodes and
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fungi), has been widely documented [84,85] (Figure 4). Numerous studies have demon-
strated the efficiency of HIPVs as reliable indicators of suitable hosts for parasitoids (Table 2).
Therefore, manipulating the foraging behavior of predatory insects can be an effective
method to enhance their effectiveness as biocontrol agents in pest management [86]. Among
HIPVs, terpenoids are the largest and most representative group; therefore, it is normal
that terpenes dominate the HIPV mixtures [87,88]. Several studies have tested synthetic
terpenes for recruiting natural enemies in agricultural systems. For example, β-ocimene,
which is one of the terpenes most studied and most important of the HIPVs [80,89–91],
demonstrated that it is efficient in the attraction of different predators, such as parasitic
wasps Aphytis melinus [92] and Aphidius gifuensis and the lady beetle, and green lacewing
larvae (Chrysoperla carnea) favored the biocontrol of important pests, such as the California
red scale (Aonidiella aurantii) and the aphid (Myzus persicae) that cause significant pro-
duction losses in citrus [92], peach [93], and cabbage [91]. Other important HIPVs is the
methyl salicylate (MeSA), which attracts natural enemies in different agroecosystems, such
as the Linyphiid spider (Erigonidium graminicolum), bug (Orius similis), mite (Neoseiulus
californicus), Geocorid (Geocoris pallens), hoverflies (Syrphidae) (Toxomerus marginatus), and
coccinellid (Stethorus punctum picipes). In addition, behavioral assays show that the re-
lease of β-myrcene and β-caryophyllene volatiles from dispensers enhances the efficacy of
Encarsia formosa as a biological agent against Bemicia tabaci whiteflies in glasshouse produc-
tion systems [94]. MeSA favored the attraction of these natural enemies of an important
pest, the spider mite (Tetranychus urticae), which is a potentially harmful pest because it
can affect many types of crops, including vegetables, fruits, and flowers [86], as well as
the corn borer (Ostrinia nubilalis), which affects corn, apple, strawberry, and pepper [95]
(Table 2). However, to achieve the success of this strategy, it is necessary to consider the
synchronicity of crop pests and their natural enemies. “Attract and reward” is a pest control
strategy that combines the “attraction” effects of synthetic HIPVs with companion plants
(non-crop plants) that provide a “reward” such as nectar and/or pollen that could enhance
the survival periods of parasitoids and predators without host or prey [96–99] (Figure 4).
Different laboratory and field studies have demonstrated the potential of this pest control
strategy; for example, they used a dispenser of MeSA and methyl jasmonate (MeJA) as the
“attractants” of predators of the sweetcorn pest Helicoverpa spp. and buckwheat (Fagopyrum
esculentum) as a companion plant that provides nectar as a “reward”. It was demonstrated
that the application of this pest control strategy increased the abundance and residence
of natural enemies, which resulted in an efficient regulation of Helicoverpa spp., reducing
damage in different crops (sweet corn, broccoli, and wine grapes) [99]. Similar results
were found by applying synthetic MeSA in the dispenser as an attractant of predatory
ladybird Propylea japonica in apple orchards using the companion plant Calendula officinalis
as a reward, resulting in the regulation of the aphid population in the short-term [100].

Table 2. Herbivore-induced plant volatiles with attraction capacity of natural enemies.

Volatile Compound Beneficial Insect Pest Insect Crop Reference

β-myrcene,
β-caryophyllene

Wasp
(Encarsia formosa Gahan)

Whitefly
(Bemisia tabaci Gennadius)

Tomato
(Solanum lycopersicum L.) [94]

D-limonene,
β-ocimene

Wasp
(Aphytis melinus DeBach)

California red scale
(Aonidiella aurantii Maskell)

Mandarin
(Citrus reticulata L.),

Orange
(Citrus × sinensis L.),

Lemon
(Citrus × limon L.)

[101]

β-ocimene Wasp
(Aphidius gifuensis Ashmaed)

Aphid
(Myzus persicae Sulzer)

Chinese cabbage
[Brassica rapa L. subsp pekinensis

(Lour) Hanelt]
[91]
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Table 2. Cont.

