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Abstract: The potential use of carbon dioxide (CO2) and wastewater released from a mushroom farm
for the cultivation of Chlorella vulgaris microalga was investigated in this study. For this purpose, a
microcontroller-based aided CO2 capture and mixing prototype was constructed for the cultivation of
C. vulgaris under varying concentrations of mushroom farm wastewater (0 as control, 50 and 100%).
The results showed that the constructed prototype was helpful to maintain desirable CO2 levels
(6000 ppm) in the mushroom cultivation chamber with constant CO2 supply to algal culture, i.e., 0.6%
at an airflow rate of 50 mL/min. After 16 days of algal cultivation, it was observed that the maximum
significant (p < 0.05) algal biomass production of 2.550± 0.073 mg/L was recorded in 50% wastewater
concentration followed by 100% and control. Also, the maximum removal of selected mushroom farm
wastewater pollutants, such as total dissolved solids (84.00 ± 1.37%), biochemical oxygen demand
(90.17 ± 2.42%), chemical oxygen demand (91.53 ± 0.97%), total nitrogen (86.27 ± 1.60%) and total
phosphorus (94.19 ± 2.33%), was achieved in 50% concentration of wastewater treatment with maxi-
mum first-order rate constant (k) values. In addition, the algal growth kinetics results showed that
the logistic model fit best compared to the modified Gompertz model, based on selected validation
tools, such as experimental vs. predicted values, coefficient of determination (R2 > 0.9938), model
efficiency (ME > 0.98) and root mean square error (RMSE < 0.03). The post-harvest characterization
of algal biomass revealed that the proximate, biochemical, ultimate elements (carbon, oxygen and
nitrogen) and structural properties were significantly higher in 50% treatment than those in 100%
and control treatments. Therefore, the findings of this study are novel and provide significant insight
into the synergistic use of CO2 and wastewater produced by mushroom farms for algal cultivation
and biological wastewater treatment.

Keywords: climate change; CO2 capture; greenhouse; mathematical modeling; phycoremediation;
zero waste mushroom farm
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1. Introduction

Carbon dioxide (CO2) has become the most investigated greenhouse gas due to its
percentage (about 76% of greenhouse gases) and association with climate change [1]. The
greenhouse effect, a naturally occurring phenomenon, occurs when greenhouse gases are
released into the atmosphere, trap heat and consequently raise the planet’s temperature [2].
Due to several negative consequences of increasing atmospheric CO2 levels, reducing its
emissions is an essential part to mitigating the climate change impacts [3]. According to
the Environmental Protection Agency (EPA, 2022), the earth has experienced a severe rise
in atmospheric CO2 in the last 150 years from five major sectors: transportation; electric
power generation; industrial operations; commercial and residential; and agriculture.
Agriculture-related CO2 emissions are a serious issue that accounts for approximately 11%
of the world’s greenhouse gas emissions [4]. The major sources of CO2 emissions in the
agriculture sector include crop production, biomass burning, decaying, livestock raising,
land-use changes, use of agrochemicals, irrigation, soil management and transport [5].
However, governments and organizations have launched several programs to solve this
global issue, including supporting sustainable agriculture methods, enhancing energy
efficiency and investing in renewable energy sources [6].

Mushroom farming is considered one of the important agriculture sectors contributing
to CO2 emissions. Though mushroom production helps in the recycling and management
of agro-wastes for food and is regarded as the least energy- and carbon-intensive sector;
still, it has a significant carbon footprint due to the release of CO2 during fungal respiration,
waste decomposition, product processing and transportation [7]. According to an estimate,
1 kg of mushroom production results in about 0.31 kg of CO2 equivalent emissions [8].
The high CO2 levels in the mushroom farm have several negative consequences such as
poor fungal respiration, death of the mycelial network, slow fruiting, small-cap and short
shelf life [9]. Besides this, wastewater released from mushroom farms contains significant
amounts of organic and inorganic pollutants, including high biochemical and chemical
oxygen demands (BOD and COD), total dissolved solids (TDS), carbon (C), nitrogen (N)
and phosphorus (P) [10]. Mushroom farm wastewater can cause significant environmental
damage due to the presence of various pollutants if disposed of inadequately [11]. There-
fore, both CO2 and wastewater released from mushroom farms need to be sufficiently
managed to prevent their negative impacts.

