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Abstract: Silver nanoparticles have gained considerable interest in recent decades due to their
antimicrobial activity and are used in water disinfection, wound healing, food packaging, and
plant protection. This study tested the potential of silver nanoparticles synthesized using the neem
(Azadirachta indica) leaf extract against Alternaria solani causes early blight disease in tomato plants.
The pathogen was isolated from infected tomato plants and identified using morphological and
molecular features. The results showed significant variation among isolates. Isolates, Shk-1 and Ksr-1
were highly pathogenic, causing up to 80% disease incidence. The potential of silver nanoparticles
against each isolate was determined using different concentrations of silver nanoparticles. During
in vitro and in vivo experiments, the growth inhibition rate of the pathogen was 70–100% at 50 ppm.
Lower concentrations of silver nanoparticles (5 and 10 ppm) increased phenolics, PO, PPO, and PAL
production by more than 50% as compared to the untreated control. These defensive mechanisms
clearly demonstrate the fungicidal potential of AgNPs and recommend their utilization in different
crop protection programs.

Keywords: silver nanoparticles; green synthesis; antifungal activity; Alternaria solani; tomato; early
blight disease

1. Introduction

Nanotechnology has received much attention due to its applications in many indus-
tries, such as medical imaging, therapy, drug delivery, and energy generation [1]. Nan-
otechnology is a field of science and technology that focuses on the study, design, creation,
manipulation, and use of materials and devices on the nanoscale level [2]. A nanometer
is one billionth of a meter, which means that nanotechnology deals with materials and
devices that are typically between 1 and 100 nanometers in size [3]. Due to their smaller
size, nanoparticles have a higher surface-to-volume ratio, making them more effective with
different properties than their bulk material [4]. Nanotechnology has broad applications in
many fields, including electronics, energy, medicine, and agriculture [5].
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Applications of nanomaterials, primarily biological applications, depend on their
synthesis methods. Nanoparticles are generally synthesized using different physical or
chemical approaches [6,7]. However, physical processes usually involve the maintenance
of high temperatures and pressures and require more energy, due to which the quality
of the product is also compromised. Moreover, chemical methods utilize hazardous syn-
thetic chemicals that persist in the environment and cause pollution [8,9]. Therefore, green
synthesis is more of a focus now because using plants to synthesize nanoparticles is a
simple, single-step, fast, economic, and eco-friendly approach [10,11]. Green nanoparti-
cle synthesis refers to synthesizing nanoparticles using natural materials such as plants
and avoiding harmful chemicals and high temperatures [12]. Green synthesis methods
synthesize biocompatible and biodegradable nanoparticles, making them suitable for agri-
cultural applications [13,14]. Plants produce biomolecules like carbohydrates, proteins,
polyphenols, and co-enzymes that can reduce silver to silver nanoparticles [15,16].

Silver nanoparticles are the most promising among all the metallic nanoparticles due to
their unique properties, physiochemical activities, and potential biological applications [13],
including antimicrobial [17], anti-inflammatory, anti-infectious, and antiseptic properties,
even at lower concentrations [18]. AgNPs are used as drug delivery agents, cancer thera-
peutics, and wound healing agents. AgNPs have been investigated for their potential use
in environmental remediation, such as water purification and air filtration [19]. AgNPs
are being studied for their potential applications in electronics, particularly in develop-
ing electronic devices, due to their high electrical conductivity and thermal stability [20].
Moreover, AgNPs have also shown promising results in agriculture for their potential use
as an alternative to chemical fertilizers and pesticides [21]. AgNPs improve crop yield
and enhance plant growth [22]. AgNPs have also been found to possess antifungal and
antibacterial properties, making them suitable for controlling different plant diseases [23].

Silver nanoparticles release silver ions, disrupting the cell membrane and inhibiting the
growth of bacteria, fungi, and viruses. The small size of silver nanoparticles allows for high
surface area-to-volume ratios and releases more silver ions to counter microbial activity [24].
This property makes silver nanoparticles a promising alternative to traditional antibiotics
for treating infectious diseases and a potential ingredient in antimicrobial coatings, textiles,
and medical devices [1,18]. It is observed that silver nanoparticles do not affect living
cells at lower concentrations, so they cannot provoke microbial resistance [25]. Silver
nanoparticles have a high surface area to volume ratio, which allows them to interact
with a large number of microbial cells at once. Silver nanoparticles penetrate the cell
wall of the microbe and interact with the cell membrane, leading to disruption of the
membrane [14]. Silver nanoparticles generate reactive oxygen species (ROS) that damage
cellular components, such as DNA and proteins. The mechanism of action is particularly
effective against bacteria and fungi, which have a simpler defense system against ROS
compared to higher organisms [26]. Silver nanoparticles also interfere with cell signaling
pathways, preventing them from communicating with each other and coordinating their
response to stressors, which ultimately results in their inability to adapt to changing
environments [24]. Silver nanoparticles have a broad spectrum of activity against many
different types of microorganisms, which makes it less likely for any one microbe to develop
resistance to it [27]. Even if a few microbes do develop resistance, the diverse mechanisms
of action of silver nanoparticles make it difficult for them to spread their resistance to other
microbes [28].