Volatile Compound Beneficial Insect Pest Insect Crop Reference

(E)-β-ocimene

Lady beetle
(Adalia bipunctata L.),

Green lacewing larvae
(Chrysoperla carnea Stephens)

Peach
(Prunus persica L.) [93]

α-pinene Wasp
(Aphelinus varipes Foerster)

Aphid
(Myzus persicae Sulzer)

Chili pepper
(Capsicum annuum L.), Eggplant

(Solanum melongena L.),
Crown daisy

(Glebionis coronaria L.),
Chinese cabbage

[Brassica rapa L. subsp pekinensis
(Lour) Hanelt],

Cabbage
(Brassica oleracea var. capitata L.)

[102]

Mixture
(β-pinene,

β-phellandrene,
3-carene,

β-ocimene)

Mirid
(Nesidiocoris tenuis Reuter)

Tomato moth
(Tuta absoluta Meyrick),

Whitefly
(Trialeurodes vaporariorum

Westwood)

Tomato
(Solanum lycopersicum L.) [103]

(E)-3-hexenyl acetate

Mirid
(Deraeocoris brevis Uhler),

Anthocorid
(Orius tristicolor White),

Coccinellid
(Stethorus punctum picipes Casey)

[104]

(Z)-3-hexenyl acetate Ladybird beetle
(Coccinella septempunctata L.)

Cotton
(Gossypium L.) [105]

Nonanal,
(Z)-3-hexenyl acetate,

methyl salicylate

Linyphiid spider
(Erigonidium graminicolum

Sundevall)

Octanal Bug
(Deraeocoris punctulatus Fallen)

Dimethyl octatriene,
nonanal +

(Z)-3-hexen-1-ol, octanal

Syrphid fly
(Paragus quadrifasciatus Meigen)

3,7-dimethyl,1,3,6-
octatriene,
nonanal,

(Z)-3-hexenyl acetate,
nonanal +

(Z)-3-hexen-1-ol,
methyl salicylate

Bug
(Orius similis Zheng)

Pregeijerene

Nematodes
Steinernema diaprepesi
Nguyen and Duncan,
Steinernema sp. glaseri

Glaser and Fox,
Steinernema riobrave Cabanillas,

Poinar and Raulston,
Steinernema carpocapsae Weiser,

Steinernema feltiae Filipjev,
Steinernema kraussei Nikdel

and Niknam,
Steinernema scapterisci Nguyen

and Smart,
Heterorhabditis indica Poinar,

Karunakar and David,
Heterorhabditis zealandica Poinar,

Heterorhabditis bacteriophora
Poinar

Beetle larvae
(Diaprepes abbreviatus L.)

Wax moth
(Galleria mellonella L.)

Beetle
(Anomala orientalis

Waterhouse)

Citrus [106]
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Table 2. Cont.

Volatile Compound Beneficial Insect Pest Insect Crop Reference

Methyl salicylate

Mite
(Neoseiulus californicus

McGregor)

Spider mite
(Tetranychus urticae

C. L. Koch)
[86]

Geocorid
(Geocoris pallens Stål.)

Hoverflies
(Syrphidae Latreille),

Coccinellid
(Stethorus punctum picipes Casey)

Hoverflies
(Toxomerus marginatus Say)

Corn borer
(Ostrinia nubilalis Hübner) [95]
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5. VOCs as Inductors of Resistance in Plants against Abiotic and Biotic Stress

