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Abstract: Nitric oxide (NO) is a gaseous free radical that has been become a potential tool to maintain
the quality of postharvest horticultural produce. It plays important roles in delaying ripening,
alleviating chilling injury, preventing browning, and enhancing disease resistance. The regulatory
function of NO is achieved through the post-transcriptional modification of proteins, such as tyrosine
nitration, S-nitrosylation, and nitroalkylation. Secondly, NO can also induce the expression of stress-
related genes by synergistically interacting with other signaling substances, such as Ca2+, ethylene
(ETH), salicylic acid (SA), and jasmonic acid (JA). Here, research progress on the role of NO and its
donors in regulating the quality of postharvest fruits and vegetables under storage is reviewed. The
function of NO crosstalk with other phytohormones is summarized. Future research directions for
NO commercial application and the endogenous NO regulatory mechanism are also discussed.
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1. Introduction

Fruits and vegetables are becoming increasingly important sources of nutrients for
humans [1]. However, it is a great challenge to maintain the postharvest quality of fruits and
vegetables, including the prevention of pests and diseases, browning after fresh-cutting,
softening, and decay, etc. Senescence and environmental stress are the main causes of
declines in the postharvest quality of fruits and vegetables [2]. As a natural gas molecule
that can freely pass through lipid membranes to regulate plant development and mediate
the stress response of plants [3], NO has been widely used to control the postharvest quality
of fruits and vegetables. Finally, research directions on the effects of NO on postharvest
fruits and vegetables meriting future attention are discussed.

The homeostasis of NO in fruits and vegetables is maintained through regulation of
its synthesis and degradation (Figure 1). NO can be synthesized via the reductive pathway
and oxidative pathway [4,5]. Nitrite (NO2

–) reduction is the major source of NO in plants,
which occurs by both enzymatic and non-enzymatic mechanisms [6]. Nitrate reductase
(NR) in the cytosol, nitrite–NO reductase (Ni–NOR) in the plasma membrane, nitrate
reductase (NiR) in plastids, and xanthine oxidoreductase (XOR) are involved in reductive
NO synthesis [7,8]. Non-enzymatic nitrite reduction occurs spontaneously in the apoplast
owing to the acidic conditions or the presence of ascorbic acid or phenols [9,10]. Several ox-
idative pathways of NO synthesis have been studied. L-arginine can be oxidized to produce
NO by NO synthase-like (NOS-like) enzyme [11], while N-omega hydroxyl-L-arginine is
also converted to NO by peroxidase (POD) and hemoglobin. Alternatively, NO can be pro-
duced from polyamine (PA) through PA oxidase [7]. Cytochrome oxidase is also involved
in the NO production.

NO production has been shown to be associated with the electron transport chain
in chloroplasts and mitochondria [12–14]. Under O2 deficiency, reductive NO synthesis
is achieved via NO2

− reduction mediated by cytochrome-c oxidase (complex IV) of the
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electron transport chain in mitochondria [13]. In addition, the transport of electrons to O2
is inhibited at complex IV, and the consumption of O2 is reduced. In isolated chloroplasts,
NO generation has been documented and NOS-like protein appears to be involved in
this process; in return, the chlorophyll biosynthesis and chloroplast differentiation can be
stimulated by the increase in iron availability mediated by NO [14,15].
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trite–NO reductase; NiR: nitrate reductase; XOR: xanthine oxidoreductase; POD: peroxidase; PA: 
polyamine; MT: melatonin; SA: salicylic acid. 
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Figure 1. A schematic model of NO synthesis and removal. NO is synthesized via the reductive
pathway and the oxidative pathway. The enzymes for the reductive pathway include NR, Ni–NOR,
NiR, and XOR. Non-enzymatic nitrite reduction occurs spontaneously under low pH. POD, NOS-like,
PA oxidase, cytochrome-c oxidase, and hemoglobin are involved in the oxidative pathway. NO can
be removed by reaction with ROS, proteins, MT, and SA. NR: nitrate reductase; Ni–NOR: nitrite–NO
reductase; NiR: nitrate reductase; XOR: xanthine oxidoreductase; POD: peroxidase; PA: polyamine;
MT: melatonin; SA: salicylic acid.