Many researchers have reported the antimicrobial potential of silver nanoparticles
against various pathogens [29–31], including Alternaria, Corynespora, and Fusarium spp. [32].
Genus Alternaria Nees is a broad fungal group. Its species, especially solani Sorauer, is
the most destructive one that causes an Early Blight disease in tomato and potato plants
worldwide [33,34]. Alternaria solani colonizes the leaves, stems, and fruits [35,36] of plants
belonging to the family Solanaceae, causing up to 78% of crop losses [37]. The genetic
variation in A. solani results in morphological, physiological, and pathogenesis differences
among isolates [38]. Many practices have been introduced, such as crop rotation, resistant
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cultivars, sanitation, and synthetic fungicides to manage Early Blight disease, but have
failed [39,40]. Silver nanoparticles can be used due to their antimicrobial potential; however,
there are concerns about their potential toxicity and environmental impacts. Nanoparticles
usually cause irreversible damage to living cells by oxidative stress, which solely depends
on the size, composition, and concentration of the NPs. Hence, research regarding the
identification of optimal doses of NPs against plant diseases is needed [4].

The present study aimed to evaluate the in vitro and in vivo antifungal activity of
green synthesized silver nanoparticles (AgNPs) against Alternaria solani. The identification
and occurrence of A. solani were also investigated to understand the distribution and
prevalence of the pathogen in tomato crops, which is critical for disease management
strategies. In addition, the characteristics of the AgNPs using various analytical techniques
were also studied.

2. Materials and Methods
2.1. Materials

Leaves of the Azadirachta indica A. Juss. (neem) plant were collected from the ground
(31.497185◦-N, 74.298172◦-E) of University of the Punjab (Lahore, Pakistan), washed, and
dried for further use. Seeds of tomato (Solanum lycopersicum L.) varieties were obtained from
the Vegetable Research Institute of Ayyub Agricultural Research Institute (AARI), Faisal-
abad, Pakistan. The required chemicals, i.e., silver nitrate (AgNO3), potato dextrose agar
(PDA), methanol, Folin–Ciocalteu reagent, sodium carbonate, Catechol, phosphate buffer,
Guaiacol, hydrogen peroxide, sodium phosphate, trichloroacetic acid, and L-phenylalanine
were bought from Sigma-Aldrich, United States through Science Traders.

2.2. Green Synthesis of Silver Nanoparticles

The silver nanoparticles were synthesized using leaves extract of neem plant prepared
in distilled water. The dried leaves of the neem plant were ground using an electric grinder
to make fine powder material. Ten (10) grams of the powder material was added to
100 mL of distilled water, boiled for 30 min, cooled at room temperature, and filtered using
Whatman’s No. 1 filter paper. The plant extract of 20 mL was then reacted with 10 mL
of 1 mM silver nitrate solution and incubated for 3 h at 70 ◦C. The production of AgNPs
synthesis was confirmed by observing the solution’s color change. Then, the resulting
solutions were subjected to UV–vis spectroscopy within 300–800 nm wavelength. Each
solution was taken in Eppendorf’s tube and centrifuged. The pellet was again centrifuged
after dissolving in distilled water. The cycle of centrifugation was repeated several times
until purified AgNPs were acquired. The synthesized silver nanoparticles were stored at
4 ◦C to study their characteristic features.

2.3. Characterization of Silver Nanoparticles

Green synthesized silver nanoparticles using leaf extract of A. indica (neem) plant
were subjected to various techniques, i.e., UV–spectrophotometry, Fourier-transform in-
frared spectroscopy (FTIR) analysis, zeta sizer, X-ray diffraction (XRD), and scanning
electron microscopy (SEM) to determine their size, surface structure, morphology, and
other characteristics.

2.3.1. UV–Spectrophotometry of AgNPs

This technique was used to confirm the synthesis of silver nanoparticles. The 1 mL
of the sample was taken in Eppendorf’s tube and centrifuged at 14,000 rpm for 10 min.
After discarding the supernatant, the pellet was dissolved in distilled water again. The
procedure was repeated three times to get rid of debris. The purified silver nanoparticles
were dissolved in 1 mL of distilled water using a vortex meter and subjected to UV–vis
analysis. The absorption spectrum within the 300–800 nm wavelength range on a UV–
visible spectrophotometer was taken.



Horticulturae 2023, 9, 369 4 of 20

2.3.2. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis of AgNPs

Fourier transform infrared spectroscopy (FTIR) was calibrated to study the organic
functional groups attached to the surface of AgNPs. The selected nanoparticles, synthesized
at optimized conditions, were purified using repeated centrifugation at 14,000 rpm for
10 min and dried at 60 ◦C. The dried samples were mixed with a fine powder of potassium
bromide (Kbr) and analyzed by FTIR.

2.3.3. X-ray Diffraction (XRD) Analysis of AgNPs

X-ray diffraction (XRD) was used to examine the overall oxidation state and crystal
structure of AgNPs. Synthesized nanoparticles were purified by centrifugation, and the
resulting pellets were dispersed into 10 mL of deionized water. After freeze-drying the
purified AgNPs, the structure was analyzed with XRD.

2.3.4. Scanning Electron Microscopy (SEM) of AgNPs

Scanning electron microscopy (SEM) was performed to envision the morphology of
synthesized particles at the submicron scale and elemental information at the micron scale.
It provided the exact magnitude and figure of AgNPs. Thin films of the sample were
prepared on a carbon-coated copper grid. A drop of AgNPs was placed on carbon-coated
copper grids and allowed to stand for two min, and the excess solution was removed using
a blotting paper. Then, the film on the grid was allowed to dry at room temperature and
exposed to an electron beam.