In recent times, algal cultivation has appeared as one of the most viable options for CO2
utilization and wastewater management [12–14]. Regulated CO2 supply is an important factor
that controls algal photosynthesis. CO2 is vitally utilized by algal cells for the production of
glucose molecules, which they use for energy, growth and reproduction [15]. CO2 is also used
by algae for cell wall development as well as for the production of proteins, lipids and other
important compounds. Moreover, CO2 can be supplied to the growth medium in several
ways, including bubbling it into the water via a CO2 injection device or adding carbonates
such as sodium bicarbonate. The injection of CO2 accelerates photosynthesis, leading to
enhanced algal growth [12]. Recent studies have shown that CO2 supply rates of 0.5–5% give
optimum growth of algal species [12,15,16]. Moreover, several reports [17] have shown that
algal species can be successively cultivated in various wastewaters, such as Chlorella vulgaris
in ammonia wastewater [18], Scenedesmus sp. in municipal wastewater [19], C. vulgaris in
dairy wastewater [20], Chlamydomonas sp. in swine wastewater [21] and Spirulina sp. in
hospital wastewater [22].

To date, no study has explored the synergistic use of waste CO2 and wastewater
produced from mushroom production farms. Therefore, this lab-scale study aimed to assess
the phycoremediation efficacy of C. vulgaris for the treatment of mushroom farm wastewater
while using the CO2 produced in a mushroom cultivation facility. In this study, the pollutant
removal and growth of C. vulgaris were examined using various kinetic models, while
post-harvested biomass was also characterized for proximate, biochemical, ultimate and
structural properties.
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2. Materials and Methods
2.1. Materials

For the current study, mushroom farm wastewater was collected from the disposal point
of Kashyap Mushroom Farm located in Roorkee, India (29◦47′16.7′ ′ N and 77◦47′20.1′ ′ E). The
wastewater was discharged from the white button (Agaricus bisporus) mushroom cultivation
facility. The wastewater sample was carefully transported to the experimental site in 20 L
polyvinylchloride plastic cans and preserved at 4 ◦C until final use in phycoremediation
experiments. Also, C. vulgaris microalga was obtained from the Agro-ecology and Pollution
Research Laboratory of the Department of Zoology and Environmental Science, Gurukula
Kangri (Deemed to be University), Haridwar, India. Chlorella vulgaris was propagated in a
BG-11 medium to obtain stock inoculum having a biomass density of 0.125 g/L as outlined
by Kumari et al. [23].

2.2. Experimental Design and Operation

Microalgal cultivation experiments were conducted in the Agro-ecology and Pollution
Research Laboratory of the Department of Zoology and Environmental Science, Gurukula
Kangri (Deemed to be University), Haridwar, India. For this purpose, a previously designed
chamber (1.2 × 0.6 × 0.6 m; length × width × height) was used for A. bisporus mushroom
cultivation on a wheat straw-based substrate [24]. Breathable polypropylene bags of 10 kg
capacity were used for A. bisporus cultivation. A total of 8 kg substrate was filled, and 3%
spawn was aseptically applied in four layers. The climatic conditions of the spawn running
period were adjusted as follows: temperature of 25 ◦C, humidity of 80% and light intensity
of 700 lx. The cultivation chamber was facilitated with an air quality gas sensor module
(MQ135) connected to an Arduino UNO microcontroller unit (R3, ATmega328P, Quartz
Components, Jaipur, India), which was used to monitor the CO2 levels inside the chamber.
The levels of CO2 (maximum 6000 ppm) and fresh air exchange (FAE) in the chamber were
controlled via a direct current (DC) fan attached to the relay module. Also, a high-efficiency
particulate air (HEPA) filter (0.003 µm; FY0194/10, Philips, Jiaxing, China) was fit inside
the chamber to capture produced CO2 and transport it to a 500 mL conical flask containing
desiccant beads followed by an algal culture flask through a peristaltic pump as shown
in Figure 1. The desiccant beads were situated to capture any moisture present in the air
coming from the chamber. The time-course data of CO2 production was saved on the
ThingSpeak server (MathWorks Inc., Natick, MA, USA; https://thingspeak.com; accessed
on 20 December 2021) by using the ESP8266 Wi-Fi module.
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For phycoremediation experiments, a total of three treatments were used to culti-
vate C. vulgaris, including control (borewell water supply), 50 and 100% mushroom farm
wastewater concentrations, separately. The airflow rate in the algal photo-bioreactor (1 L
culture flask) was adjusted to 50 mL/min (0.6% CO2), and experiments lasted for 16 days.
A total of 2 mL stock inoculum was added to the culture flask, and alga was propagated
under artificial light (5000 lx)/dark period of 12/12 h and a temperature of 28 ◦C, with
slow and continuous mixing using a magnetic stirrer with a hot plate (Bio Gen, New Delhi,
India).

2.3. Analytical Methods

The mushroom farm wastewater used in this study was characterized (before and
after phycoremediation) for the selected pollutant parameters, such as total dissolved solids
(TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen
(TN) and total phosphorus (TP), following standard methodologies [25]. In this study,
TDS was measured using a calibrated microprocessor-based digital meter (1611, ESICO,
Parwanoo, India). BOD was estimated based on dissolved oxygen changes after five days as
per the Walkley and Black method [26]. COD was determined by following the open-reflux
digestion and spectrophotometric (650 nm) method (60 Cary, Agilent Technologies, Santa
Clara, CA, USA). TN was determined using Kjeldahl’s acid digestion–distillation, while TP
was determined by using spectrophotometric methods, respectively [27].

