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Abstract: Fruit ripening and softening are important physiological processes in fruit quality formation,
and auxin is involved in regulating the ripening and softening process in peach fruit. Little research
has been reported on the role of Aux/IAA (auxin/indole-3-acetic acid)-ARF (auxin response factor)
protein interactions in the ripening process of peach fruit. The transcriptomics and RT–qPCR results
revealed that PpIAA5 expression increased before ripening in peach fruits. Overexpression of PpIAA5
significantly represses the expression of peach fruit ripening- and softening-related genes PpPG and
PpACO1 in peach fruit tissues using transient transformation. A yeast library and yeast two-hybrid
screen yielded PpARF8, a protein that interacts with PpIAA5. The interaction relationship was further
established using a bimolecular fluorescence complementation assay. Transient overexpression of
PpARF8 in peach fruit tissues promoted the expression of PpPA, PpPG, and PpACO1. Furthermore, a
tomato transient transformation assay validated that the PpARF8 gene promotes fruit ripening and
softening. Taken together, our results suggest that the PpIAA5-ARF8 signaling module can affect the
ripening and softening of peach fruits.

Keywords: peach; fruit ripening and softening; PpIAA5; PpARF8

1. Introduction

Peach (Prunus persica L.) is one of the most important cash crops in temperate regions
of the world [1]. A change in the texture of peach fruit, with a decrease in hardness and
fruit softening, means that the peach fruit is entering the ripening stage. The partial or
complete dissolution of pectin and cellulose in the cell wall and the cleavage of starch and
other polysaccharides are responsible for the change in fruit texture [2–5]. Fruit ripening is
an important physiological process in the formation of fruit quality and has been of great
interest to geneticists and breeders.

Several plant growth regulators (PGR), including auxin, ethylene, and abscisic acid,
are involved in the peach fruit ripening process [6]. Recent studies have shown that auxin
plays an important role in regulating fruit ripening [7–9]. The application of exogenous
auxin treatments to strawberries, grapes, and tomatoes during the preripening period
was able to inhibit fruit ripening [8,10]. However, auxin treatment applied to apples and
pears before fruit ripening can induce ethylene synthesis to promote fruit softening and
ripening [11–13]. In many tomato ripening mutants, endogenous auxin levels are much
higher than those in normal fruits, and many studies have shown that a decrease in auxin
content is one of the key factors in initiating fruit ripening [14,15]. These findings reveal a
dual role of auxin in regulating fruit ripening and softening.

The most important form of auxin in plants is indole-3-acetic acid (Aux/IAA) [16]. The
typical auxin response pathway relies on the interaction between the C-terminal structural
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domain of the transcription factor Aux/IAA and ARF proteins [17]. The transcriptional
activation or repression of ARFs is determined using a nonconserved intermediate domain,
and the conserved B3 DNA-binding domain at the N-terminal end can bind to the auxin
response element of the auxin response gene promoter [17,18]. Aux/IAA negatively
regulates the activity of ARFs via protein–protein interactions, and ARF proteins further
alter the expression of downstream genes [19,20]. Thus, the Aux/IAA-ARF module of the
plant is a key component that enables the auxin signaling pathway [21].

Aux/IAA genes are a multigene family involved in the process of fruit ripening. In
tomatoes, the SlARF7/SlIAA9 complex can control tomato fruit formation by repressing
the transcription of feedback-regulated genes [22]. PpIAA19 overexpression in tomatoes
is involved in regulating fruit shape [23]. In peaches, PpIAA1 is a positive regulator that
accelerates fruit ripening and softening by promoting the expression of ethylene synthesis
and ripening-related genes [24]. In apples, the expression of anthocyanin synthesis genes
decreased in auxin-treated calli, and MdIAA26 overexpression reduced the inhibitory effect,
which confirmed that Aux/IAA genes affected fruit coloration [25]. The application of ex-
ogenous auxin to tomatoes increased the accumulation of phenolic volatiles and altered the
expression of numerous key genes involved in the aroma volatile biosynthesis pathway [26].
These results imply that auxin signaling-related transcription factors are involved in the
ripening process, including fruit size, softness, color, and aroma [27], and studies related to
their regulation of fruit ripening and softening have been of interest to scholars.