NO is removed when it interacts with superoxide anion (O2•−), hydrogen peroxide
(H2O2), hydroxyl radical (•OH), proteins (e.g., cysteine and tyrosine), or small signal-
ing molecules (e.g., melatonin (MT) and salicylic acid (SA)) by oxidation reactions or
S-nitrosylation. Many NO derivatives (peroxynitrite (ONOO–), S–nitrosothiols (SNO),
S–nitrosoglutathione (GSNO), N–nitrosomelatonin (NOMela), dinitrogen tri-oxides, dini-
trogen tetra-oxides, nitroxyl (NO–), and nitrosonium ions) are produced and involved in
the regulation of plant development and stress responses [6,16]. Among these donors,
SNO, GSNO, and NOMela are the main long-distance transport molecules in the NO
signaling pathway.

2. Effects of NO on Fruit Ripening

The commodity value and shelf life of fruits and vegetables are greatly affected by
their degree of ripeness. Short-term exposure to low concentrations of NO or its donor
compounds has been shown to extend the postharvest life of various fresh fruits and
vegetables. The reason might be through inhibiting ETH synthesis through the formation
of the ternary stable complex ACO–NO–ACC or directly reducing the activity of ACS and
ACO (1); inhibiting the expression of genes involved in the ETH signaling pathway (2); and
affecting lignin accumulation (3). However, the inhibition of the maturation and senescence
by NO depends on its concentration and specific species of fruits and vegetables (Table 1).
In some species, co-treatment with other substances (e.g., 1-MCP or H2S) is more effective
than treatment with NO alone (Table 1).
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Table 1. The effects of NO treatment on postharvest fruit ripening.

Fruits Best Treatment Effects References

Blueberry
(Blue Cuinex, Blue Chip
and Misty)

Blue Cuinex: 1 µL L−1 1-MCP +
1 mM GSNO
Misty: 1 µL L−1 1-MCP
Blue Chip: Not affected by
treatment.

Maintained higher firmness, malic acid, citric
acid, ascorbic acid, and glutathione contents
for 14 d at 4 ◦C.

[17]

Tomato (Elpida) 1 mM GSNO + 0.5 µL L−1 1-MCP
Delayed fruit softening, reduced the ETH
synthesis significantly. [18]

Red raspberry
(Rubus idaeus L.)

15 µM NO solution for 2 min
(immersed in)

Reduced ETH production, respiratory intensity,
ROS contents and increased the contents of
flavonoids, anthocyanin, rutin, influenced
metabolism of sugars.

[19]

Sweet pepper 160 µM (5 ppm) NO gas for 1 h
Delayed the ripening of fruit, decreased lipid
peroxidation, and increased antioxidant
capacity, ascorbate content.

[20–22]

Banana (Brazil) 5 mM SNP solution
Reduced ETH production, inhibited
degreening of the peel, and delayed softening
of the pulp. Inhibited the activity of ACO.

[23]

Papaya (Sui you 2) 60 mL L−1 NO fumigated for 3 h

Suppressed ETH formation and respiratory
rate (CO2 levels), reduced weight loss,
maintained firmness, and delayed changes in
peel color and soluble solid contents during 20
d of storage.

[24]

Wax apple (Syzygium
samarangense) 10 µL L−1 NO fumigated for 2 h

Lower rate of weight loss, a softening index,
and loss of firmness during storage. Decreased
total lignin content.

[25]

Tomato (Lichun) 0.1 mM L-NAME solutions for
0.5 min

Decreased endogenous ETH release and
delayed the breaker stage of fruits. [26]

Peach (Dahong) 15 µL L−1 NO + 20 µL L−1 H2S
fumigated for 20 min

Inhibited ripening of peach fruits, reduced
softening related enzymes activities, ETH
production, ACC content, ACC synthase, and
oxidase activities.