On the other hand, the harvested algal biomass was analyzed for selected proximate
and biochemical attributes, such as moisture (%), dry weight (g), ash (%), protein (%),
carbohydrate (%) and lipid contents (%), following standard methods [23]. Moreover, the
dried algal biomass was further utilized for ultimate elements (C, O and N) analysis using
Scanning Electron Microscope (SEM, Carl Zeiss, Oberkochen, Germany) equipped with
the Energy Dispersive X-ray Spectroscopy (EDX) detector (Octane Eliter Plus, Mahwah,
NJ, USA). Additionally, Fourier-Transform Infrared Spectroscopy (FTIR-8400S, Shimadzu,
Columbia, MD, USA), with a spectral wavenumber range between 500 and 4000 1/cm, was
used to analyze the functional groups in algal biomass.

2.4. Data Analysis

In order to understand the effectiveness of bioremediation experiments, removal
efficiency is a widely used tool that depicts the pollutants eliminated from the wastewater
in a stipulated period [28]. In this study, the following Equation (1) was used to calculate
the pollutant removal efficiency (%) of C. vulgaris from mushroom farm wastewater:

Removal Efficiency (%) = [(Ct0 − Ct)/Ct0] × 100 (1)

where Ct0 and Ct represent the initial and final concentrations (mg/L) of the pollutant.
Moreover, the rate of pollutant removal from mushroom farm wastewater over time was
described by a first-order kinetic model [29]. This model often assumes that the rate of
removal has a rate constant that is proportional to the concentration of the pollutant present.
The form of the first-order kinetic model for pollutant removal by C. vulgaris is given by
the following Equation (2):

−d[C]/dt = k[C] (2)

where C is the concentration of pollutants in wastewater, t is experimental time and k is the
rate constant. A plot for log[C] vs. t was drawn to obtain the linear trendline (y = ax + b),
where a refers to the rate constant (k). On the other hand, the CO2 fixation rate of C. vulgaris
grown in selected wastewater concentrations was calculated using the following model
(Equations (3) and (4)) as previously adopted by Park et al. [30]:

B (g/L/d) = Y/t (3)
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CO2 Fixation Rate (g/L/d) = B ×CC × MCO2

Mc
(4)

where B indicates biomass productivity (g/L/d), Y is algae yield (g/L) and CC represents
carbon content (g/g) of cultivated algal biomass, while MCO2 and MC are molecular weights
of CO2 (44.01 g/mol) and C (12.01 g/mol), respectively.

In addition, the growth kinetics of C. vulgaris in various treatments was estimated using
two models, i.e., logistic and modified Gompertz. The logistic model and the modified
Gompertz model are both sigmoid function models. These models predict the algal growth
rates over time and are based on the concept of nutrient limitation and the carrying capacity
of the photo-bioreactor [31]. The forms of the models are given in Equations (5) and (6):

y =
P

1 + e−k (x−xc)
(5)

y = Pe−e(−k(x−xc)) (6)

where y is the predicted algal biomass (g), P is the maximum biomass production potential,
x is the specific growth rate and xc is the lag phase in days. In order to study the effectiveness
of logistic and modified Gompertz models, the prediction results were subjected to model
validation tools including model efficiency (ME) and root mean square error (RMSE) [32],
as given in Equations (7) and (8):

ME = 1−

∑
(

ypredicted − yexperimental

)2

∑
(

ypredicted − ymean

)2

 (7)

RMSE =

√√√√∑n
i=1

(
yexperimental − ypredicted

)2

n
(8)

All experiments were conducted in triplicate, and values were presented as mean
followed by standard deviation. The data were analyzed using a one-way analysis of variance
(ANOVA) test to derive significant differences in control and test treatments (p < 0.05). The
data was analyzed and visualized in Microsoft Office 2019 (Microsoft Corp., Redmond,
WA, USA) and OriginPro 2022b (Student Edition, OriginLab, Northampton, MA, USA)
software packages.