2.4. Isolation of Pathogen

Pathogen (Alternaria solani) was isolated from infected leaves of the diseased tomato
plants grown in tunnels and fields of Lahore, Kasur, Faisalabad, Bahawalpur, and Multan.
The leaves showing distinctive symptoms of early blight disease were collected in sterilized
polythene bags, labeled, and brought to the laboratory for further procedure. The infected
parts of leaves were cut into 1–2 cm pieces and placed in one of the surface disinfectant
solutions (1% sodium hypochlorite) for 30 s, washed with distilled water, and blotted.
These surface-sterilized pieces were placed on PDA media, three to five per Petri plate,
with sterilized forceps. The Petri plates were incubated at 27 ± 2 ◦C for 7 days, and fungal
isolates were sub-cultured for purification and identification [41]. Freshly prepared Petri
plates were used to purify the pathogen culture from the original culture plate using single
spore culture method. A single fungal colony that appeared on the original plate free from
contamination was selected to transfer the fungal spore with a sterile inoculation loop. The
fresh cultural plates were incubated at 27 ± 2 ◦C for future use.

2.5. Identification of Pathogen

The isolated fungal pathogen was identified using morphological characteristics, i.e.,
color, zonation, margin, and diameter of the colony. The size and shape of conidia were
observed microscopically at 10×, 40×, and 100× [42], and photographs were taken to com-
pare with the literature [43–45]. Molecular identification was performed by extracting DNA
using the 2% CTAB method [46]. The primer pair ITS1 (5-TCCGTAGGTGAACCTGCGG-3),
ITS4 (5-TCCTCCGCTTATTGATATGC-3), and Taq DNA polymerase (Tiangen Biochemical
Technology Co., Beijing, China) were used for the amplification of the Internal Transcribed
Spacer (ITS) region using the PCR technique. The thermocyclic conditions were kept as
initial denaturation at 94 ◦C for 5 min followed by 37 cycles of 94 ◦C for 1 min, 52 ◦C for 40 s,
72 ◦C for 1 min, and a final extension at 72 ◦C for 10 min [47]. Amplified DNA products
were then sequenced from Beijing Genome Institute, China. The obtained sequences with
accession numbers (OP984328, OP984329, OP984330, OP984331, OP984332, OP984333, and
OP984334) were then BLAST searched at National Center for Biotechnology Information
(NCBI) and closely related Alternaria species were retrieved from GenBank to carry out the
phylogenetic analysis.
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2.6. Pathogenicity Test of Alternaria solani

The inoculum for the pathogenicity test of each isolate was prepared from 10 days old
culture grown on PDA media. Conidia suspension was harvested by flooding the plates
with ddH2O containing 0.01% of surfactant Tween 20 and brushing the agar surface with
a paintbrush. Leaves of two months old plants of moderately susceptible tomato variety
Reograndi were sprayed with the prepared conidial suspension at 103 mL−1 rate until
run-off. The data, including disease incidence (%), number of lesions/leaf, and lesion size
(mm2), were recorded at regular intervals after 5, 10, and 15 days of inoculation to select
the highly virulent pathogen for further use and fulfilling Koch’s postulate test.

2.7. In vitro Antifungal Studies of Silver Nanoparticles

Different concentrations of AgNPs, i.e., 5, 10, 15, 20, 25, and 50 ppm, were prepared
to determine their effects on the growth of A. solani. The PDA media and 1 mL solution
of different concentrations of AgNPs were poured down into respective Petri plates and
incubated for 48 h. Petri plates were inoculated with an agar plug (placed in the center of
each Petri plate) from pure culture and incubated at 27 ± 2 ◦C for 14 days. Three replicates
were used to experiment, and no treatment was given to the control. The fungus growth
was monitored regularly, and radial growth of the colony was noted after 14 days. The
inhibition rate was calculated using the following equation.

Rate of Inhibition (%) =
R − r

R
× 100

where ‘R’ represents the radial growth of fungal mycelium in control plates, and ‘r’ is the
radial growth of fungal mycelium in AgNPs treated plate [48].

2.8. Screening of Tomato Varieties against Alternaria solani

Earthen pots of 35.56 cm were washed, cleaned, and filled with a mixture of sandy
and loamy soil in 1:3 ratio. Farmyard manure and DAP were added to the soil mixture to
enrich it with nutrients. Pots were placed in a wired house covered with a plastic sheet to
protect tomato plants from frosting. Already prepared seedlings of different varieties of
tomato plants were transplanted in prepared pots, and leaves were sprayed with a conidial
suspension of A. salani at a rate of 103 mL−1 in water until run-off [49]. Plants were irrigated
regularly and monitored for the development of symptoms and severity of infection. The
data were recorded after 15 days of inoculation.

The formula for the percentage of the Early Blight Index is given below.

PEBI (%) =
Sum of all readings

No. of leaves samped × Maxi disease scale
× 100

EB severity on each leaf of the plants was recorded on a scale of 0 to 5, where 0 (im-
mune) = no visible lesions on the leaf; 1 (highly resistant) = up to 10% leaf area affected;
2 (resistant) = 11–25%; 3 (tolerant) = 26–50%; 4 (susceptible) = 51–75%; and 5 (highly sus-
ceptibility) = more than 75% leaf area affected, or leaf abscised [50].