[27]

Water bamboo shoots
(Zizania latifolia) 30 µL L−1 NO fumigated for 4 h

Suppressed the softening and lignification
effectively. [28]

NO can inhibit ETH synthesis during the postharvest storage of several fruits, such as
mango [29], apple [30], tomato [18,26], peach [27], banana [23], strawberry [31], Chinese
bayberry [32], and red raspberry [19]. The precursor of ETH is S–adenosyl methionine
(SAM), which is catalyzed into amino cyclopropane carboxylic acid (ACC) by ACC synthase
(ACS) and further oxidized into ETH by ACC oxygenase (ACO) [33]. NO inhibits the
activity of ACS and ACO and the expression of the genes encoding these enzymes, which
further affects the production of ETH and the accumulation of ACC [34,35]. Moreover, NO
and ACO can be chelated by ACC to produce the ternary stable complex ACO–NO–ACC,
which inhibits the ETH signaling [34,36]. NO also regulates the ETH signaling pathway by
inhibiting the expression of ETH perception genes (ETH3 and ETR4) and ETH signaling
pathway-related genes (EIN3-binding F-box, constitutive triple response 1, and sub-class E
ethylene response factors) during the breaker stage in tomato [35]. These results indicate
that NO negatively affects ETH synthesis and signaling (Figure 2).
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and POD and lignin accumulation were also significantly reduced [39]. Moreover, NO 
treatment could also delay the cellulose formation and maintain the content of ascorbic 
acid, soluble protein, and chlorophyll in green asparagus [40]. For wax apple, after treat-
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Figure 2. A schematic model of how NO affects the senescence of fruits. (“↓” indicates promote,
and “⊥” indicates inhibit). NO affects fruit ripening and senescence by altering ETH synthesis and
signaling. It can down-regulate the activities of the ETH synthesis-related enzymes ACS and ACO to
reduce ETH production. NO can also form a stable ternary ACO–NO–ACC complex to antagonize
ETH formation. NO inhibits the ETH signaling pathway by down-regulating the expression of ETH
perception genes. MT acts upstream of NO and can induce or inhibit NO production to regulate the
senescence of fruits and vegetables. NO also induces the synthesis of MT in plants.

Interestingly, NO inhibitor treatment has also been shown to delay the ripening of
tomato fruit, which is consistent with the effect of NO treatment. Thus, the mechanism by
which NO inhibitor regulates ETH through its effect on NO in green mature tomato fruit
differs. Treatment with the NO synthase inhibitor L–nitro–arginine methyl ester (L–NAME)
in green mature tomato fruit inhibits ETH biosynthesis, which might be explained by
the delay or reduction in the expression of the calcium-dependent protein kinase (CDPK)
and mitogen-activated protein kinase (MAPK) genes SlCDPK1/2 and SlMAPK1/2/3 [26]. It
remains unclear whether other synthetic inhibitors have the same effect.

The accumulation of lignin also affects the quality of fruits and vegetables during
storage [28,37]. NO can regulate lignin synthesis by affecting the expression of genes
encoding enzymes involved in lignin production, such as cinnamyl alcohol dehydrogenases
and caffeoyl–CoA O–methyltransferase [37,38]. The rapid loss of tenderness in bamboo
shoots (Phyllostachys violascens) mostly stems from lignification, treated with SNP could
decrease the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO),
and POD and lignin accumulation were also significantly reduced [39]. Moreover, NO
treatment could also delay the cellulose formation and maintain the content of ascorbic acid,
soluble protein, and chlorophyll in green asparagus [40]. For wax apple, after treatment
with NO, the weight loss, loss of flesh firmness, and total lignin content were significantly
reduced [25]. In contrast, SNP treatment may improve disease resistance by inducing lignin
accumulation and enhancing the activity of PAL or POD during the storage of postharvest
“Tainong” mango, kiwifruit, and wounded muskmelon [38,41,42]. In context, these results
indicate that NO could increase or decrease lignin accumulation which may depend on the
fruit and vegetable species and the biological process (ripening, senescence, or biotic stress).
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3. NO Can Enhance the Defense of Fruits and Vegetables against Chilling Injury

Chilling injury seriously affects the quality and commercial value of fruit and vegetable
products. Several studies have been reported that NO treatment could alleviate chilling
injury and oxidative damage of fruits and vegetables by consuming excess ROS and
alleviating oxidative damage in plants (1); improving antioxidant enzyme activity and
inducing the expression of chilling injury-related genes (CBFs) (2); and maintaining a high
energy state and inducing the activity of enzymes involved in energy metabolism (3). We
list some results in Table 2.

Table 2. The effect of NO treatment on alleviating chilling injury.

Fruits Best Treatment Effects References

Mango
(Kensington Pride)

10, 20, 40 µL L−1 NO fumigated
for 2 h

Reduced the chilling injury index, retarded color
development, softening, and delayed fruit
ripening and maintained quality during storage at
5 ◦C for 2 and 4 weeks.