3. Results and Discussion
3.1. CO2 Generation, Fixation and Biomass Productivity of C. vulgaris

In this study, the mushroom cultivation chamber was continuously monitored for
16 days until the termination of algal cultivation experiments. It was observed from the
collected data that the spawn running phase of A. bisporus accelerated the CO2 levels.
During the first four days, the CO2 levels exponentially increased from 120 to 6000 ppm
(Figure 2). After this period, the CO2 production was steady and fluctuated between 4800 to
6000 ppm. Overall, the time-course trend of CO2 production in the mushroom cultivation
chamber followed a log-linear pattern [y = 1276.7ln(x) − 1639.9; R2 = 0.7516]. The DC fan
and HEPA filter suction helped to maintain the CO2 levels as per the prototype installed in
the microcontroller unit. Being aerobic fungi, mushrooms actively utilize fresh oxygen (O2)
and emit CO2 maximally during the spawn running phase [33]. The produced CO2 begins
to accumulate in the mushroom growing rooms and needs to be removed through fresh
air exchange (FAE). A moderate CO2 concentration (4000–6000 ppm) is preferred during
the spawn run because it promotes a rapid and healthy spawn run. Chamber air with
extremely high CO2 levels may damage the mycelia by suddenly lowering the substrate
pH and death of mycelia. Also, it could develop mushrooms with thick and short stipe
pileus. The phycoremediation experiments were conducted for 16 days because C. vulgaris
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gives best growth up to this period. After that, the decline phase of C. vulgaris starts, which
makes the experiments non-feasible. Also, the spawn running of A. bisporus mushroom
lasts up to 15–20 days, and after that, CO2 levels need to be adjusted to not more than
1000 ppm. Thus, during the spawn running phase, CO2 levels should be moderate, while
during the fruiting stage, a decrease in CO2 and a rise in O2 levels are needed [9]. To
replicate this experiment in an actual mushroom farm, some additional modifications in
the capacity of several components and prototype design may be required.
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Figure 2. Time-course CO2 levels of mushroom cultivation room as regulated by a microcontroller
unit.

On the other hand, the results showed that CO2 produced in the cultivation chamber
was helpful for C. vulgaris cultivation. Herein, the different experimental treatments such
as control, 50 and 100% showed a cumulative algal biomass production of 0.972 ± 0.025,
2.550± 0.073 and 2.340± 0.104 g/L, respectively. The biomass productivity (B) of C. vulgaris
ranged as 0.06, 0.16 and 0.15 g/L/d for the control, 50 and 100%, while CO2 fixation
rates (CFR) were observed as 11.30, 36.03 and 29.63 g/L/d, respectively (Figure 3). This
suggests that there was a significant (p < 0.05) increase in the B and CFR of C. vulgaris
at 50 and 100% concentration as compared to control treatments. Algal species actively
consume CO2 for their cellular photosynthesis and other metabolic processes. In algae,
CO2 acts as a C source for the production of carbohydrates and proteins as well as helps
in regulating the pH of the algal medium [30]. Therefore, the aided cultivation of algae
requires a continuous supply of CO2 in order to facilitate optimum growth. In the current
study, the CO2 captured from the cultivation chamber fulfilled the CO2 requirements of
C. vulgaris. Previously, limited researchers have utilized the waste CO2 from mushroom
cultivation. In a recent study by Jung and Son [34], a lab-scale experiment was conducted for
synergistic utilization of CO2 from the king oyster mushroom (Pleurotus eryngii) chamber for
romaine lettuce (Lactuca sativa var. longifolia) cultivation. They found that both mushrooms
and plants can be efficiently cultivated together while creating a gaseous equally using
mathematical modeling.
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Figure 3. CO2 fixation rate (CFR), carbon content (%) and biomass productivity (B: g/L/d) of
C. vulgaris cultivated in different concentrations of mushroom farm wastewater (WW: wastewater).

3.2. Results for Growth Kinetics of C. vulgaris

Table 1 depicts the growth kinetic parameters of C. vulgaris cultivated in different
concentrations of mushroom farm wastewater. The results showed that both sigmoidal
models (logistic and modified Gompertz) were efficient in predicting the growth patterns
of C. vulgaris. In particular, the logistic model gave better results in terms of experimental
vs. predicted biomass production (y), specific biomass production (P), lag phase (xc) and
specific growth rate (x) as compared to the modified Gompertz model. Figure 4 shows
that the values predicted by the logistic model were quite near to the experimental values
as compared to those of the modified Gompertz mode. Herein, both models depicted
that C. vulgaris had a shorter lag phase (6.48 and 5.36 days) in absolute mushroom farm
wastewater concentration (100%) as compared to other treatments, which might be due to
the high availability of nutrients and their rapid uptake during the initial phase. However,
both models showed that the lag phase in the control treatment was quite similar (8.96 and
8.81 days). Also, the model validation criteria, such as R2, ME and RMSE, were optimum in
the case of the logistic model (>0.9938, >0.97 and <0.03) as compared to those in modified
Gompertz (>0.9920, >0.91 and <0.05). The ME value near 1 showed that models were
efficient while RMSE described that model fitted in the experimental and predicted data
with minimum error. The results for the growth kinetic parameters of C. vulgaris using
logistic and modified Gompertz models can therefore be utilized to better understand the
growth of this species in various mushroom farm wastewater concentrations. Overall, the
logistic model is better suited to forecasting the growth of C. vulgaris since the best fitting
results were found for the logistic model rather than the modified Gompertz model.