2.9. Greenhouse Experiment for In Vivo Efficacy of Silver Nanoparticles

A pot experiment was performed to determine the potential of AgNPs against the
Early Blight disease of the tomato plant. Healthy seedlings of two susceptible varieties
were transplanted into prepared pots and kept one plant per pot. The pots were arranged
according to a randomized complete block design (RCBD). Leaves of plants were inoculated
with A. solani and regularly monitored for the development of symptoms. Six different
concentrations of AgNPs, 5, 10, 15, 20, 25, and 50 ppm, were prepared and applied as
foliar spray twice at 15 days intervals on inoculated tomato plants. Tap water was given to
plants taken as a negative control. Disease incidence, amount of phenols, and a few stress
enzymes were recorded after 55 days of seedlings transplantation.
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2.9.1. Quantification of Total Phenolics

A test tube was taken and filled with 5 mL dH2O, 1 mL methanolic leaf extract, and
250 mL Folin–Ciocalteu reagent (50% solution) and placed in the dark. After half an hour,
1 mL of 50% sodium carbonate (Na2CO3) solution was added and incubated for another
10 min in the dark. The absorption rate was determined at ∆725 nm using a double-
beam spectrophotometer (BMS: 2800). Catechol was used to draw the standard curve. By
comparing the standard curve, total phenolics were given as catechol µg mg−1.

2.9.2. Quantification of Peroxidases, Polyphenol Oxidases, and Phenylalanine
Ammonia–Lyase

Leaves of treated plants (1 g) were crushed in a mortar containing ice-cold 100 mM
phosphate buffer. The homogenized material with pH 7 was centrifuged at 4 ◦C for 15 min
at 5000 rpm. The clear supernatant was collected and used to quantify enzymes.

Peroxidase activity was calculated using the Fu and Huang [51] method. Guaiacol
reagent serving as the substrate was mixed with 10 mL sodium phosphate (10 mM) buffer.
Finally, 3 mL of the enzyme mixture was added and incubated for 5 min at room temper-
ature. At 470 nm, the absorbance was measured, and calculated PO activity was using
∆470 nm gfw−1 min−1 [50].

Polyphenol oxidase (PPO) was determined using the Mayer et al. [52] method. A
total of 1.5 mL of sodium phosphate (10 mM) buffer (pH 6.0) was added to 150 mL of
0.1 M catechol solution (used as a substrate to measure enzyme activity). In this reaction
mixture, 200 mL enzyme mixture was added and incubated for 1 h at room temperature.
At ∆495 nm, the absorbance was measured, and PPO activity was estimated to be ∆495 nm
min−1 mg−1 protein [51].

The Burrell and Rees [53] protocol was used to assess phenylalanine ammonia–lyase
activity (PAL). L-phenylalanine (250 mL and 0.03 M) was added in 2.5 mL of sodium
borate (Na2H20B4O17) buffer and 200 mL of the reaction mixture and maintained at pH 8.8.
For 1 h, this reaction mixture was placed in a 37 ◦C water bath. After incubation, 1 M of
trichloroacetic acid (C2HCl3O2) solution was added, and the absorption rate was deter-
mined at ∆290 nm and measured in µg of trans-cinnamic acid h−1 mg−1 protein [52].

2.10. Data Analysis

The data collected during lab and field work were evaluated by one-way analysis of
variance (ANOVA). Duncan’s multiple range test (DMRT) at 0.05% level of significance
was used to separate the treatment means. PCA analysis was performed using Origin 2018
to determine the effect of AgNPs on growth attributes of tomato plant and correlation
between disease incidence and other factors of plants studied.

3. Results
3.1. Characterization of Silver Nanoparticles

The synthesis of silver nanoparticles was initially determined by color change. The
yellow-colored reaction mixture changed to dark brown, indicating AgNP synthesis. Silver
nanoparticles were then purified and subjected to UV–spectrophotometry. A clear and
sharp characteristic peak at 424 nm giving an absorption rate of 0.368, can be seen in
Figure 1a due to the surface plasmon resonance phenomenon verifying the synthesis of
AgNPs. The particle size was recorded within 22–30 nm when subjected to Zeta sizer, as
shown in Figure 1b.
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Figure 1. Physiochemical characterization of green synthesized silver nanoparticles using aqueous
extract of Neem plant. (a) UV–spectrum (b) Size distribution using zeta sizer (c) FTIR spectrum
(d) XRD spectrum and (e) SEM image.

FTIR analysis was performed to examine the attached functional groups of biomolecules
on the surface of AgNPs acting as capping/stabilizing agents. The FTIR spectrum showed
the absorption bands at 678.9 cm−1, 1639.5 cm−1, 2144.8 cm−1, 3298.2 cm−1, and 3518 cm−1

(Figure 1c). The peaks near 678.9 cm−1 assigned to CH out of plane bending vibrations
are substituted ethylene systems –CH=CH (cis). The band at 1639.5 cm−1 corresponds to
amide-I arising from carbonyl stretch –C=O) in proteins. The peaks at 2144.8 cm−1 are
assigned to the stretching vibration of –C–N of amide I, while the band at 3298.2 cm−1 is
assigned to C–H (methoxy compounds). The stretching vibration of aromatic compounds
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and 3518 cm−1 corresponds to –OH stretching vibration, indicating the presence of alcohol
and phenol in capping and stabilizing AgNPs.

