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1. The Increasing Importance of Genes and Genetics in Tomato Breeding

Tomato (Solanum lycopersicum) is widely cultivated and is one of the most important
vegetable crops in the world, with great economic significance. During the past two
decades, tomato production has increased two-fold, which is largely the result of genetic
improvement toward high yield and adaptation. Over the years, the goals of the genetic
breeding of tomatoes have targeted productivity and tolerance to pests and diseases.
Consumers demand high nutritional and taste quality, and producers demand tomato
fruit that is easy to cultivate with high adaptation to stress or disease. Fortunately, tomato
is a vegetable crop that is rich in genetic resources and could serve as a model for fruit
biology and plant genetics. Great progress has been made in understanding the genes and
genetics underlying its important traits, e.g., fruit development, yield, quality, abiotic stress
adaptation and disease resistance. These genes facilitate tomato improvement based on
molecular approaches. Indeed, molecular breeding technology has been widely applied
in tomato improvement. The advances in tomato genetics and genomics have paved the
way for tomato molecular breeding. Improving the yield, quality and stress tolerance of
tomato is the common goal of breeders, producers and consumers. For this reason, this
Special Issue on “Genes, Genetics and Breeding of Tomato” will present the advances in
gene mining, genetic mechanism and molecular breeding of tomato.

2. Application of Omics in the Study of Tomato Biotic Stress

As one of the most widely planted vegetable crops in the world, tomato is very vulner-
able to various pests and diseases during its growth. Transcriptomics and metabolomics
have been applied widely in the study of stress response. The analysis of differentially
expressed genes and accumulated metabolites may reveal new mechanisms of plant stress
response.

Bacterial canker of tomato is caused by Clavibacter michiganensis (CM), which can even
cause 100% yield loss in severe cases. There are two possible sources of disease resistance
in wild tomato plants: one affects the growth of CM by releasing specific substances in
xylem sap, and the other is the lack of some in vivo signals that activate the virulence of
CM [1]. A susceptibility gene, WAKL20, was screened out via transcriptome profiling of
the resistant inbred line IBL2353 and susceptible line Ohio88119. The inactivation of the
WAKL20 gene led to more durable and broad-spectrum resistance [2]. By comparing genes
differentially expressed in plant–pathogen interactions, WRKY41 and CBEF were identified
as genes highly expressed upon infection, indicating that they may be involved in the
defense against Fusarium spp. [3].

Except bacterial canker, losses caused by the yellow leaf curl virus cannot be ignored.
As a new disease-resistant gene, TY5 has gradually attracted attention from breeders, but
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the accuracy of its marker detection has hindered the development of tomato breeding to a
certain extent. High-resolution melting (HRM) is based on the markers developed within a
gene but is not affected by segregation and recombination, thus completely overcoming
the false-positive problem of linkage markers. The HRM marker of TY5 showed a high
accuracy of 100%, consistent with the phenotype, and will greatly improve the efficiency of
breeding [4].

Insect damage is also one of the factors restricting tomato production. Recent studies
have shown that zingiberene (ZGB) produced by plants plays an important role in pest
control [5]. Panizzon Diniz et al. proved the relationship between ZGB and insect resistance
by measuring the ZGB content in BC3F2 and parent populations. The number of whitefly
eggs and nymphs that survived in plants with low ZGB was eight and six times higher than
that in tomato plants with high ZGB. The effective biological control of Tuta absoluta using
ZGB was also confirmed. These data showed that the content of ZGB can confer insect
resistance in plants and can provide an alternative approach for crop resistance breeding.

3. Genes Underlying Tomato Response to Abiotic Stress

In addition to biotic stress, abiotic stress is another major factor affecting tomato
production. Abiotic stress is mainly a challenge in the survival of plants brought about by
environmental factors such as temperature and water.

RanBP2-type zinc finger proteins are involved in the regulation of mRNA processing
in animals, but their functions in plants remain unclear. Gao et al. identified a total of
22 family genes in tomato using bioinformatics approaches. Further research showed that
most of the genes responded to at least one of four stress treatments (cold, heat, drought
and salt), indicating that this family may have a corresponding function in abiotic stress
responses [6].