Recent studies showed the successful application of logistic and modified Gompertz
models in the growth optimization of C. vulgaris. A study by Lam et al. [35] used domestic
wastewater as a cultivation medium for C. vulgaris. They reported that both logistic and mod-
ified Gompertz models were useful for growth prediction and had R2 > 0.98, RMSD < 0.02
and variance <0.01, respectively. Similarly, Ajala and Alexander [36] also investigated the
growth kinetics of three algal species (C. vulgaris, Scenedesmus obliquus and Oocystis minuta)
grown in secondarily treated-domestic effluent. They found that the modified Gompertz
model gave the best-fitting results (R2 > 0.89) for the prediction of the growth of all three
microalgae as compared to the logistic model (R2 > 0.74).
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Table 1. Growth kinetic parameters of C. vulgaris cultivated in different concentrations of mushroom
farm wastewater.

Model Variable
Experimental Treatments

Control 50% 100%

Experimental Y 0.972 ± 0.025 2.550 ± 0.073 * 2.340 ± 0.104 *

Logistic

y 1.002 2.580 2.247
P 1.126 ± 0.045 2.646 ± 0.021 2.297 ± 0.034

R2 0.9938 0.9992 0.9959
xc 8.96 ± 0.36 7.67 ± 0.06 6.48 ± 0.12
x 0.29 ± 0.01 0.43 ± 0.01 0.48 ± 0.02

ME 0.97 0.97 0.99
RMSE 0.03 0.03 0.06

Modified
Gompertz

y 1.026 2.645 2.349
P 1.499 ± 0.189 2.906 ± 0.081 2.445 ± 0.051

R2 0.9876 0.9964 0.9920
xc 8.81 ± 1.08 6.56 ± 0.16 5.36 ± 0.12
x 0.13 ± 0.01 0.25 ± 0.01 0.29 ± 0.01

ME 0.95 0.91 0.99
RMSE 0.05 0.09 0.07

Values are mean ± SD of three replicates; *: significantly different from control treatment values at p < 0.05.
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Figure 4. Experimental vs. model predicted (L: logistic; MG: modified Gompertz; WW: wastewater)
growth curves of C. vulgaris cultivated in different concentrations of mushroom farm wastewater.

3.3. Proximate and Lipid Profile of Cultivated C. vulgaris

The proximate, biochemical and ultimate compositions of C. vulgaris grown on control
and mushroom farm wastewater are reported in Table 2. However, no significant difference
(p > 0.05) was observed between all treatments in terms of moisture and ash contents, i.e.,
72.08–73.16% and 2.25–2.31%, respectively. Amin et al. [37] reported that Chlorella spp. con-
tains up to 80.0% moisture content, which is relatively comparable to our findings. Chlorella
vulgaris grown on agro-industrial by-products enclosed 8.4% ash [38], which is significantly
higher than observed in the present study (2.25 ± 0.06–2.31 ± 0.05%). Jabeen et al. [39] also
mentioned a 5.3% ash content in C. vulgaris. Moreover, the current study reported dry weight
of 0.27 ± 0.03–0.68 ± 0.02 g; protein contents of 43.98 ± 0.32–48.71 ± 0.62%; carbohydrate
contents of 17.10± 0.09–18.05± 0.12%; lipid contents of 6.85± 0.14–8.61± 0.28%; C contents
of 51.40 ± 0.91–61.84 ± 1.40%; O contents of 21.87 ± 0.15–28.82 ± 0.70%; and N contents
of 6.40 ± 0.07–7.06 ± 0.05%, which were significantly higher (p < 0.05) in wastewater treat-
ments than in the control (50% > 100% > control). A dry weight content of 0.42–0.44% was
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reported for C. vulgaris grown on hospital wastewater [22]. This value is lower than the range
observed with mushroom farm wastewater in the present study (0.64 ± 0.03–0.68 ± 0.02%).
The protein content of C. sorokiniana grown on treated wastewater reached 38.8% [40], which
was lower than denoted in the present study. A comparable protein content (35.2%) to the
aforementioned study was depicted by Yang et al. [41] who grew C. vulgaris on molasses
wastewater. Whereas, significantly lower protein contents (22.2 and 22.8%) were detected
in C. vulgaris cultivated on agro-industrial by-products and oil industry wastewater, re-
spectively [38,42]. Another study mentioned a protein content of 27.9–35.2% in C. vulgaris
grown on synthetic municipal secondary effluent [43]. Josephine et al. [44] reported that
C. vulgaris encloses a carbohydrate content of 12–17%, which is comparable to the control
(17.10 ± 0.09%) in the present study. However, significantly higher carbohydrate contents
were observed when C. vulgaris was grown on membrane-treated industrial distillery and oil
industry wastewaters (26.1± 0.6% and 40.2%, respectively) [42,45]. Chlorella spp. are known
for their high lipid accumulation [46]. A comparable lipid content (6.56%) was observed in
C. vulgaris grown on urban wastewater [47]. However, other studies reported significantly
higher values [42,44,45]. In the present study, the increased O2 production by C. vulgaris
showed that this species owns the potential to act as a biological source of O2 for aquatic life.
Adamczyk et al. [48] studied the growth kinetics of C. vulgaris and mentioned a C content
in the range of 46–51%. Such values are comparable to the control in the present study
(51.40 ± 0.91%). The increased N content in C. vulgaris grown on mushroom farm wastewa-
ter may be due to its initial high concentrations in the latter. Such high concentrations might
be the main reason behind the increased lipid content accumulation in C. vulgaris [49].