The functions of the ARF gene family have been studied in different physiological
processes, among which the ARF gene family members related to fruit development and
ripening regulation have been most studied. Unisexual tomato fruits with silenced SIARF5
had less ventricular tissue development and lighter fruit size and weight, suggesting that
ARF regulates early fruit set and development in tomatoes [28]. SIARF2 has a positive
regulatory role in tomato fruit ripening [29,30]. It has also been reported that enhanced
expression of the auxin signaling gene SIARF10A/10B/17 affected the respiration rate,
increased fruit hardness, and reduced fruit weight, thereby delaying tomato fruit ripen-
ing [31]. In apples, MdARF5 was found to induce ethylene synthesis by directly promoting
the expression of the ethylene synthesis genes MdACS3a, MdACS1, and MdACO1, which
further promoted apple fruit ripening [32], and it has been shown that ARFs can act as
positive or negative regulators during fruit development and ripening. However, there are
few studies on ARF regulation of peach fruit ripening and softening, so it is crucial to study
its function.

In our previous study, 23 PpIAAs were identified in peach fruit, in which the expression
levels of PpIAA1/5/9 were positively correlated with the degree of fruit softening [33].
Moreover, 18 PpARFs were identified in peach fruit, the expression of some genes correlated
with the fruit ripening process, and a dual relationship between some PpARF and PpIAA
factors was confirmed [34]. These findings suggest that the transcription factors Aux/IAA
and ARF may be involved in the peach fruit ripening process, but few studies have reported
the specific factors involved and their regulatory mechanisms.

In this study, we further explored the Aux/IAA and ARF factors related to peach
fruit ripening and found that the level of PpIAA5 (Prupe.3G074800) transcription was
closely related to the fruit ripening process, and we identified PpARF factors that inter-
acted with PpIAA5 using a protein–protein interaction experimental technique. PpARF8
(Prupe.3G182900) was selected for further investigation, and its possible downstream target
genes were explored. In conclusion, we found that the PpIAA5-ARF8 module participates
in the ripening and softening process in peach fruit. Our results lay a theoretical foundation
for elucidating the mechanism by which auxin signal transduction factors regulate ripening
and softening in peach fruits.
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2. Materials and Methods
2.1. Plant Material

In 2021, ‘Beijing No. 24’ (Jingyan) peach fruits were harvested in the orchard of
Houbegong Village, Dahuashan Town, Pinggu District, Beijing, China. The peach fruits
were sampled at five developmental stages: 111 days after full bloom (early second rapid
growth period, S3-1), 118 days after full bloom (late second rapid growth period, S3-2),
125 days after full bloom (early ripening period, S4-1), 132 days after full bloom (middle
ripening period, S4-2), and 139 days after full bloom (fully ripening period, S4-3). The
mesocarp discs were rapidly separated and immediately frozen in liquid nitrogen and then
stored at −80 ◦C for RNA-seq sequencing and RT–qPCR.

The tobacco material Nicotiana benthamiana was grown in a culture room under 16/8 h
light and dark cycle culture conditions, with relative humidity controlled at 70% and
temperature conditions at 25 ◦C. It was used for infiltration when it grew to roughly five or
six leaves per plant after 5–6 weeks.