[29]

Banana (Brazil) 0.05 mM SNP solution for 5 min
(10 kPa)

Inhibited the development of chilling injury
during storage at 7 ◦C for 20 d.
The contents of ATP and energy charge were
higher. The activities of enzymes involved in
energy metabolism were markedly enhanced.

[43]

Banana (Brazil) 60 µL L−1 NO gas for 3 h

Reduced chilling injury during storage at 7 ◦C for
15 d.
Reduced increases in electrolyte leakage and
malondialdehyde content.
Postponed the degradation of chlorophyll.

[43,44]

Hami melon (86-1) 60 mL L−1 NO for 3 h

Decreased the chilling injury index and chilling
injury incidence during storage at 1 ◦C.
Reduced the increases in membrane permeability
and malondialdehyde (MDA), H2O2 content.
Inhibited O2•− production rates. Sustained higher
activity of SOD, POD, CAT, and APX in the rind.

[45]

Peach (Feicheng) 15 µM NO solutions for 0.5 h
Delayed the decrease of mitochondrial
permeability transition, promoted a more stable
internal medium in mitochondria.

[46]

Longkong (Griff) 30 mM SNP solution for 20 min
Controlled the chilling injury index, electrolytic
leakage and regulated the production of MDA,
O2•−, and H2O2.

[47]

Sweet orange
(Midknight Valencia
and Lane Late)

10 µL L−1 NO fumigated for 2 h

Reduced chilling injury, weight loss, total sugars,
and vitamin C in both Midknight Valencia and
Lane Late during storage for 90 d at 4 ◦C and 7 ◦C.
Weight losses 7 ◦C were higher than 4 ◦C.

[48]

Table grape (Munage) 300 µL L−1 NO fumigated for 2 h
Increased the activities of antioxidant enzymes;
alleviated ROS accumulation and membrane lipid
peroxidation during storage at 0 ◦C for 60 d.

[49]

Under low temperature, an oxidative burst (including O2•−, H2O2, and •OH) has
been reported in many fruits [50,51]. The excessive ROS promotes lipid peroxidation, alters
the function of the membrane system, leads to the production of abnormal cells, induces
cell dysfunctions, and finally results in a decrease in product quality [52]. Mitochondria is
the main subcellular organelle of ROS production. As the ROS content increases, the mito-
chondrial permeability transition (MPT) decreases. NO treatment might delay the decrease
in MPT and mediate the decomposition of the excess ROS, maintain ROS homeostasis, and
alleviate oxidative damage in fruits and vegetables (Figure 3).
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which mediates the cold resistance of fruits under cold stress [58]. After treatment with 
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gloeosporioides, Alternaria alternate, etc., substantially affect the quality of postharvest fruits 
and vegetables [59,60]. It was reported that treatment with NO could enhance disease re-
sistance of fruits and vegetables, such as tomato, peach (Figure 4), pitaya, muskmelon, 
etc., (Table 3) by mediating activation of defense-related enzymes (1); accumulation of 
antifungal compounds (e.g., phenylpropanoic acids, flavonoids, phenolics, and lignin) (2); 
and induction of H2O2 accumulation in the early stage of storage (3). 

Figure 3. A model for the regulation of NO on browning, chilling injury, and disease resistance of
postharvest fruits and vegetables. JA, MT, and SA can interact with NO to resist these stresses. NO
promotes the activity of antioxidant enzymes to inhibit browning and alleviate chilling injury. ROS is
a key regulator of chilling injury that can directly induce chilling injury or indirectly increase the MPT.
NO, SA, and antioxidant enzymes can remove excess ROS. The NO donor GSNO can trigger the
oligomerization of NPR1, and SA can maintain protein homeostasis. TRXs can catalyze SA-induced
NPR1 oligomer-to-monomer reactions, and then the monomer NPR1 enters the nucleus to induce the
expression of disease response genes. JA: jasmonic acid; MT: melatonin; SA: salicylic acid; GSNO:
S–nitrosoglutathione.

Studies in loquat fruit have shown that low temperature can induce the generation of
endogenous NO, and this cold-induced endogenous NO generation plays a critical role in
alleviating the symptoms of chilling injury by affecting antioxidative defense systems [53].
The protective effect of NO against oxidative stress in plants is achieved via reaction with
O2•−, which leads to the generation of ONOO− and reduces ROS levels [54,55].