Table 2. Proximate, biochemical and ultimate analysis parameters of C. vulgaris cultivated in different
concentrations of mushroom farm wastewater.

Parameters
Experimental Treatments

Control 50% 100%

Moisture content (%) 72.08 ± 1.85 73.16 ± 0.71 ns 72.53 ± 0.46 ns

Dry Weight (g) 0.27 ± 0.03 0.68 ± 0.02 * 0.64 ± 0.03 *
Ash (%) 2.25 ± 0.06 2.31 ± 0.05 ns 2.28 ± 0.04 ns

Protein (%) 43.98 ± 0.32 48.71 ± 0.62 * 46.09 ± 0.75 *
Carbohydrate (%) 17.10 ± 0.09 18.05 ± 0.12 * 17.68 ± 0.24 *

Lipid (%) 6.85 ± 0.14 8.61 ± 0.28 * 7.34 ± 0.19 *
Carbon (%) 51.40 ± 0.91 61.84 ± 1.40 * 55.39 ± 0.82 *
Oxygen (%) 21.87 ± 0.15 28.82 ± 0.70 * 25.87 ± 0.51 *

Nitrogen (%) 6.40 ± 0.07 7.06 ± 0.05 * 6.93 ± 0.09 *
Values are mean ± SD of three replicates; * and ns: significantly and non-significantly different from control
treatment values at p < 0.05.

Moreover, the ionization (intensity; abscissa) and counts (energy; ordinate) EDX spec-
tra of control, 50 and 100% concentration treatments are given in Figure 5. It was reported
that a higher elemental presence could be easily detected by higher counts [50]. In the
present study, the highest counts for C, followed by O and N. Such observation can be
confirmed by the results of Table 2, which makes EDX an accurate and fast tool for the
compositional evaluation of C. vulgaris. The EDX spectra observation showed that C, O and
N were more concentrated in wastewater treatments than in the control (50% > 100% > con-
trol). Moreover, the EDX spectra of all treatments showed very low counts at high ionization
values, which can be linked to minor impurities, mostly metal elements. In addition, the
observation of microscopic images denoted a reduction of pore sizes in C. vulgaris grown in
wastewater compared to control ones. Thus, further investigation should be performed to
detect the possible effect of other elements found in wastewater on the BET surface area
of C. vulgaris BET surface area may affect the phycoremediation potential of C. vulgaris by
reducing the nutrient uptake rate from wastewater [51].
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Figure 5. EDX graphs for ultimate element analysis (C, O and N) of C. vulgaris biomass cultivated in
different concentrations of mushroom farm wastewater (WW: wastewater).

Figure 6 shows three FTIR spectra that were averaged for the comparison between
control, 50 and 100% concentration treatments. All FTIR spectra were typically similar
in terms of the trend with a higher transmittance percentage in control compared to
50% and 100% (an average of 4–7%) (control > 100% > 50%). Positive IR transmittance
peaks refer to positive wavelength peaks of absorption and likewise negative ones. A
general decreasing pattern for all spectra was detectable at 1950–2950 IR transmittance
regions, which suggests asymmetric stretching vibration of CH3 and CH2 of acyl chains [52],
outlining the lipidic profile of C. vulgaris. Also, an O–H bending might have occurred,
which refers to the high-water content (moisture content). The positive increasing pattern
observed at 3500–3750 IR transmittance regions suggests O–H stretching. The positive
peaks of the three spectra at 970 IR transmittance region refer to the symmetric stretching
of di-anionic acid phosphate monoester in phosphorylated proteins. Whereas, the positive
peaks at 1300 IR transmittance region suggest the formation of amide III components of
proteins [52]. The highest positive peaks observed at 1850–1900 IR transmittance may refer
to C=C bending between lipids or fatty acids, or a second-order bending. The negative
peaks among the three spectra at the 3350 IR transmittance region refer to O–H, N–H and
C–H bending. Whereas, the positive spectra peaks at 3600–3700 IR transmittance regions
refer to O–H and N–H stretching vibrations.