The XRD analysis indicates the synthesis of the crystalline nature of silver nanopar-
ticles (Figure 1d). The size of samples was 24.98, determined using the Debye–Scherrer
formula, with values close to the determined by the DLS technique by zeta sizer. A single
sharp peak recorded at 2θ degrees of 30.06 is assigned to plane 111, suggesting a face-
centered crystalline structure. A scanning electron microscope was used to study the
surface morphology of green synthesized silver nanoparticles. Smooth and spherical AgNP
nanoparticles can be seen in Figure 1e.

3.2. Morphological and Molecular Identification of Pathogen (Alternaria solani)

The mycelial growth of all seven isolates was significantly diverse when grown on
PDA media except for Shk-1 and Fsd-1. The growth range was between 48–70 mm in 7 days
old culture, and maximum mycelial growth was shown by Bhl-1 (69.21 ± 0.090 mm) while
minimum by M-1. The data of mycelial growth for all isolates, their color, and the nature of
growth are given in Table 1. The conidia of isolates were straight, mostly oblong with a
beak attached, and length without a beak varied between 13–24 µm. The conidia width was
within the range of 7–12 µm, the minimum by M-1 (7.19 ± 0.565 µm), while the maximum
was by Bhl-1 (12.81 ± 0.574 µm). The beak was straight to flexuous, and its length was
more remarkable in Ksr-1 (23.15 ± 2.292 µm). The conidia of isolates had longitudinal (3–5
in Lhr-1, Ksr-1, Fsd-1, and M-1) and transverse septa (1–3 in Shk-1, Fsd-2, and Bhl-1). The
color of conidia also varied from light to dark brown.

Table 1. Morphological characteristics of different A. solani isolates obtained from different areas of
Punjab.

Isolates Colony Size
(mm) Colony Color Mycelial

Growth

Conidia
Length
(µm)

Conidia Width
(µm)

Beak Length
(µm)

Lhr-1 64.26 e

±0.188 Whitish grey Cottony
Circular

16.14 c

±0.866
9.29 bc

±1.641
19.56 a

±1.867

Ksr-1 65.05 d

±0.159
Whitish brown Cottony

Circular
13.85 c

±2.066
7.66 bc

±0.613
23.15 a

±2.292

Shk-1 68.59 b

±0.111
Whitish brown Cottony

Circular
21.20 ab

±1.170
10.61 ab

±0.924
17.63 ab

±0.918

Fsd-1 68.56 b

±0.436
Whitish brown Cottony

Circular
23.33 a

±2.212
9.56 bc

±0.299
22.89 a

±0.966

Fsd-2 66.01 c

±0.076 Whitish brown Cottony
Circular

18.21 bc

±1.141
8.51 bc

±1.164
11.77 bc

±0.681

Bhl-1 69.21 a

±0.090 Whitish grey Cottony
Circular

23.68 a

±0.321
12.81 a

±0.574
6.53 c

±1.443

M-1 48.21 f

±0.015
Olive green Not Cottony

Circular
16.27 c

±0.841
7.19 c

±0.565
13.18 b

±1.098

Treatment mean for each treatment is average of the three replicates; ± represents standard error; letters represent
variation by isolates using Duncan’s multiple range test.

Seven ITS sequences were obtained from seven isolates using ITS1 and ITS4 as forward
and reverse primers. The homology analysis of the sequences retrieved from GenBank
using the basic local alignment search tool (BLAST) and obtained sequences was per-
formed. All the obtained sequences showed 99.5–99.7% identity with Alternaria solani.
Stemphylium sarciniforme was chosen as the outgroup. The acquired and retrieved sequences
were aligned using MAFFT software with default settings. The final data set contained
495 positions, of which 469 were conserved, 75 variable sites, 70 parsimony uninformative,
and 31 informative. The maximum likelihood method, implemented in MEGA11 based
on the Jukes–Cantor model, inferred the phylogenetic tree. In the phylogram, the ob-
tained sequences clustered with different sequences of Alternaria solani have an identity of
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99.1–99.5% in the same clade, supporting our morphological results (Figure 2). The results
are based on ITS regions; further analyses could discriminate more clearly the isolates from
other species, such as A. tomatophila.
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3.3. Pathogenicity Variability among Alternaria solani Isolates

The pathogenicity test for all seven isolates was conducted using a highly susceptible
Rio Grande variety. The symptoms started appearing after three days of inoculation, but
the data was recorded at regular intervals after 5, 10, and 15 days. The results revealed that
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isolates Shk-1, Fsd-1, and Fsd-2 were highly virulent and severely attacked the plants. Other
isolates, i.e., Lhr-1, Ksr-1, Bhl-1, and M-1, were also virulent, but their disease incidence was
lesser than the isolates mentioned above. The percentage of disease incidence increased
with time, and the maximum was by Shk-1 (88.22% ± 1.103) and the minimum by M-1
(69.69% ± 3.059) after 15 days of inoculation. There was no significant difference in the size
and number of lesions that appeared on leaves, as given in Table 2.

Table 2. Pathogenicity study of each A. solani isolate against Rio Grande variety of tomato plant.