Biotic and abiotic stresses are the two main factors that affect crop production [107],
causing losses to approximately 25% and 50% of the world’s crop production, respec-
tively [108–110]. The various biotic agents (viruses, bacteria, fungi, nematodes, weeds,
insects, and arachnids) and abiotic factors (extreme temperatures, drought, salinity, and
heavy metals) can deprive the plants of nutrients, limit growth, and lead to their death, thus
reducing and limiting crop productivity and agriculture sustainability worldwide [108,109].
Moreover, factors such as pests’ resistance to pesticides, the emergence of new insect pests
and diseases, and the loss of soil fertility, among others, improve the severity of crop loss
and favor pest infestations and diseases [111]. To defend against these stresses, plants
synthesize secondary metabolites that act directly by acting on the pathogen or indirectly by
inducing the necessary defensive or resistance/tolerance response of the plant [112]. These
secondary metabolites include VOCs, which play different roles in the defense against
biotic stresses and the resistance/tolerance to abiotic stresses; therefore, they have received
particular attention because they constitute one of the most promising alternatives for pest
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and disease management preharvest [112,113]. Different trials have demonstrated that
specific single VOCs and mixtures of VOCs can induce a defense response in plants against
pathogens [114–116], nematodes [117], insects [114], and viruses [118–120], which allows
preparations to start beforehand and be present when at risk of attack [121]. In addition,
some VOCs can attract beneficial insects, such as predatory arthropods and parasitoids
(an organism whose larvae feed and develop inside or on the body surface of another
organism), that serve as a defense against herbivores and weeds [71] (Figure 5). Indeed,
various studies demonstrated the efficacy of VOCs in attracting beneficial insects such
as parasitoids wasps [91,94,101], lady beetles [93], hoverflies, predatory mites [95], and
lacewing larvae [93], among others. Similarly, VOCs are capable of inducing systemic
resistance/tolerance to different abiotic stresses such as drought [122–124], cold [124,125],
and salinity [126] (Table 3).

Table 3. Volatile organic compounds with application in biocontrol against biotic and abiotic stress.

Volatile Compound Organism Target Effect Crop Reference

Dimethyl disulfide,
methyl isovalerate,

2-undecanone

Nematode
(Meloidogyne incognita

Kofoid and White)

Induce defense
response and growth

promotion

Tomato
(Solanum lycopersicum L.) [117]

(E)-nerolidol

Leafhopper
(Empoasca onukii Matsuda),

Fungus
(Colletotrichum fructicola

Prihast et al.)

Induce defense
response

Tea plant
(Camellia sinensis L.) [114]

Z-3-hexenol Tomato yellow leaf
curl virus

Induces defense
response

Tomato
(Solanum lycopersicum L.) [118]

2R,3R-butanediol,
2R,3S- butanediol

Cucumber mosaic virus,
Tobacco mosaic virus

Induce defense
response

Pepper
(Capsicum annum L. cv.

Bukwang)
[119]

6-pentyl-α-pyrone
(6PP) Tobacco mosaic virus Induces systemic

resistance

Tobacco
(Nicotiana tabacum cv.

White Burley)
[120]

Dimethyl disulfide
(DMDS)

Fungus
(Sclerotinia minor Jagger)

Induces systemic
resistance

Tomato
(Solanum lycopersicum L.) [115]

Nonanal,
limonene

Fungus
(Colletotrichum
lindemuthianum

Sacc. and Magnus)

Induce systemic
resistance

Common bean
(Phaseolus vulgaris L. Sp. Pl.) [116]

Dimethyl disulfide,
2,3-butanediol,
2-pentylfuran

Induces systemic
drought tolerance

Maize
(Zea mays L.) [122]

(Z)-3-hexen-1-yl acetate

Induces tolerance
against cold stress

Maize
(Zea mays L.) [125]

Induces drought
resistance

Wheat
(Triticum spp. L.) [123]

Protects against salinity
stress

Peanut
Arachis hypogaea L.) [126]