3.4. Removal of Pollutants from Mushroom Farm Wastewater

The kinetics study of pollutant removal by C. vulgaris was conducted using a first-
order rate equation (Table 3). Moreover, a comparison between control and wastewater
treatments detected the possible significant difference in terms of initial and final pollutants
concentrations and removal efficiency. The highest pollutants concentrations were initially
detected in 100%, followed by 50% and control. A significant (p < 0.05) difference between
treatments in terms of pollutant concentrations was detected after C. vulgaris cultivation for
16 days. More precisely, wastewater treatments showed significantly higher (p < 0.05) TDS,
BOD, COD, TN and TP concentrations at the end of the cultivation cycle. The results also
showed exceptional pollutants removal, i.e., 76.95–84.00%, 78.89–90.17%, 86.39–91.53%,
80.58–86.27% and 91.21–94.14% for TDS, BOD, COD, TN and TP, respectively. The follow-
ing decreasing order of pollutants removal efficiency was denoted: 50% > 100% > con-
trol. Also, the pollutants were removed in the following decreasing order of treatments:
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TP > COD > BOD > TN > TDS. Moreover, the high R2 values (R2 > 0.80) depicted a good fit
of the developed kinetic model, being a suitable tool for pollutant removal from mushroom
farm wastewater using C. vulgaris. Such a kinetic model also showed promising robustness
on crops grown on industrial wastewater [53].

Horticulturae 2023, 9, x FOR PEER REVIEW 10 of 15 
 

 

to positive wavelength peaks of absorption and likewise negative ones. A general decreas-

ing pattern for all spectra was detectable at 1950–2950 IR transmittance regions, which 

suggests asymmetric stretching vibration of CH3 and CH2 of acyl chains [52], outlining the 

lipidic profile of C. vulgaris. Also, an O–H bending might have occurred, which refers to 

the high-water content (moisture content). The positive increasing pattern observed at 

3500–3750 IR transmittance regions suggests O–H stretching. The positive peaks of the 

three spectra at 970 IR transmittance region refer to the symmetric stretching of di-anionic 

acid phosphate monoester in phosphorylated proteins. Whereas, the positive peaks at 

1300 IR transmittance region suggest the formation of amide III components of proteins 

[52]. The highest positive peaks observed at 1850–1900 IR transmittance may refer to C=C 

bending between lipids or fatty acids, or a second-order bending. The negative peaks 

among the three spectra at the 3350 IR transmittance region refer to O–H, N–H and C–H 

bending. Whereas, the positive spectra peaks at 3600–3700 IR transmittance regions refer 

to O–H and N–H stretching vibrations. 

 

Figure 5. EDX graphs for ultimate element analysis (C, O and N) of C. vulgaris biomass cultivated 

in different concentrations of mushroom farm wastewater (WW: wastewater). 

 

Figure 6. FTIR spectra of C. vulgaris biomass cultivated in different concentrations of mushroom 

farm wastewater (WW: wastewater). 

0

1000

2000

3000

0

1500

3000

4500

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0

1000

2000

3000

4000

 

 

 Control

 

In
te

n
si

ty
 (

au
)

 50% WW

 

Energy (keV)

 100% WW

C

N

O

C

N

O

C

N

O

kV:29    Mag:1305 Takeoff: 74.35     Live Time: 30     Amp Time(µs): 0.48    Resolution: 129.7    Det. Octane Elite Plus

500 1000 1500 2000 2500 3000 3500 4000
5

10

15

20

25

30
 

 

T
ra

n
sm

it
ta

n
ce

 (
%

)

Wavenumber (1/cm)

 Control

 50% WW

 100% WW

Figure 6. FTIR spectra of C. vulgaris biomass cultivated in different concentrations of mushroom farm
wastewater (WW: wastewater).

Table 3. Kinetic parameters of C. vulgaris in different wastewater concentrations.

Parameters Variable
Experimental Treatments

Control 50% 100%

Total Dissolved Solids
(TDS: mg/L)

Initial 98.28 ± 1.63 982.02 ± 8.09 2108.72 ± 24.05
Final 23.45 ± 0.70 * 157.08 ± 12.42 * 486.08 ± 19.62 *

Removal Efficiency 76.14 ± 0.13 84.00 ± 1.37 76.95 ± 2.03
Equation y = −0.0437x + 2.013 y = −0.0559x + 3.0717 y = −0.0464x + 3.3745

R2 0.9439 0.9288 0.9263

Biochemical Oxygen
Demand (BOD: mg/L)

Initial 3.10 ± 0.09 623.08 ± 20.40 1138.05 ± 14.50
Final 1.45 ± 0.13 * 61.24 ± 7.28 * 240.25 ± 11.36 *

Removal Efficiency 53.23 ± 1.67 90.17 ± 2.42 78.89 ± 0.95
Equation y = −0.0240x + 0.534 y = −0.0694x + 2.9222 y = −0.0461x + 3.09

R2 0.8869 0.9426 0.9731

Chemical Oxygen
Demand (mg/L)