Isolate Name
Disease Incidence (%) No. of

Lesions/Leaf
Size of Lesion

(mm2)
Virulency

5 Days 10 Days 15 Days

Lhr-1 46.39 cd

±2.217
57.58 cd

±3.785
63.03 d

±2.389
5.00 a

±0.578
16.41 a

±2.132 Virulent

Ksr-1 52.93 b

±1.070
63.54 bc

±1.470
76.17 bc

±1.875
5.67 a

±0.334
19.67 a

±2.502 Virulent

Shk-1 61.69 a

±2.174
73.21 a

±2.566
88.22 a

±1.103
6.33 a

±0.883
20.77 a

±2.299 Highly Virulent

Fsd-1 51.00 bc

±0.958
69.54 ab

±2.058
85.58 ab

±4.616
6.00 a

±0.578
21.16 a

±1.860 Highly Virulent

Fsd-2 48.43 bcd

±1.681
68.37 ab

±3.278
85.60 ab

±3.640
6.67 a

±0.667
20.48 a

±0.168 Highly Virulent

Bhl-1 52.52 b

±0.667
69.62 ab

±2.935
75.32 c

±3.771
5.33 a

±0.667
19.24 a

±0.688 Virulent

M-1 44.48 d

±2.496
54.70 d

±0.818
69.69 cd

±3.059
5.67 a

±0.334
18.86 a

±1.199 Virulent

Treatment mean for each treatment is average of the three replicates; ± represents standard error; letters represent
variation by isolates using Duncan’s multiple range test.

3.4. In Vitro Antifungal Analysis of Silver Nanoparticles against Alternaria solani

Silver nanoparticles have shown antifungal activity and proved to be a potential
fungicide against each isolate, inhibiting 70–80% growth, as shown in Figures 3 and 4. The
inhibition rate increased gradually as the concentration of silver nanoparticles increased
from 5 to 50 ppm. The silver nanoparticles showed the maximum rate of inhibition against
Shk-1, i.e., 81.10% compared to control, followed by Fsd-2 (79.39%), Bhl-1 (78.51%), Ksr-1
(76.97%), Lhr-1 (76.33%), Fsd-1 (75.34%), and M-1 (65.44%).
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3.5. Screening of Susceptible Tomato Varieties against Alternaria solani

Six local and six hybrid varieties obtained from Ayyub Agriculture Research Insti-
tute, Faisalabad, Roshan seeds, Lahore, and Sheikhupura were tested against a highly
virulent isolate, Shk-1 (Figure 5). The plants showed symptoms during the early stage
of infection, but the data were recorded after 15 days of inoculation. Nagina and Red
diamond varieties were tolerant against the Shk-1 isolate, showing 38.67% and 39.33%
disease index, respectively. The other six varieties, Roma, Sultan, Sahel, Amber, Red stone,
and Clara, were ranked as susceptible with 48%, 56%, 54.67%, 50.67%, 45%, and 40.67%
disease index, respectively. Naqeeb was the highly susceptible variety, with an 80% disease
index, followed by Nadar (74.67%), Rio Grande (73.33%), and Cristal (66.67%). The plants
of the Naqeeb variety were highly injured, with 56.62% tissue damage. Infection also highly
occurred among the Rio Grande, Sultan, and Cristal variety plants. There was a significant
difference between lesions size appearing on different tomato varieties given in Table 3.
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Figure 5. Disease suppression efficacy of green synthesized silver nanoparticles against Early Blight
of tomato plants. Disease incidence (%) was recorded after 15 days of inoculation.

Table 3. Response of different tomato varieties against A. solani.

Varieties
Parameters No. of Lesions

per Leaf
Size of Lesion

(mm2)
Infected Area

of Leaf (%)
Disease

Incidence (%)
Disease

Index (%)
Disease
Reaction

Local
Varieties

Nadar 5.07 b

±0.372
23.20 def

±1.656
38.24 bc

±0.614
47.12 c

±2.935
74.67 bc

±1.766
Highly

Susceptible

Naqeeb 6.00 a

±0.116
30.14 bc

±1.063
54.98 a

±0.694
56.62 a

±3.636
80.00 a

±2.312
Highly

Susceptible

Nagina 3.80 cd

±0.347
25.40 cde

±1.731
29.16 efg

±1.223
28.06 fg

±0.502
38.67 g

±3.532 Tolerant

Roma 3.27 d

±0.176
41.61 efg

±0.301
35.28 bcd

±2.849
25.10 fgh

±3.443
48.00 ef

±2.312
Susceptible

Rio
Grande

6.00 a

±0.2
41.53 a

±3.729
33.77 cde

±0.799
52.31 ab

±3.339
73.33 b

±1.335
Highly

Susceptible

Sultan 4.20 c

±0.116
34.13 b

±2.835
26.58 fg

±1.018
40.44 cd

±2.233
56.00 d

±2.312
Susceptible

Hybrid
Varieties

Sahel 3.67 cd

±0.133
26.87 cd

±3.325
36.81 bcd

±0.727
31.58 ef

±1.878
54.67 de

±2.669
Susceptible

Cristal 4.07 c

±0.176
29.36 bcd

±1.474
39.96 b

±4.139
45.71 bc

±0.371
66.67 c

±1.337
Highly

Susceptible

Amber 4.13 c

±0.291
17.82 fg

±0.367
31.59 def

±1.763
30.01 fg

±1.525
50.67 def

±1.335
Susceptible

Red
Stone

4.33 c

±0.241
16.76 g

±1.135
24.27 g

±2.505
23.74 gh

±2.305
45.33 fg

±2.669
Susceptible

Red
Diamond

3.37 d

±0.145
17.03 fg

±1.422
17.74 h

±0.894
18.98 h

±0.809
39.33 g

±2.909 Tolerant

Clara 3.30 d

±0.067
18.27 fg

±0.754
31.54 def

±0.683
25.52 fgh

±0.656
40.67 g

±1.335 Susceptible

Treatment mean for each treatment is average of the three replicates; ± represents standard error; letters represent
variation by verities using Duncan’s multiple range test.