Eugenol Induces cold
and drought tolerance

Tea plant
(Camellia sinensis L.) [124]
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The mechanisms involved in the induction of defense are associated with different
signaling-modulated phytohormones, such as JA, MeJA, SA, MeSA, and ET, which trigger
the induction of defense responses after insect damage. JA is one of the most important
elicitors, as it induces resistance in plants against herbivores and accumulates rapidly
in plant tissue after wounding or insect damage [69,114]. The exogenous application
of JA induces defense-related responses, such as the activation of oxidative enzymes,
proteinase inhibitors, alkaloids, and the production of volatile compounds [69,127], and
confers resistance against phloem-sap-sucking insects and chewing herbivores, as well as
necrotrophic pathogens. Moreover, SA and hydrogen peroxide (H2O2) induce resistance
against biotrophic pathogens and sucking/piercing insects [128,129]. Some of the most
studied HIPVs involved in resistance induction are GLVs, which are produced and emitted
by plants in response to stress [125,130]. GLVs consist of C6 compounds, including alde-
hydes, alcohols, and esters [130,131]. GLVs can induce resistance “priming”, the capacity
of the plant to respond to future stress. Usually, GLVs are immediately released from
damaged plant tissues, which induces defense-related genes contributing to immediate
resistance to stress in the damaged plant and its neighbors [130,131]. Therefore, GLVs are
crucial for plant resistance to biotic and abiotic stresses. One example is (Z)-3-hexeny-1-yl
acetate, whose exogenous application in seedlings can induce resistance against cold stress
in maize [125], enhance drought resistance in wheat, mainly through antioxidant and
osmoregulation systems [123], and enhance salinity stress tolerance in peanuts through
modifications in the photosynthetic apparatus, antioxidant systems, osmoregulation, and
root morphology [126]. Another example is (Z)-3-hexen-1-ol, whose exogenous appli-
cation enhanced defense against the Tomato yellow leaf curl virus (TYLCV), resulting in
improved flavonoid levels and defense gene transcripts as well as increased transcripts
of JA biosynthetic genes and increased whitefly-induced transcripts of SA biosynthetic
genes in plants [118]. Terpenes also are involved in the induction of defense responses;
one example is (E)-nerolidol, which elicits a strong defense response in tea plants against
Colletotrichum fructicola by the activation of a mitogen-activated protein kinase (MAPK),
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the WRKY transcription factor plant defense, and H2O2 burst, as well as the induction of
jasmonic acid and abscisic acid signaling [114]. Another terpene is β-ocimene, which is
emitted by tea plants when treated with an exogenous application of individual HIPVs
(Z)-3-hexenol, linalool, α-farnesene, and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and is
a powerful repellent of mated Ectropis obliqua females, which is one of the most devastating
leaf-feeding pests of tea plants [132]. In addition, MeJA primes the plant defenses through
epigenetic modifications in wounding-inducible genes in rice, enhancing the response of
rice to wounding [133]. Compared with direct defenses, priming does not represent an
energetically costly activation of metabolic pathways [134]. Therefore, priming represents
a sustainable strategy to implement in agriculture systems as a crop biocontrol.