Initial 12.27 ± 0.10 1270.25 ± 45.09 2608.56 ± 81.45
Final 4.90 ± 0.23 * 107.57 ± 8.12 * 355.00 ± 19.04 *

Removal Efficiency 60.07 ± 1.08 91.53 ± 0.97 86.39 ± 1.30
Equation y = −0.0273x + 1.0929 y = −0.0777x + 3.2178 y = −0.0606x + 3.5061

R2 0.9647 0.9247 0.9482

Total Nitrogen
(TN: mg/L)

Initial 1.09 ± 0.02 168.80 ± 5.14 310.42 ± 9.11
Final 0.25 ± 0.04 * 23.18 ± 3.67 * 60.28 ± 6.84 *

Removal Efficiency 77.06 ± 0.05 86.27 ± 1.60 80.58 ± 2.09
Equation y = −0.0457x + 0.0929 y = −0.0612x + 2.297 y = −0.0512x + 2.5844

R2 0.9391 0.9409 0.9137

Total Phosphorus
(TP: mg/L)

Initial 2.80 ± 0.08 67.24 ± 2.58 141.56 ± 5.64
Final 0.82 ± 0.10 * 3.91 ± 1.02 * 12.44 ± 2.31 *

Removal Efficiency 70.71 ± 1.27 94.19 ± 2.33 91.21 ± 0.97
Equation y = −0.0383x + 0.491 y = −0.0815x + 1.9904 y = −0.0731x + 2.2742

R2 0.9367 0.9358 0.9440

Values are mean ± SD of three replicates; *: significantly different from initial values of respective treatment
values at p < 0.05.
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Several studies have reported the phycoremediation properties of Chlorella spp. in pol-
lutant removal from different types of wastewaters. For instance, Alalawy et al. [54] found
that C. vulgaris removed 93.0–94.0% COD from hospital wastewater. Whereas, C. vulgaris
removed 59.0% COD and 93.0% TN from swine wastewater [55]. Lee et al. [56] reported
the removal of 92.0% COD and 100.0% TP from undiluted piggery wastewater using a
mixture of C. sorokiniana, Coelastrella sp. and Acutodesmus nygaardii. Moreover, Lim et al. [57]
investigated the phycoremediation potential of C. vulgaris in textile wastewater. They found
38.3–62.3%, 44.4–45.1% and 33.1–33.3% for COD, TN and TP removal efficiencies, respec-
tively. Furthermore, the kinetic studies of textile wastewater using C. pyrenoidosa were
investigated [29]. The findings of that research revealed 63.0% BOD removal efficiency.
Malla et al. [58] reported 90.0–98.0%, 60.0%, 75.0%, 70.0–80.0% and 60.0–70.0% of TDS,
BOD, COD, TN and TP removal efficiencies, respectively, from primary and tertiary treated
wastewater after 12 days of phycoremediation using C. minutissima. Li et al. [45] mentioned
high removal efficiencies of 72.2, 80.0 and 94.0% for COD, TN and TP, respectively, from
membrane-treated industrial distillery wastewater, remediated with C. vulgaris. However,
the present study is the first to investigate its potential in the phycoremediation of mush-
room farm wastewater. In this regard, Kumar et al. [10] have previously grown two Azolla
spp. aiming phytoremediation of such wastewater. They reported high removal efficiency of
pollutants. Particularly, A. pinnata and A. filiculoides succeeded in the removal of 65.0–85.0%,
78.0–90.0%, 75.0–85.0% and 78.0–85.0% for TDS, BOD, COD and TN, respectively. Such
removal efficiencies were lower or comparable to those observed with C. vulgaris, suggesting
the latter is a better candidate for pollutant removal from mushroom farm wastewater.

4. Conclusions

In conclusion, the current study has shown that wastewater and CO2 from mushroom
farms can be sustainably used for C. vulgaris cultivation. According to the current results, the
level of CO2 production reached >6000 ppm in the mushroom cultivation chamber, which
was used to fulfill the respiration requirement of C. vulgaris. However, the 50% concentration
of mushroom farm wastewater gave the highest growth, proximate, biochemical, ultimate
and structural parameters of C. vulgaris with maximum removal of pollutants as compared
to those in 100% and control treatments. The first-order reaction-based kinetic model was
helpful to simulate the rate constant for pollutant removal. Also, the logistic model yielded
best-fitting results for the growth optimization of C. vulgaris as compared to the modified
Gompertz model. Overall, this study suggests that the proposed approach can be used to
advance environmentally friendly algal cultivation with efficient management of waste
CO2 and wastewater released from mushroom farms. Future studies on the utilization of
produced algal biomass for secondary purposes, such as biofuel and biochar, are highly
recommended.
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50. Širić, I.; Eid, E.M.; Taher, M.A.; El-Morsy, M.H.E.; Osman, H.E.M.; Kumar, P.; Adelodun, B.; Abou Fayssal, S.; Mioč, B.; Andabaka,
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