3.6. In Vivo Efficacy of Silver Nanoparticles against A. solani

Different concentrations of silver nanoparticles, 5, 10, 15, 20, 25, and 50 ppm, demon-
strated an effective reduction in disease incidence compared to the control. The disease
was reduced from 50% to 5% in both varieties by increasing the concentration of silver
nanoparticles from 5 ppm to 50 ppm. The plants exposed to the pathogen showed more
than 80% disease incidence compared to plants treated with silver nanoparticles. The
amount of phenolics compounds, PAL, PO, and PPO, was also quantified. The amount of
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phenolic compound was significantly increased in silver nanoparticles treated plants at
lower concentrations than in control. The production decreased at a higher concentration
of silver nanoparticles but was more than the control (Figure 6a). The PO activity increased
in treated tomato plants in the same way that phenolic activity increased. Lower concen-
trations of silver nanoparticles resulted in the highest PO activity in Nadar and Naqeeb
(Figure 6b). The most increased activity was observed at 5 and 10 ppm compared to the
control. Other concentrations ranging from 15 to 20 ppm exhibited 25% and 10% more
activity than control in both varieties. However, activity was comparatively reduced at 25
and 50 ppm.
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Figure 6. Effect of green synthesized silver nanoparticles on disease-related compounds of tomato
plants. Quantification was performed after 55 days of seedling transplantation. (a) Phenolic content,
(b) Peroxidase (PO) activity, (c) Polyphenol oxidase activity, and (d) Phenylalanine ammonia–lyase
(PAL) activity. Letters represent variation by treatments using Duncan’s multiple range test.

In the case of PPO activity, it was found in excess in tomato plants with lower concen-
trations of AgNPs (Figure 6c). Various concentration ranges from 5 to 15 ppm exhibited
20–60% activity in Nadar and 10–60% activity in Naqeeb, with maximum activity observed
at 10 ppm (0.449±0.013 ∆495 nm/min/mg protein) in Nadar and 5 ppm (0.437±0.014 ∆495
nm/min/mg protein) in Naqeeb. PPO activity was lower at higher concentrations, i.e., 20,
25, and 50 ppm, than the control. These findings suggested that AgNPs could increase PPO
activity, allowing plants to fight pathogenic stress and grow healthy. In plants treated with
AgNPs, the same pattern was observed for PAL activity (Figure 6d). Plants treated with
lower concentrations of silver nanoparticles showed increased PAL activity compared to
the control. In comparison, plants treated with higher concentrations of silver nanoparticles
showed the least PAL activity.

3.7. Principal Component Analysis (PCA)

Data variability of 95.71% (PC1 = 70.72%, PC2 = 24.99%) was revealed by PCA, as
shown in Figure 7. Disease indices and growth rate of the pathogen on leaves were
negatively correlated with phenolic compounds, PO, PPO, and PAL. The foliar application
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of 5 and 10 ppm of silver nanoparticles was most effective in crop protection, enhancing
the defective mechanism and reducing the pathogen growth.
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Figure 7. Principal component analysis (PCA) showing the effect of AgNPs on various attributes of
two tomato varieties (Nadar as 1 and Naqeeb 2) infected with A. solani, DI= disease incidence, RI = rate
of growth of pathogen, Ph = Phenolics compounds, PO = peroxidase activity, PPO = polyphenol
peroxidase activity, PAL = Phenylalanine ammonia–lyase activity.