Chilling damage brings about great challenges to the autumn production of tomatoes.
Numerous studies have reported the effect of low temperature on tomato fruit, but few
have been reported on the effect of N6-methyladenosine methylation on chilling injury. An
analysis of the differentially expressed genes in methylated transcripts before and after
chilling treatment showed that the methylation levels of genes related to plant hormones
and fruit texture were changed. Specifically, the expression of ACO increased by four folds,
and the expression level of cpHSC70 decreased by more than 90%, which provides insight
into the mechanism of chilling injury to tomato fruits [7].

Drought and other extreme weather conditions brought about by the deterioration
of the global environment are increasing. Recent studies showed that in SlPYL4-silenced
tomato plants, a 6 h drought treatment led to a decease in the activities of SOD, POD and
CAT by 20%, 10% and 50%, respectively, compared with the control, indicating a decrease
in the ability to drought response. In addition, the expression levels of SlPP2C1, SlPP2C2,
SlSnRK2.2, SlABF4, and SlAREB were significantly increased, while the expression level of
SlSnRK2.1 significantly decreased in SlPYL4-silenced plants, which indicated that SlPYL4 is
involved the ABA-pathway-mediated drought response [8].

The exhaust gas produced by industrial production is also deleterious to the growth
of plants. Previous studies found that hybrid-proline-rich protein 1 (HyPRP1) is involved
in abiotic stress and SO2 metabolism in tomato. Further studies showed that when SO2
toxicity occurred, HyPRP1-RNAi lines accumulated less hydrogen peroxide and had a
higher chlorophyll content relative to WT as well as HyPRP1-overexpressing lines, resulting
in minimal leaf damage [9].

4. Genes Regulating Tomato Fruit Development and Ripening

Phytohormones play an important role in plant growth, development and environ-
mental response. The brassinosteroid (BR) signaling mutant Brassinosteroid Insensitive 1
(bri1) exhibits a dwarf phenotype, with decreased fruit size and weight [10]. Further studies
showed that this phenotype change was due to reductions in cell size and number, and the
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expression level of SISUT1 in the mutant was significantly reduced in the mutant, resulting
in a limited energy supply.

The mechanism of ethylene in fruit ripening has been elucidated. Anas et al. in-
troduced the mutant allele Sletr1-2 into tropical tomato varieties through hybridization
and significantly extended the shelf life of tomato fruits [11]. Crosstalk between ethylene
and JA occurs to regulate fruit ripening. ERF4, as the core JA signaling central protein
JASMONATE ZIM-DOMAIN (JAZ) and the interactor of the ethylene signaling pathway,
regulates the ethylene signaling pathway by influencing the binding of the JAZ-ERF4-MYC2
complex with promoters of ACS1 and ACO1, further regulating fruit ripening [12].

5. Toward Tastier Tomato Fruit

Sugar content is an important factor determining the taste of tomato fruit, and sugar
transporters play a very important role in the formation of fruit quality. A recent study
showed that SlSWEET12c regulates sugar accumulation in tomato fruits [13]. The contents
of fructose and sucrose increased by 20% and 40%, respectively, in fruits of transgenic
tomato overexpressing SlSWEET12c while decreased in SlSWEET12c-silenced lines.

Grafting, as a way to enhance plant resistance to drought, salinity and soil born disease
and to increase yield, has been widely used in horticultural crop production, but there are
few studies on the effect of grafting on fruit quality. Rootstock could be used in grafting
to modulate the content of glucose, fructose, malic acid, citric acid and volatiles in tomato
fruits, while the different combinations of rootstock and scion exerted different effects on
fruit quality [14]. In addition to grafting, plant architecture management could also affect
fruit quality to some extent. However, the genes and genetics could severe as primary
approaches for fruit quality improvement [15].

In the process of the domestication of and improvement in horticultural crops, due
to pursuits of increasing yield, cultivated species have lost many stress- or quality-related
genes [16]. In recent years, the cooperation between scientists and breeders has been
deepening in the era of genomics-based breeding, and it is expected to improve the quality
of the fruit while maintaining the original resistance of the plant, which will make human
diets healthier.
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