2.2. Extraction of RNA and Quantitative Real-Time PCR (RT–qPCR)

Total RNA was extracted using the EASYspin Plant RNA Rapid Extraction Kit (RA106-
02, Biomed, Beijing, China). A NanoDrop Lite ultraviolet spectrophotometer (ALLSHENG
Nano300, Hangzhou, China) was used to estimate the quality of total RNA. The final
concentration of each sample was adjusted to 1000 ng/µL (Liscum and Reed, 2002). The
TransScript® First-Strand cDNA Synthesis SuperMix kit (TransGen Biotech, Beijing, China)
was used to synthesize first-strand cDNA. Quantitative reverse transcriptase-PCR (qRT–
PCR) analysis was conducted using a Real-Time PCR System (QuantStudioTM6 Flex System,
Thermo Fisher Scientific, Waltham, MA, USA), with a total reaction volume of 20 µL (9 µL
SYBR Premix Ex Taq II, 1 µL For-Primer, 1 µL Rev-Primer, 2 µL cDNA, 6.6 µL ddH2O,
0.4 µL Rox I). The RT–qPCR program was as follows: 95 ◦C for 3 min, followed by 40 cycles
of 95 ◦C for 5 s, 55 ◦C for 10 s, and then 72 ◦C for 30 s, followed by a continuous increase in
temperature from 60 ◦C to 95 ◦C for melting curve analysis. The internal reference gene
was the Translation Elongation Factor2 (TEF2) of peach [35]. The cycle threshold (Ct) 2−∆∆Ct

method was used to estimate the relative gene expression levels. Each sample consisted of
three biological replicates. The primer sequences used for RT–qPCR are listed in Table S1.
All amplified fragments are between 100–200 bp.

2.3. Vector Construction

The PCR primer sequences involved in vector construction are listed in Table S2.
Genomic DNA or cDNA generated from different developmental stages of peach mesocarp
were used as templates for sequence amplification. For overexpression, the full-length
coding sequences of OE-PpIAA5 (Prupe.3G074800) and OE-PpARF8 (Prupe.3G182900) were
cloned and recombined into the pCAMBIA3301-121 vector (Biomed, Beijing, China). For
the construction of the vector pTRV2-PpARF8, a 360-bp fragment of PpARF8 was amplified
and inserted into the vector pTRV2 (HonorGene, Changsha, China). To construct a vector
with a GFP tag for subcellular localization experiments, we amplified the CDS fragment of
PpIAA5/ARF8 and inserted it into the vector pBI121-GFP (HonorGene, Changsha, China).
For bimolecular fluorescence experiments, the full-length coding sequences of the PpIAA5
and PpARF8 genes without stop codons were amplified and inserted into the pSPYNE173
and pSPYCE(M) vectors (TIANGEN, Beijing, China), respectively.

2.4. Subcellular Localization Analysis

The full-length coding sequence of the PpIAA5/ARF8 gene without a stop codon
was amplified and inserted into the pBI121-GFP vector by a seamless cloning method.
PpIAA5/ARF8-GFP was transiently expressed in tobacco leaves by Agrobacterium infiltration
(GV3101) [36]. Three days after injection, the yellow fluorescent signal was detected using
a laser confocal microscope (LEICATCS SP8, Weztlar, Germany) at 514 nm.
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2.5. Transient Analysis of Peach Fruit Tissues

The successful OE-PpIAA5 and OE-PpARF8 plasmids were transformed into Agrobac-
terium tumefaciens GV3101. A single colony of Agrobacterium cells was inoculated in 15 mL
of liquid LB medium with appropriate antibiotics until A600 reached approximately 0.8–1.0.
After centrifugation, the cells were resuspended in buffer (10 mM MES, 10 mM MgCl2,
100 mM acetosyringone, pH 5.6) and infiltrated into peach fruit tissues at the S4-1 stage.
Transient expression treatments were performed with five biological replicates.

2.6. Yeast Library Screening

After self-activation detection of PpIAA5, the pGBKT7-PpIAA5 (EK-Bioscience, Shang-
hai, China) plasmid was transformed into yeast strain Y187 and positive yeast colonies were
picked and cultured in SD/-Trp liquid medium until the A600 was 0.8–1.2. The supernatant
was removed using centrifugation, resuspended in 2 × YPDA medium containing 3 mL
of yeast library secondary bacteria, and incubated at 30 ◦C for 1 day. The supernatant
was discarded using centrifugation, and the precipitate was resuspended in 0.5 × YPDA
medium and spread on 40 SD/-Trp-Leu-His-Ade plates. Next, the bacteria were picked into
0.9% NaCl solution and dropped on SD/-Trp-Leu-His-Ade+AbAi+X-α-gal medium for
screening, and the colonies that turned blue were amplified. The yeast plasmid DNA was
extracted and transferred into DH5α for sequencing. The sequencing data were analyzed
on the NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) database on 11 May 2022.