6. Intercropping ‘Push–Pull’ system

Intercropping is an ancient agricultural practice of cultivating multiple crop species in
the same space [135,136]. The advantages of this system are the optimization of resources,
the improvement in soil fertility due to the incorporation of legumes in the mixture, and
the more extensive area coverage, which allows for better soil conservation, reduces the
incidence of pests and diseases as well as the weed population, and minimizes the use
of pesticides. Therefore, the intercropping system has shown enormous potential for
agricultural implementation as a biocontrol of pests and diseases [136,137]. The push–pull
system is a stimulus–deterrent cropping strategy that consists of intercropping cereals with
legumes and surrounding fodder grasses. It is based on a mechanism that consists of two
functional groups, trap plants and repellent plants, which have characteristics that make
them attractive or repellent to a specific insect [138]. For example, taking the intercropping
crop of interest as maize (Zea mays), a legume species such as Desmodium (Desmodium
uncinatum) emits volatiles that repel stemborers moths (the ‘push’ effect) and a border of
a trap crop, such as Naiper grass (Pennisetum purpureum), attracts stemborers moths (the
‘pull’ effect) (Figure 6) [139–142]. This system enhances soil fertility through Desmodium’s
N-fixation and decreases the presence of the parasitic weed, Striga [139]. In addition, fodder
crops make the crop habitat more attractive to natural enemies of stemborers, such as ants,
earwigs, and spiders, increasing the parasitism of this herbivore [143]. On the other hand,
the implementation of the push–pull system may be improved by replacing Desmodium
with other legumes that serve as food, such as the common bean, which is widely consumed
worldwide and is an important source of protein. Recent studies demonstrated that the
common bean is as efficient as Desmodium in repelling stemborers and increasing the
abundance of predators; therefore, the common bean can replace Desmodium in areas
with a low abundance of the parasitic weed Striga [140]. The success of this system has
been attributed to repellent (‘push’) and attractive (‘pull’) VOCs that are released by the
companion plants [138]. The volatiles emitted by Desmodium and Brachiaria companion
plants (E)-2- hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, (S)-linalool, DMNT, MeSA,
indole, β-caryophyllene, (E)-β-farnesene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene
(TMTT), serve as inductors of HIPVs in maize, repel herbivores and attract natural enemies,
and affect the germination of the parasitic Striga weed [144–147]. DMNT and TMTT are very
attractive for braconid parasitoids. In addition, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-
ocimene, 1-octen-3-ol, (S)-linalool, MeSA, indole, and β-caryophyllene induced responses
to caterpillar herbivory and egg laying, and are attractants of parasitic wasps [148,149].
The push–pull system is widely considered a potential strategy for pest control due to
its abilities in improving crop yields and helping to avoid the use of chemical pesticides,
favoring the environment’s care. It also has a significant impact on food security due to its
assistance in producing more food on less land.
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Figure 6. ‘Push–Pull’ system consists of intercropping cereals such as maize (Zea mays) with a legume
such as Desmodium (Desmodium uncinatum), which emits volatiles that repels stemborers moths
(‘push’ effect) and is bordered by a trap crop such as Naiper grass (Pennisetum purpureum), which
attracts stemborers moths (‘pull’ effect). In addition, Desmodium enhances soil quality through
nitrogen fixation.

7. Application of VOCs in Agricultural Systems

Currently, alternatives that exploit the potential of VOCs in agricultural systems have
been increasing, such as dispensers for the application of single or a mixture of VOCs, as
well as the use of genetically modified (GM) crops with altered VOC emissions. Recent
studies have demonstrated the success of HIPVs in the biocontrol of pests, for example, the
continuous application of (Z)-3-hexenyl propanoate ((Z)-3-HP) by a polymeric dispenser
in tomato plants in commercial greenhouse conditions. These dispensers maintained the
defenses of commercial tomato plants activated for over two months, reducing the attack of
economically significant tomato pests Tetranychus urticae and Tuta absoluta without lowering
productivity. The induction of tomato plants with (Z)-3-HP increased the production of
fatty acids, the activation of the lipoxygenase pathway, the accumulation of specific defense
compounds, and the upregulation of genes involved in the antiherbivore defense [150].
Another case is the use of HIPV (sabinene, n-heptanal, α-pinene, and (Z)-3-hexenyl ac-
etate) dispensers to attract the Cotesia vestalis larval parasitoid to control the diamondback
moth (DBM) (Plutella xylostella) larvae, which are an important pest of cruciferous crops in
greenhouses. The dispensers successfully attracted C. vestalis and honey feeders, which
reduced the presence of DBM in the greenhouse [151]. Similar results were shown with the
dispenser application of β-caryophyllene and β- myrcene which enhanced the attraction of
the parasitic wasp Encarsia formosa, resulting in the feeding of Bemicia tabaci adults. The
use of dispensers enhanced the efficacy of E. formosa as a biological agent to control the
B. tabaci pest in glasshouse production systems [152]. Limonene applied in the dispenser
system acts as a repellent and plant defense elicitor to control the whitefly (Trialeurodes
vaporariorum) pest on tomatoes in a commercial glasshouse. In addition, MeSA reduces
whitefly population development, elevates peroxidase (POD) activity, and increases the
thioredoxin peroxidase (TPX1) and pathogenesis-related protein 1 (PR1) transcripts and
both volatiles [153]. On the other hand, the use of GM crops with altered VOC emissions
provides enhanced resistance against pests and abiotic stress. The hypersensitive GM
crops could be used as an attractant to trap and kill herbivores, as a repellent of herbi-
vores, or as a lure to attract natural enemies [154]. For example, the overexpression of
the protein OsCYP92C21, which is known to be responsible for homoterpene biosynthesis
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in rice, enhanced the emission of DMNT and TMTT, which attract the parasitic wasp
Cotesia chilonis, the natural enemy of the rice pest striped stemborer Chilo suppressalis [155].
In addition, the overexpression of the caryophyllene synthase gene GhTPS1 in cotton
enhanced the emission of (E)-β-caryophyllene, which reduces pests, such as Apolygu sluco-
rum, Aphis gossypii, and Helicoverpa armigera, through the attraction of parasitoids, such as
Peristenus spretus and Aphidius gifuensis [57]. The overexpression of enzymes responsible
for the emission of specific volatiles could be an excellent tool to improve pest manage-
ment. In agricultural systems, GM crops can favor the enhanced resistance to pests and
abiotic stresses [85].