Reduced cell energy levels can induce hypothermia damage [56,57]. Cell energy can
directly affect the biosynthesis of membrane lipids and the repair of cell membranes, which
mediates the cold resistance of fruits under cold stress [58]. After treatment with NO,
higher levels of ATP and energy charges and less severe symptoms of chilling injury are
observed during the storage of fruits and vegetables.

4. Effects of NO on Disease Resistance and Pest Control after Harvest

Infection of pathogenic microorganisms, such as Monilinia fructicola, Colletotrichum
gloeosporioides, Alternaria alternate, etc., substantially affect the quality of postharvest fruits
and vegetables [59,60]. It was reported that treatment with NO could enhance disease
resistance of fruits and vegetables, such as tomato, peach (Figure 4), pitaya, muskmelon,
etc., (Table 3) by mediating activation of defense-related enzymes (1); accumulation of
antifungal compounds (e.g., phenylpropanoic acids, flavonoids, phenolics, and lignin) (2);
and induction of H2O2 accumulation in the early stage of storage (3).
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Table 3. The effects of NO on disease and disorder resistance.

Fruits Disease Best Treatment Effects References

Tomato (Target NF1) Boron toxicity (B) 0.1 mM NO as a foliar
spray

Overcame the deleterious effects of
B toxicity on tomato fruit yield and
whole plant biomass by reducing the
concentrations of B, MDA, EL
(electrolyte leakage), and H2O2 in
the leaves.

[62]

Peach (Feicheng) Monilinia fructicola 15 µmol L−1 NO
solution for 10 min

Inhibited postharvest peach brown
rot caused by M. fructicola. [63]

Citrus (Valencia) Colletotrichum
gloeosporioides

50 µmol L−1 SNP for
10 min

Had a positive effect on enhancing
resistance against postharvest
anthracnose and delayed the
ripening and senescence during
storage at 20 ◦C.

[64]

Pitaya (Baiyulong) Colletotrichum
gloeosporioides 0.1 mM SNP for 8 min

Inhibited the lesion expansion on
pathogen-inoculated pitaya fruit
during storage and reduced the
natural disease incidence and index
of pitaya fruit stored at 25 ◦C.

[65]

Mango (Guifei) Colletotrichum
gloeosporioides 0.1 mM SNP for 5 min

Suppressed lesion development on
mango fruit inoculated with
C. gloeosporioides and reduced
natural anthracnose incidence
during stored at 25 ◦C.

[66]

Kiwifruit (Bruno) 0.2 mM SNP for 10 min

Reduced diseases incidence; delayed
the increase in soluble solid content;
increased the activities
phenylalanine PAL, POD; elevated
the level of total phenolics,
flavonoids, and lignin.

[42]

Muskmelon
(Xizhoumi 25) Alternaria alternata 60 µL L−1 NO fumigated

for 3 h
The lesion diameters and lesion
depths were decreased. [67]

The phenylpropanoid metabolic pathway was involved in the regulation of disease
resistance in fruits and vegetables. Exogenous NO treatment could be involved in regulating
the accumulation of phenylpropanoic acids, flavonoids, phenolics, and lignin by inducing
these enzymes’ (PAL, 4-coumarate–CoA ligase, and cinnamic acid 4-hydroxylase) activities
and increase the disease resistance of peach and muskmelon [67,68]. The accumulation
of phenolic and flavonoid compounds in mushroom enhanced the antioxidase activities
and the defense responses against pathogens [69]. The phosphorylation of MAPKs is
one of the earliest events occurring after pathogen attack, which transduce extracellular
stimuli into intracellular responses in plants [70]. In plants, the MAPK signaling cascades
are involved in various processes, including defense signaling [71]. It has been reported
that MAPKs were also involved in the NO-dependent response of tomato fruit against
Botrytis cinerea [72].
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Disease resistance is also improved by a rapid increase in ROS. During the ripening of
papaya at 20 ◦C, disease incidence was significantly reduced in 60 µL L−1 NO-fumigated
fruits, which might stem from the increase in endogenous H2O2 levels associated with the
application of NO [24]. NO treatment can increase the resistance of melon fruit to A. alternata
infection by inhibiting the activity of CAT and promoting the rapid accumulation of H2O2
in the early stage of storage [73]. However, the excess accumulation of H2O2 induces
oxidative damage in fruits and vegetables and promotes their decomposition. NO mediates
the decomposition of the excess H2O2 during later storage, which maintains ROS levels in
equilibrium [24].