2.7. Yeast Two-Hybrid Assay

The primer sequences for the construction of the yeast two-hybrid vector are shown
in Table S3. The recombinant plasmids PpIAA5 and PpARF2/3/4/6/7/8/19 were co-
transformed into AH109 yeast receptor cells, and the bacterial solution was coated in
SD/-Trp-Leu solid medium and incubated at 28 ◦C for 48–72 h. Single colonies were picked
and resuspended in sterile water, and 5 µL of the bacterial solution was dropped onto
SD/-Trp-Leu-Ade-His solid medium with a concentration of 100 mg/L X-α-gal. Trp-Leu-
Ade-His solid medium with a concentration of 100 mg/L X-α-gal and incubated at 28 ◦C
for 24 h in the dark to observe the growth and changes in color of the colonies.

2.8. Bimolecular Fluorescence Complementation Experiment

The full-length coding sequences of the PpIAA5 and PpARF8 genes without stop
codons were amplified using PCR and inserted into the pSPYNE173 and pSPYCE (M)
vectors using sticky end ligation or seamless cloning. The recombinant plasmids were
transferred into Agrobacterium tumefaciens strain GV3101. Positive Agrobacterium strains
were transferred to an LB liquid medium with the appropriate antibiotics and incubated at
28 ◦C until the A600 reached 0.5–0.6. After centrifugation, the cells were resuspended in
buffer (10 mM MES, 10 mM MgCl2, 100 mM acetosyringone, pH 5.6) of A600 exactly 1.0 and
were infiltrated into the leaves of 4- to 6-week-old tobacco plants. Three days after injection,
the yellow fluorescent signal was detected using a laser confocal microscope (LEICATCS
SP8, Weztlar, Germany) at 514 nm [37].

2.9. Transient Transformation and Phenotypic Analysis of Tomato Fruits

The successful OE-PpARF8 and pTRV2-PpARF8 plasmids were transformed into Agrobac-
terium tumefaciens GV3101. The pTRV is a bipartite virus used in Virus-Induced Gene Silencing
(VIGS). This method involves two Agrobacterium tumefaciens strains: one with the pTRV1
plasmid for viral replication and movement and the other with the pTRV2 plasmid, contain-
ing the coat protein gene and VIGS-inducing sequence. Tomato fruits were transformed by
collecting Agrobacterium and resuspending them in buffer (10 mM MgCl2, 10 mM MES, pH
5.6, 100 mM acetosyringone) and shaking for 3–4 h at room temperature [38]. The A600 of
Agrobacterium was adjusted to 0.8 with permeation buffer and then injected into tomato fruits
at the breaker stage. The Agrobacterium injection site for transient transformation in toma-
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toes is the peduncle. Transient expression treatments were performed with three biological
replicates. The color phenotype was taken one week after infiltration.

2.10. Statistical Analysis

All experiments were performed at least three times. All qRT-PCRs and other quanti-
tative analyses were repeated at least three times. The statistical data is presented with the
significance levels indicated by asterisks. Specifically, * p < 0.05 and ** p < 0.01 are used to
denote the level of significance in the results. Standard deviations are within a range of
approximately ±0.05. Student’s t-test was used to evaluate significant differences.

3. Results
3.1. Expression Analysis and Subcellular Localization of PpIAA5

By transcriptome analysis and identification, it was observed that the relative expres-
sion of PpIAA5 from Figure 1a increased during the S4-1 period, and the results obtained
using RT–qPCR were consistent with the transcriptome results. The transcriptome data
used are all from Tables S4–S7. PpIAA5 was inferred to be closely related to the fruit
ripening process. The localization of PpIAA5 was predicted using the predicted protein
online software, and both the prediction results and subcellular localization experiments
indicated that the protein encoded by the peach PpIAA5 gene is located in the nucleus
(Figure 1b) and is tissue-specific.
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Figure 1. Expression analysis and subcellular localization of PpIAA5. (a) Relative expression level of
PpIAA5 during peach fruit ripening (Note: S3-1, early second rapid growth period; S3-2, late second
rapid growth period; S4-1, early ripening period; S4-2, middle ripening period; S4-3, fully ripening
period.); (b) The subcellular localization results showed that PpIAA5 was localized in the nucleus,
Scale bar = 20 µm.