However, GM crops can also favor the presence of non-target species due to the
reduction in chemical pesticides; for example, GM cotton that has been cultivated in
China for more than two decades and that promotes the presence of mirid bugs, such
as Adelphocoris suturalis, Apolygus lucorum, and Lygus pratensis. These bugs are pests that
affect a broad range of important crops including cotton, jujube, and grape [156]. Recent
studies demonstrated that VOCs obtained from plant extracts such as Allium tuberosum had
a significantly higher attractive effect on A. suturalis and A. lucorum; among the volatiles
responsible for this effect are diethyl phthalate and methyl levulinate. Therefore, applying
these volatile as attractants has a potential to control mirid bugs in agriculture [157,158].

8. Future Trends and Conclusions

The multiple benefits of VOCs as novel eco-friendly alternatives provide sustainable
solutions to different problems, such as controlling pathogen-associated diseases in pre-
and postharvest, inducing plant resistance against biotic and abiotic stresses, and positive
factors such as promoting plant growth. However, we must consider the factors that could
limit the success of VOC exploitation in agricultural practices. For example, only a few
studies have proven the efficacy of VOCs in open field conditions; most VOC-related
experiments are performed in laboratory conditions using concentrations that are difficult
to achieve in open field conditions. In addition, VOCs are unstable compounds that
can react easily with highly reactive chemicals present in the environment, such as NOx,
OH− radicals, and ozone [159,160]. Moreover, the high biodegradability of VOCs can
reduce their effects and impacts on targets, limiting their persistence and activity [11,21,24].
However, these limitations can be resolved through modern technologies of micro- and
nano-encapsulation in polymer shells or coats, which can increase the half-life and stability
of VOCs, control their release into the environment, and protect them against oxidation,
UV, and evaporation, thereby improving their effectiveness [11,21]. Another limitation
of VOCs when used to attract beneficial insects is that the information transmitted is not
selective, so they may attract many non-target species, including undesirable ones such as
pests, disease vectors, etc., causing the opposite effect.

Additionally, the asynchronous crop colonization of pests and beneficial insects can
limit the implementation of annual cropping system. Thus, providing a nurturing envi-
ronment that allows for the establishment of stable populations of beneficial organisms
by supplying food such as nectar or pollen that can enhance the survival periods of para-
sitoids and predators without a host or prey and can solve this issue [98,113]. Other factors
to consider are the high processing costs and lengthy screening procedures required to
research and develop an effective synthetic VOC formulation. Furthermore, some VOCs
have nutritional and organoleptic side effects on the final agricultural product, which may
necessitate further research to guarantee quality. All these limitations have delayed the use
of VOCs in agriculture. Therefore, until now, an effective synthetic VOC formulation has
yet to be developed for their agricultural application. Nevertheless, the increasing interest
in sustainable solutions that enhance crop protection and productivity, and the promise
of pesticide-free, healthy food could promote the investment and development of VOCs,
driving them to become a part of the competitive agricultural industry.
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