In recent years, it has been found that NO can be used to control pests during the
storage of postharvest fruits and vegetables. The use of NO fumigation can slow down the
insect pests during the storage of fruits and vegetables, such as western flower thrips, pep-
per, strawberry, tomato, apple, etc. [73,74]. Compared with methyl bromide (a traditional
fumigant commonly used higher than 4.4 ◦C), NO fumigation can be used at 2 ◦C, which is
more suitable for low temperature storage [73]. Moreover, NO is effective for a variety of
pests (Frankliniella occidentalis, Nasonovia ribisnigri, Epiphyas postvittana, Drosophila suzukii,
etc.) at different life stages [73]. However, this fumigation process must be conducted under
ultralow oxygen conditions and flushed with nitrogen to dilute NO. However, results on
insecticidal efficacy of NO and underlying mechanisms are still scarce, which deserves
further investigation.

5. Effects of NO on Browning

Fresh-cut fruits and vegetables easily become brown, while surfaces of some intact
fruits are also prone to browning during storage, which significantly affects the sensory
quality of fruits and vegetables. In recent years, NO has been reported as one of the
browning inhibitors which can inhibit the browning of apple slices [75,76], fresh-cut lettuce
slices [77], peach slices [78], and fresh-cut chestnut kernels [79] (Table 4). The main mecha-
nism to inhibit browning might be reducing the activity of browning-related enzymes (1)
and affecting the accumulation of phenolic substances (2).

NO donors (solutions of DETANO and SNP) and NO gas all inhibit the cut-surface
browning of fresh-cut lettuce [80,81]. However, the effectiveness of treatment with NO or
its donors varies depending on the ways and stages of postharvest processing. For example,
DETANO and SNP are more effective during the washing process, whereas NO gas is more
effective when used in modified atmosphere packaging. The combination of NO treatment
and controlled atmosphere (CA) storage significantly inhibited the internal browning of
‘Laetitia’ plums [82].

Fumigation with NO gas could reduce yellowing or browning of broccoli (Brassica
oleracea), green bean (Phaseolus vulgaris), and bok choy (Brassica chinensis), and the posthar-
vest life of all these vegetables was extended [85]. Mechanistically, the postharvest brown-
ing of fruits and vegetables is primarily attributed to the oxidation of phenolic compounds
by PPO or POD [86]. Phenolic compounds, as well as the activity of PAL and PPO, are
likely involved in the development of browning after harvest. NO is generally thought to
inhibit the browning of fresh-cut fruits and vegetables by inhibiting the activity of PAL,
PPO, and POD [39,75,79]. Treatment with NO can also reduce the total phenol content in
fresh-cut apple slices [75] and postharvest table grape rachis [87].
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Table 4. The effects of NO on browning.

Fruits Best Treatment Effects References

Chestnut kernel (fresh-cut) 5 µM NO solutions for 10 min

Delayed browning; increased the content of catechin,
chlorogenic acid, syringic acid, phloretic acid, and
ferulic acid but inhibited that of tannic acid during
storage at 20 ◦C.

[79]

Cut lettuce slices (Green
Oak, Green Coral, Baby
Cos, and Butter)

500 mg L−1 DETANO or SNP
for 5 min

Inhibited cut-face browning during storage at 0 ◦C. [80,81]

Fresh-cut apple slices
(Granny Smith)

10 mg L−1 DETANO solution
for 5 min

Delayed development of surface browning during
storage at 5 ◦C; resulted in a lower level of total
phenols; inhibited PPO activity, reduced ion leakage,
rate of respiration.

[75]

Litchi 2.0 mM SNP for 5 min

Reduced pericarp browning, weight loss, MDA
content; increased total phenolics, antioxidant
capacity; extended shelf life up to 8 d storage at
ambient condition.

[83]

Peeled bamboo shoots 0.5 mM SNP for 1 h
Inhibited activities of PPO, POD, and PAL and
maintained high total phenol contents, thus delaying
external browning during storage at 10 ◦C for 10 d.