3.2. PpIAA5 May Be a Negative Regulator in the Softening Process of Fruit Ripening

Studies at the transcriptional level revealed that PpIAA5 may be associated with peach
fruit ripening and softening, so the function of the PpIAA5 gene was further investigated.
OE-PpIAA5 was transiently expressed in isolated peach fruit tissues. The results are shown
in Figure 2. After transient overexpression of the PpIAA5 gene, the expression of the PpIAA5
gene was 3-fold higher than that in the control. The expression of the PpIAA11/17/29 gene
was 2-fold lower than that of the control. The expression level of the PpARF5/7/8/16/18 gene
was 2-fold lower than that of the control. The gene expression levels of PpSAUR50, PpGH3.1,
and PpYUCCA2/6/10 related to auxin signal transduction and synthesis were significantly
lower than those of the control group, with the gene expression of PpYUCCA6/10 being
more than 10 times lower than that of the control group. The expression level of the PpSAM
gene related to ethylene signal transduction was six times higher than that of the control
group, and the expression level of PpERF4/034 was not significantly different from that
of the control group. Overexpression of PpIAA5 affected the expression of some cell wall
degradation-related enzyme levels in the fruit tissues, in which the expression of PpEXP2,
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PpMEI, Ppβ-GAL, and PpGLU was 3-fold higher than that of the control. The expression
levels of PpPG and PpACO1 were 10 times lower than those of the control group.
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3.3. PpIAA5 Interacted with PpARF8 In Vivo

To confirm that PpIAA5 can bind different protein factors to regulate related phys-
iological processes, the decoy protein of PpIAA5 was used for yeast library screening
(Figure 3a), and the sequencing results were analyzed using BLAST. A total of six proteins
were screened for interactions with PpIAA5, including PpARF5, PpARF8, and PpARF19.

To further verify the interaction between PpARFs and PpIAAs in peach fruit, a yeast
two-hybrid assay was conducted and revealed that several PpARF and PpIAA factors in
peach fruit interacted physically. Among them, PpARF6/7/8/19 interacted with PpIAA5,
and the strongest interaction effect was with PpARF8 (Figure 3b). After constructing a
fluorescent bimolecular complementary vector of PpARF8 and PpIAA5 and transiently
transforming tobacco leaves, yellow fluorescence was visible in the nuclei of tobacco cells
cotransformed by PpARF8 and PpIAA5, which demonstrated that PpARF8 interacted with
PpIAA5 further (Figure 3c).

3.4. PpARF8 Is Involved in the Regulation of the Ripening and Softening of Peach Fruit

A phylogenetic tree was built using MEGA 5.0 software to analyze the affinities of
PpARF8 among different species. Figure S1a shows that PpARF8 has high homology with
proteins in lentils, apricots, apples, moonflowers, strawberries, pears, mulberries, white
pears, and dates. Among them, PdARF6-like (lentil) and PaARF6-like (apricot) both belong
to the Rosaceae family, and these two genes have the highest homology with PpARF8.
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The protein encoded by the peach PpARF8 gene is located in the nucleus and has tissue
specificity (Figure S1b).

1 
 

 

Figure 3. Screening of PpIAA5-interacting proteins. (a) PpIAA5 yeast library screening,
SD/−Trp−Leu−His−Ade+AbAi+ Growth on an X-α-gal plate indicating a protein interaction with
PpIAA5 (Note: +: Co−transformation of pGBKT7−53/pGADT7−T was positive control, −: Cotrans-
formation of pGBKT7−lam/pGADT7−T was negative control.); (b) The interaction between PpIAA5
and PpARFs was verified by yeast two-hybrid; (c) The interaction between PpIAA5 and PpARF8 was
verified using bimolecular fluorescence complementation experiment, Scale bar = 20 µm.