4. Discussion

Green nanoparticle synthesis is a more advanced, widespread, and remarkable area
of nanotechnology [54]. Using plants to synthesize nanoparticles is easy, single-step, non-
pathogenic, cost-effective, non-toxic, and sustainable as it uses renewable recourses and is
environment friendly [10,55]. Various plants like neem [56,57], moringa [58], java plum [59],
fig, rosemary [60], and many others have been reported to be used in the synthesis of sil-
ver nanoparticles. Silver nanoparticles possess unique optical properties due to surface
plasmon resonance (SPR) generated from free electron movement. Therefore, interact with
a specific wavelength of visible light reported between 400–500 nm and develops brown
color in the solution depicting the synthesis of silver nanoparticles [61–63]. In the current
study, AgNPs of 22–30 nm size and spherical shape were synthesized using leaves extract
of the Neem plant and evaluated for their antifungal activity against Alternaria solani. The
absorption peak of the AgNPs synthesized was also shown at 424 nm. FTIR analysis makes
us understand the role of biomolecules in plant leaf extract for reducing silver to silver
nanoparticles and acting as capping agents [64]. The FTIR analysis reveals the involvement
of alkanes, alkynes, amines, carboxylic groups [65], methylene [66], and various other
biomolecules in reducing and stabilizing green synthesized silver nanoparticles [67]. XRD
pattern and SEM analysis of AgNPs synthesized by neem and other plants also suggest
the synthesis of crystalline structure spherical silver nanoparticles [68–70]. Mohamed and
Elshahawy [71] synthesized silver nanoparticles of 32–47 size using peel extract of orange
(Citrus sinensis L.). UV–Vis spectrum showed an absorption peak at 435 nm corresponding
to silver nanoparticles [66]. Chakravarty et al. [59] synthesized spherical-shaped silver
nanoparticles using fruit extract of Syzygium cumini L., which showed a characteristic peak
at 443 nm. The presence of OH and C=O confirmed the presence of secondary plant metabo-
lites by FTIR spectroscopy. Green synthesized nanoparticles have tremendous biological
applications in medicine and agriculture as antibacterial, antifungal, and anti-cancerous
agents [72,73]. The current findings highlight the importance of green synthesized silver
nanoparticles in disease reduction. Early Blight disease of tomatoes is widespread world-
wide and devastatingly causes massive crop yield loss yearly. In the present study, we
successfully isolated and identified A. solani, responsible for Early Blight disease in tomato
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plants. The identification of the pathogen is important for developing effective disease
management strategies. The colony color, pattern, and muriform conidia with beak con-
firmed the presence of A. solani, and the variation among different isolates was seen clearly.
The molecular characterization using PCR amplification and sequencing of the ITS region
of the genome confirmed the identification of the isolated fungus as A. solani, with 99%
sequence similarity to the A. solani reference sequences. The results of this study indicated
that A. solani was highly pathogenic to tomato plants, causing significant damage to both
the leaves and the fruits. The symptoms of Early Blight disease caused by A. solani included
the formation of brown, circular lesions with concentric rings on the plant’s leaves. The
virulence factors produced by A. solani allow the fungus to invade and colonize the plant
tissues, leading to disease symptoms. The cultural, morphological, and genetic variability
of A. solani, their virulency among different isolates, and resistance in some tomato varieties
have been reported in recent decades. Riaz et al. [74] revealed the morphological and
genetic variation among different isolates of A. solani in various areas of Punjab, Pakistan.
All isolates showed radial growth, colony character, and conidial morphology variation. A
field survey revealed the variation ranging from 9–74% incidence with 6.11–24% severity
among different areas of Punjab, Pakistan [74]. Disease severity and incidence are so
high in various regions because of continuous farming without rotation of crops, lack of
proper disease management, and uninterrupted and rigorous farming. Lack of awareness
among farmers has introduced genetic variation and resistant pathogens because of the
unlimited use of fungicides due to lack of awareness among farmers [75–77]. Isolation and
identifying actual disease pathogens could be fundamental tools for understanding disease
progression and exploring the curative agents. As genus A. solani poses a significant threat
to vegetables nowadays, thus it is of utmost importance to identify its different species to
explore potential control measures [78]. Riaz et al. [74] also collected different isolates of A.
solani, which showed smooth, circular, and greenish-black colony growth with variations
in size. The conidia were single, usually flexuous or straight, with beak attached varied in
size within the range of 68 to 88 µm [74].

Disease severity also depends upon the level of pathogenicity and its variation among
different isolates of A. solani [79,80], as shown in the present study and a few previous re-
ports [49,81,82]. It has become essential to control these resistant pathogens effectively using
various methods [83]. Scientists have reported using green synthesized silver nanoparticles
as a promising tool against different phytopathogenic fungi as a more effective substitute
for synthetic fungicides commonly used by farmers [84–86]. Silver nanoparticles prepared
using orange peel and pomegranate extract inhibited the mycelial growth of A. solani
by almost 60–80% when treated with different concentrations [87]. Tyagi et al. [32] also
reported in 2020 that biosynthesized nanoparticles can inhibit the absolute growth (100%)
of A. solani at 100 ppm concentration. However, the inhibition rate varies with the change
in the concentration of silver nanoparticles. Silver nanoparticles probably disrupt DNA
replication and inactivate the functions of cellular proteins and enzymes, preventing the
normal functioning of the pathogen [31,88]. Silver nanoparticles inhibit pathogen growth,
prevent plants from establishing infection, and combat collateral damage [89]. The main
components of several anti-pathogenic compounds secreted by plants, which serve as the
first line of defense, are phenolic compounds. Silver nanoparticles stimulate the production
of phenols in plants, which aids in the reduction of disease severity [90]. Foliar application
of biosynthesized silver nanoparticles improved tomato plants’ first line of defense, as
evidenced by increased phenolics and antioxidative enzyme production (PO, PPO, and
PAL). Plants with increased resistance are better prepared to reduce ROS production after
a pathogen attack, resulting in lower stress enzyme activity in plants treated with silver
nanoparticles [91].

5. Conclusions

Early Blight disease of the tomato plant is a serious challenge for farmers, which
affects crop yield due to pathogen variability. The identification and occurrence of A. solani
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in tomato crops were also investigated in the current study. The results showed that the
pathogen is prevalent in tomato crops, highlighting the importance of developing effective
disease management strategies. Green synthesized nanomaterials are a safe and effective
alternative to chemical fungicides in controlling Early Blight disease and are regarded as
the best option in this scenario. Green synthesis is a simple, environment-friendly, cost-
effective, and easily scaled procedure for the large-scale synthesis of nanoparticles. The
application of silver nanoparticles reduced the pathogenic growth of A. solani depending
on the concentration. The different treatments of silver nanoparticles on tomato leaves
increased the resistance in plants by producing phenolics and other antioxidants. Silver
nanoparticles can be used for managing diseases, rapid disease detection, and enhancing the
ability of plants to absorb nutrients. The findings of this study have significant implications
for the development of safe and sustainable plant disease management strategies that can
minimize the use of chemical fungicides and promote eco-friendly agricultural practices.
Using green synthesized silver nanoparticles as an antifungal agent can reduce the risk of
environmental pollution and toxicity associated with chemical fungicides. Overall, this
study adds to the research on the behavior of nanoparticles in the ecosystem by providing
important information about the effects of silver nanoparticles on plant oxidative responses.
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