[39]

Table grape (Munage) 300 µL L−1 NO gas
fumigation for 2 h

Reduced pericarp browning and disease incidence
for 60 d at 0 ◦C. [49]

Cornelian cherry
(Cornus mas) 0.5 mM SNP for 20 min Reduced browning index. [84]

6. The Application Methods of NO

NO gas itself can be directly used for fumigation of fruits and vegetables (sweet
pepper [21], papaya [24], water bamboo [28], banana [43,44], and muskmelon [67]) to
extend shelf-life. However, NO gas has a short half-life and can be converted into a
toxic gas nitrogen dioxide (NO2) in the presence of oxygen [85]. The NO2 can reduce the
quality of fruits and vegetables, causing patches of dead leaf tissue on lettuce, gray or
brownish stains on broccoli, dark spots on apples and pears, and discolorations of orange
and peach [74]. Therefore, when using NO gas, it should be placed in airtight containers
to reduce contact with oxygen [28,69,88]. At the end of fumigation, it is better to dilute
NO with N2 flushing to avoid damage to fruits and vegetables by NO2 [88]. However,
the N2 generation equipment will significantly increase the production cost [88]. Due to
these defects of NO gas, it is mainly used for low concentration fumigation of fruits and
vegetables in the laboratory and has not been widely used in production.

NO donors (such as DETANO, GSNO, and SNP) are often dissolved as liquids for
soaking postharvest fruits and vegetables. These donors were stored under different
conditions, and the buffer solutions used to dissolve them were also different [80]. DETANO
should be stored in an airtight container at −18 ◦C, GSNO stored at −18 ◦C with a sealed
bottle brown, and SNP should be placed at 20 ◦C in a dark place [80]. Moreover, DETANO
can quantitatively release NO in the presence of citric acid. Therefore, it is often dissolved
in acidic buffer solution (pH 6.5) for use [80,89,90]. GSNO and SNP can be dissolved in
neutral distilled water. Furthermore, it was found that co-treatment of postharvest fruits
and vegetables with these NO donors and other preservatives (such as 1-MCP) was more
effective than treatment alone (Table 1). As for further research on the application methods
of NO, the discovery of novel low-cost, safe, and reliable NO donors and the co-treatment
technology of NO and other preservatives are the focus of research.

7. Crosstalk between NO and Phytohormones in Fruits and Vegetables

Aside from acting as an independent small signaling molecule, NO can also crosstalk
with other signaling molecules, such as MT, ETH, JA, SA, and abscisic acid (ABA) to
regulate biological processes and stress responses.
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MT, which is mainly synthesized in the chloroplast and mitochondria, is widely
involved in the growth and stress responses of plants as an antioxidant or structural analog
of indole-3-acetic acid [91]. NO and MT levels have often been observed to be correlated.
On one hand, the accumulation of MT during the ripening of fruits may act as a free radical
scavenger to remove free nitrogen species [7,92]. Additional studies have shown that MT
reacts with NO through nitrosation to form NOMela, which further mediates the storage,
release, and long-distance transport NO [16]. On the other hand, MT also acts on upstream
processes of NO and thus increases the level of endogenous NO by inhibiting the activity
of S–nitrosoglutathione reductase (GSNOR), up-regulating NR expression, or triggering
arginine-dependent endogenous NO accumulation [7,93]. NO can also increase the MT
level by enhancing the activity of enzymes involved in the MT synthesis pathway, such as
tryptophan decarboxylase, tryptamine 5-hydroxylase, and N-acetyltransferase [5].

JA is an important endogenous regulator of stress responses, growth, and development
in plants [94,95]. Exogenous NO donor treatment can induce the expression of JA synthesis-
related genes (LOX2, AOS, and OPR3) in plants, but this does not result in an increase in
the concentration of JA [96]. However, JA can induce the accumulation of NO in plants [97].
Both JA and NO are related to stress resistance in fruits and vegetables. For postharvest
cucumber, treatment with MeJA and NO can alleviate CI by inhibiting H2O2 generation
and activate chilling tolerance signaling pathway. JA acts upstream of and depends on NO
in reducing the chilling injury [98,99].