To further investigate the function of the PpARF8 gene, OE-PpARF8 was transiently
expressed in isolated peach fruit tissues. The expression of the PpARF8 gene, genes related
to auxin signaling, and cell wall degradation-related enzyme genes associated with fruit
softening were later determined using RT–qPCR, and the results are shown in Figure 4.
After transient overexpression of the PpARF8 gene, the expression of the PpARF8 gene
was significantly increased by more than 12-fold. The expression levels of PpIAA3/5 and
PpARF5/16/18 were significantly higher than those of the control group. PpIAA11/17/29
and PpARF7 did not show obvious changes. After overexpression of PpARF8 compared
to the control, the gene expression of PpIAA5 was more than 1000 times that of the control.
The expression of genes related to fruit ripening showed different expression profiles.
The changes in the PpERF4 and PpERF034 genes were not significant compared to the
control group. The PpSAM/EXP2/β-GAL genes showed no significant changes compared
to the control group. The expression level of the PpACO1 gene was 4-fold higher than
that of the control group. The gene expression of PpPMEI was lower than that of the
control group, and the expression of PpGLU, PpPA, and PpPG was higher than that of the
control group.

3.5. PpARF8 Enhances Fruit Ripe Ning and Softening in Tomato

The transient transformation system of tomato fruits was used to transiently trans-
form silenced and overexpressed Agrobacterium PpARF8 into tomato peduncle in the
green ripening stage, and the gene function of PpARF8 was further characterized by
phenotypic observation of tomato fruits. Compared with the control, tomato fruits
ripened earlier after overexpression of the PpARF8 gene (Figure 5c), and significant early
ripening was observed in the Agrobacterium infestation range. However, significantly
delayed ripening was observed in the Agrobacterium infestation range after gene silencing
of PpARF8 (Figure 5f).



Horticulturae 2023, 9, 1149 8 of 12Horticulturae 2023, 9, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 4. Effect of overexpression of the PpARF8 gene in isolated peach tissues on related gene 
expression (Note: CK8, empty vector control; OE8, overexpression of the PpARF8 gene; * p < 0.05, ** 
p < 0.01). 

3.5. PpARF8 Enhances Fruit Ripe Ning and Softening in Tomato 
The transient transformation system of tomato fruits was used to transiently trans-

form silenced and overexpressed Agrobacterium PpARF8 into tomato peduncle in the green 
ripening stage, and the gene function of PpARF8 was further characterized by phenotypic 
observation of tomato fruits. Compared with the control, tomato fruits ripened earlier af-
ter overexpression of the PpARF8 gene (Figure 5c), and significant early ripening was ob-
served in the Agrobacterium infestation range. However, significantly delayed ripening 
was observed in the Agrobacterium infestation range after gene silencing of PpARF8 (Figure 
5f). 

 
Figure 5. Phenotype of Agrobacterium-mediated PpARF8 gene silencing and overexpression in to-
mato fruit. (a,d) green mature tomato; (b) tomato transiently expressing pCAMBIA3301-121; (c) to-
mato transiently expressing pCAMBIA3301-121-PpARF8; (e) tomato transiently transformed with 
pTRV1 and pTRV2; (f) Tomato transiently transformed with pTRV1 and pTRV2-PpARF8. 

Figure 4. Effect of overexpression of the PpARF8 gene in isolated peach tissues on related gene
expression (Note: CK8, empty vector control; OE8, overexpression of the PpARF8 gene; * p < 0.05,
** p < 0.01).

Horticulturae 2023, 9, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 4. Effect of overexpression of the PpARF8 gene in isolated peach tissues on related gene 
expression (Note: CK8, empty vector control; OE8, overexpression of the PpARF8 gene; * p < 0.05, ** 
p < 0.01). 