Both SA and NO can induce in plant cells during the response to various types of
stress, and their interactions have diverse effects. Exogenous NO treatment can induce
the accumulation of SA in fruit, while exogenous SA can increase the content of endoge-
nous NO by stimulating oxidative NO synthesis [63,100]. NPR1 is sequestered in the
cytoplasm as an oligomer through intermolecular disulfide bonds. After the invasion of the
pathogen into the plant, the content of SA and SNO may increase, and SA will induce the
conversion of NPR1 from the oligomer into monomer, thereby promoting the translocation
of the monomer NPR1 to the nucleus to activate the expression of SA-mediated genes
(e.g., pathogenesis-related proteins family 1, PR–1) [101]. However, GSNO can promote the
oligomerization of NPR1 and maintain protein homeostasis when NPR1 is induced by
SA [102]. Treatment with SA or NO can increase the content of flavonoids in fruits and
vegetables, which improves antioxidant properties, reduces ETH production, and thus
inhibits the ripening of fruit [69,103]. In addition, SA accumulation triggered by NO can
suppress the production of superoxide free radicals and other ROS, thereby aiding the
maintenance of cell membrane integrity.

8. Future Perspectives

Being a natural signaling molecule that regulates many physiological processes in
plants and animals, NO has been proved to have the effect of delaying the ripening and
maintaining the quality of fruits and vegetables. Compared with some chemical preser-
vatives and pesticides, NO has less safety concerns for the use in postharvest fruits and
vegetables. However, the application of NO in agricultural production (including posthar-
vest application on horticultural produces) is still largely at the laboratory level. This is
partially caused by its instability in plant tissues and the natural environment. To improve
the application efficacy, additional efforts should be made to explore practical NO products
and improve application technology. Otherwise, NO is a signal molecule that is unstable in
plant tissues. How long does the physiological act of NO last in fruits and vegetables in
postharvest? Can repeated treatments strengthen or prolong the physiological effects of
NO? Moreover, the practical NO carrier/controlled release system has not been developed
well until now. As for the practical carrier, a NO donor with stable and controlled release
rate is the key to solve the problem. The release rate should meet the requirements of
different postharvest produce under practical use conditions. As NO-releasing chitosan
nanoparticles that protected maize plants from salt stress have been successfully synthe-
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sized [104], it is a promising strategy to combine NO and nanotechnology for developing
new carriers in current agricultural production [105].

As for further study about the mechanism of NO, NO synthesis enzymes in plants
have been a major focus of research. NO synthesis in the electron transport chain can
greatly affect the energy supply and color of fruits and vegetables during storage. However,
the metabolic mechanisms by which NO achieves its effects via the electron transport chain
in the mitochondria and chloroplasts remain unclear. The level of endogenous NO in
fruits and vegetables adjust spontaneously by biological engineering technology, which
may provide a feasible method for breeding new varieties. In addition, NO treatment
has a positive effect on fruit and vegetable storage by regulating the activity of related
enzymes, but the regulatory mechanism and modification methods (tyrosine nitration,
S-nitrosylation, and metal nitrosylation) underlying this positive effect remain unclear.
NO crosstalk with a variety of signal molecules is involved in the regulation of various
biological processes. Consequently, the relationships of NO with other signal molecules in
this network are highly complex. Combined treatments often achieve better results than
single treatments. The effectiveness of NO crosstalk with other plant hormones depends
on specific species, cell types, tissues or organs, as well as the NO concentrations applied.

9. Conclusions

NO plays an important role in quality changes of postharvest fruits and vegetables by
delaying ripening or senescence, alleviating chilling injury, controlling postharvest diseases,
and inhibiting browning. These effects are related to the ability of NO to inhibit ETH
synthesis, increase antioxidant enzyme activity, activate antimicrobial enzymes, increase the
accumulation of antimicrobial substances, and maintain a high energy level and membrane
integrity. However, it is still unknown how NO affects these enzymes’ activities and the
involved modifications. In addition, NO synthase and its action mechanism in plants needs
to be further studied. Importantly, the effectiveness of NO treatment on preserving the
quality depends on the species of fruits and vegetables, the concentration, and form (e.g.,
liquid or gaseous) of NO applied. Postharvest researchers should study the differences
in NO applications for different types of fruits and vegetables separately, for example,
climacteric and non-climacteric types. NO application methods and product tailored for
different postharvest environment also need further development.
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