3.5. PpARF8 Enhances Fruit Ripe Ning and Softening in Tomato 
The transient transformation system of tomato fruits was used to transiently trans-

form silenced and overexpressed Agrobacterium PpARF8 into tomato peduncle in the green 
ripening stage, and the gene function of PpARF8 was further characterized by phenotypic 
observation of tomato fruits. Compared with the control, tomato fruits ripened earlier af-
ter overexpression of the PpARF8 gene (Figure 5c), and significant early ripening was ob-
served in the Agrobacterium infestation range. However, significantly delayed ripening 
was observed in the Agrobacterium infestation range after gene silencing of PpARF8 (Figure 
5f). 

 
Figure 5. Phenotype of Agrobacterium-mediated PpARF8 gene silencing and overexpression in to-
mato fruit. (a,d) green mature tomato; (b) tomato transiently expressing pCAMBIA3301-121; (c) to-
mato transiently expressing pCAMBIA3301-121-PpARF8; (e) tomato transiently transformed with 
pTRV1 and pTRV2; (f) Tomato transiently transformed with pTRV1 and pTRV2-PpARF8. 

Figure 5. Phenotype of Agrobacterium-mediated PpARF8 gene silencing and overexpression in
tomato fruit. (a,d) green mature tomato; (b) tomato transiently expressing pCAMBIA3301-121;
(c) tomato transiently expressing pCAMBIA3301-121-PpARF8; (e) tomato transiently transformed
with pTRV1 and pTRV2; (f) Tomato transiently transformed with pTRV1 and pTRV2-PpARF8.

4. Discussion

The decrease in fruit hardness and fruit coloration are signs of peach fruit ripening.
Disruption of the pectin-cellulose-hemicellulose (P-C-H) structure is the essential cause of
fruit ripening and softening [4]. The inhibition of PpACS1 expression in hard peaches has
been shown to be the result of low auxin concentrations. However, after 1-naphthylacetic
acid (NAA) treatment, higher auxin levels led to an increase in PpACS1 expression, as well
as a softening of the peach fruit [4,5]. In previous studies, it was demonstrated that the
sudden increase in auxin concentration before peach fruit ripening was accompanied by a
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jump in ethylene [24], which was the reason for auxin-regulated ripening and softening in
peach fruit.

Our preliminary work has confirmed that auxin is involved in the ripening and soften-
ing process of peach fruit. Generally, auxin completes the regulation of plant physiological
processes via typical TIR1/AFB-Aux/IAA-ARF. Aux/IAA proteins are critical for auxin-
mediated developmental signal transduction, and their function in peach fruit ripening and
softening is one of the key questions to be analyzed in this experiment. Many Aux/IAA genes
have been identified and analyzed in the developmental ripening process of fruits. Inhibi-
tion of SlIAA3 gene expression in tomatoes causes physiological characteristics of auxin- or
ethylene-related developmental defects [39]. In our previous study, through transcriptome
sequencing, 15 genes related to auxin signal transduction and 10 genes related to peach
fruit ripening were screened. Furthermore, by RT–qPCR, five Aux/IAA genes more closely
related to the ripening and softening process of peach fruit were obtained. Among them,
the expression of PpIAA5 was significantly higher at the S4-1 stage, which was similar to the
transcriptome results (Figure 1a). Based on the transcription level results, it is speculated
that PpIAA5 may be involved in the ripening and softening process of peach fruits.

Some findings suggest that the Aux/IAA gene regulates peach fruit ripening using
promoting ethylene synthesis and the expression of ripening-related genes [24]. In this
experiment, the relationship between PpIAA5 and peach fruit ripening was explored by
transiently overexpressing the PpIAA5 gene in peach fruit tissues and analyzing the changes
in the expression of auxin-responsive genes as well as genes related to fruit ripening. The
experimental results implied that the PpIAA5 gene might affect fruit development and
ripening softening by regulating downstream PpARF genes, including PpARF5/7/8/16/18
expression levels that were 2-fold lower than those of the control group. Overexpressed
PpIAA5 decreased the expression of the peach fruit ripening softening-related genes PpPG
and PpACO1 (Figure 2), which suggests that PpIAA5 might be a suppressor. Other tran-
scription factors may be involved in coregulating the process.

In the auxin signaling pathway, high auxin levels activate Aux/IAA protein degra-
dation via the 26S proteasome. ARFs are thus released to upregulate downstream auxin
response genes [40]. The interaction between ARF and Aux/IAA proteins is an important
biochemical process in response to the auxin response [19,41]. In this study, we used
yeast library screening technology and yeast two-hybrid assays to screen PpARF8, which
has the strongest interaction effect with PpIAA5. The bimolecular fluorescence comple-
mentation assay further verified their interaction (Figure 3). The results were similar to
those of previous studies: SlIAA9-SlARF7 controlled tomato fruit formation [22], and the
MdIAA121-MdARF13 model regulated anthocyanin biosynthesis in apple fruit [42]. These
results demonstrated the involvement of Aux/IAA protein dimerization with ARF protein,
resulting in effects on plant growth and development, among others. Our experiment
preliminarily showed that the PpIAA5-PpARF8 model may be involved in the ripening
process of peach fruit.

To explore the function of PpARF8 in fruit ripening and the possible regulatory mech-
anism, the differentially expressed PpARF genes were analyzed based on transcriptome
data. PpARF5, PpARF7, PpARF8, PpARF16, and PpARF18 may play crucial roles in fruit
development and ripening, given their higher expression levels. PpARF8 was found to
be highly similar to its homologs in other species (Figure S1). A review of the literature
revealed that the SlARF6 gene has a high homology with PpARF8. Moreover, SlARF6 is
involved in regulating the ripening process of tomato fruits and has a similar function to the
Arabidopsis AtARF8 gene [43]. In tomato plants, the formation and ripening of transgenic
tomato fruits were greatly affected by the downregulated expression of SlARF6 [44]. These
reports indicated that there is a possible relationship between PpARF8 and the ripening
and softening process of peach fruits.

The gene function of PpARF8 was further characterized by transient transformation
in peach and tomato fruit. Overexpressed PpARF8 was transiently transformed into peach
fruit tissues, and the expression of auxin-responsive genes and genes related to fruit
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ripening was analyzed (Figure 4). Aux/IAA is both an upstream and downstream gene of
ARFs [45]. When PpARF8 was overexpressed, the gene expression of PpIAA5 was more
than 1000-fold higher than that of the control group. We hypothesize that PpARF8 has
a more pronounced regulatory effect on the relative expression of PpIAA5 and that the
two may have a mutually restraining relationship. After the transient transformation
of overexpressed and silenced PpARF8 in tomato fruits, the observation of phenotypes
demonstrated that PpARF8 can promote tomato fruit ripening (Figure 5). Our findings
suggest that PpARF8 may be a positive regulator of peach fruit ripening, which will need
to be further explored in the peach transformation system. For the target key enzyme
regulated by PpARF8, transcriptome sequencing results showed that the expression of
PpACO1, a gene related to ethylene synthesis, tended to increase with peach fruit ripening.
However, PpARF8 failed to activate the expression of the downstream target gene PpACO1,
and other enzymes related to cell wall degradation may be the target genes of PpARF8,
which needs further in-depth study.

5. Conclusions

PpIAA5 may negatively regulate peach fruit softening, while PpARF8 may positively
regulate peach fruit softening. Overexpression of PpIAA5 significantly represses the expres-
sion of peach fruit ripening- and softening-related genes PpPG and PpACO1 in peach fruit
tissues using transient transformation. Transient overexpression of PpARF8 in peach fruit
tissues promoted the expression of PpPA, PpPG, and PpACO1. In addition, we identified
the presence of an interaction between PpARF8 and PpIAA5. The PpIAA5-ARF8 module
regulates fruit ripening and softening in peaches. These findings provide a theoretical basis
for elucidating the mechanisms by which auxin signaling components regulate peach fruit
ripening and softening.
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