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Abstract: In recent years, a significant impediment to the advancement of China’s agricultural sector
is the noteworthy challenge posed by diminished crop yields and quality due to ongoing continuous
cropping obstacles. Numerous studies have consistently showcased the potential of plant growth-
promoting rhizobacteria (PGPR) and biochar in augmenting the alleviation of continuous cropping
barriers. Nevertheless, the potential of PGPR and biochar to remediate and improve continuous
cropping peppers in the karst yellow soil area remains unclear. A 2-year field experiment was
implemented to examine the impact of PGPR and biochar, when applied alone or in combination,
on the production potential of continuous cropping peppers. The results revealed that PGPR and
biochar significantly elevated the yield of fresh and dry pepper compared with TF treatment. The
utilization of PGPR and biochar resulted in an augmentation of free amino acids, soluble sugar, and
vitamin C content in pepper fruits, but a reduction in the nitrate content, which proved advantageous
in enhancing the overall quality of peppers. Furthermore, the use of PGPR and biochar demonstrated
significant benefits in enhancing NPK accumulation, fertilizer utilization, and economic efficiency.
Nevertheless, the co-application of PGPR and biochar yielded significantly better results compared
to their individual application. In conclusion, the utilization of PGPR and biochar demonstrated a
favorable impact on the productivity and economic benefits of continuous cropping peppers. The
simultaneous application of PGPR and biochar represents a promising approach to enhancing yield
and improving the quality of peppers in the karst yellow soil region of Southwest China.

Keywords: plant growth-promoting rhizobacteria; biochar; yield and quality; fertilizer efficiency;
economic benefits

1. Introduction

Modern agriculture is confronting novel challenges, and the escalating demand for
agricultural goods strains crop production and compels agricultural practices to mitigate
their adverse ecological effects [1,2]. Thus, enhancing the sustainable productivity of exist-
ing farmlands becomes pivotal to fulfilling forthcoming global crop needs while minimizing
environmental detriments. The intensified cultivation of monoculture cash crops has led
to complications involving continuous cropping and the emergence of replanting-related
diseases, profoundly impacting the viability of cultivable terrain. This situation under-
scores a substantial peril to both regional food security and environmental integrity [3–5].
Numerous researchers have substantiated that the dysregulation of soil microbial diver-
sity stands as the central factor driving challenges in continuous cropping obstacles [6–9].
In recent years, researchers have increasingly embraced the utilization of beneficial mi-
croorganisms and organic amendments to rehabilitate compromised soil in agricultural
contexts, and this approach aims to enhance crop yield and quality while improving the
soil microenvironment [10–12].
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Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that
reside in the soil microflora of the plant rhizosphere. Specifically, PGPR possess numerous
functions, including biological nitrogen fixation, phosphorus and potassium solubilization,
antibiotic secretion, and hormone synthesis [13,14]. It has been demonstrated that PGPR
can colonize plant roots and enhance the solubilization of insoluble nutrients by releasing
organic acids. This colonization and nutrient solubilization contribute to promoting plant
growth and improving the host’s uptake and utilization of mineral nutrients [15]. Notably,
studies have revealed that PGPR can produce antibiotics, antimicrobial proteins, pathogen
cell wall hydrolases, and other biologically active components throughout their growth and
reproduction, which can effectively inhibit or eradicate plant pathogenic bacteria [16,17].
Moreover, PGPR has been shown to enhance plant root growth and development by
producing growth hormones and cytokinins. It also improves nutrient uptake and helps
maintain balanced nutrition in crops [18,19]. Consequently, the utilization of PGPR has been
widely recognized as the most effective approach for mitigating the challenges associated
with continuous cropping and boosting crop productivity. Similar studies have been
conducted using biochar. Biochar can improve soil fertility and reduce the occurrence
of diseases and pests by improving the soil microbial environment [20–25]. At present,
PGPR and biochar are extensively utilized as vital soil amendment materials in agricultural
production [26,27].

China stands as a global leader in pepper production. Nonetheless, the challenge of
continuous cropping hurdles has pervaded pepper cultivation regions due to the adoption
of unsustainable farming and management methods. The long-term continuous cultivation
of pepper has fostered an escalation in pest and disease occurrences. As a consequence, both
pepper yield and quality have experienced a consistent decline, exerting an adverse effect
on economic returns. This predicament significantly hampers the sound and sustainable
progression of pepper agriculture [28]. While numerous experiments have underscored
the positive influence of individual PGPR or biochar applications, boosting crop yield and
enhancing soil quality, it is worth noting that the majority of these experiments were carried
out in controlled laboratory or greenhouse settings. Consequently, research encompassing
field experiments remains relatively scarce. In this research, we hypothesized that the
application of PGPR and biochar would have an ameliorative effect on continues cropping
peppers, so a 2-year field experiment was implemented to investigate the potential amelio-
rative effect of applying PGPR and biochar either alone or in combination on pepper fields
that have been continuously planted for 5 years, with the following aims: (1) to observe
the effects of PGPR and biochar on fresh yield, dry yield, and the quality of the peppers,
(2) to examine the impacts of PGPR and biochar on NPK accumulation and fertilizer use
efficiency, and (3) to calculate the effects of applying PGPR and biochar on improving the
economic output of peppers.

2. Materials and Methods
2.1. Site Description

The field experiment was implemented from 2021 to 2022 in Guizhou Province of
China. Prior to the experiment, the field was cultivated with peppers for a period of five
years, spanning 2016–2020. The experimental region is characterized by the presence of
yellow soil, which is extensively found in the karst mountains of Southwest China. The
yellow soil type at this region was classified as Acrisol in the World Reference Base for
Soil Resources (WRB), and was developed from the Triassic limestone and sand shale
efflorescence. Table 1 presents the fundamental physicochemical properties of the soil in
the experimental region.
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Table 1. The basic physicochemical properties of soil and biochar.

pH
Organic
Carbon
(g·kg−1)

Total
Nitrogen
(g·kg−1)

Total
Phosphorus

(g·kg−1)

Available
Phosphorus
(mg·kg−1)

Total
Potassium
(g·kg−1)

Available
Potassium
(mg·kg−1)

Soil 6.19 11.88 1.36 1.02 17.11 14.72 156.83
Biochar 8.23 354.86 39.84 9.23 275.47 19.88 748.55

2.2. Experimental Materials

The experimental pepper variety was ‘Zunla 9’, a locally cultivated pod pepper variety.
The chemical fertilizer used in the experiment is the best-selling compound fertilizer in
the local area, with a total nutrient content of 42% (N content of 18%, P2O5 content of
6%, K2O content of 18%). PGPR solution was from Shandong Lvlong Biotechnology Co.,
Ltd. (Zhucheng, China), and biochar was from Guizhou Jinyefeng Ecological Agricultural
Technology Co., Ltd. (Weining, China). The PGPR solid was produced using a hybrid
strain comprising Bacillus amyloliquefaciens and Paenibacillus polymyxa. The effective viable
bacterial count exceeded 15 × 108 CFU·g−1. The raw material for producing biochar
was distillers’ grains processed at 550 ◦C. Table 1 lists the fundamental physicochemical
properties of biochar.

2.3. Experimental Design

Two pepper planting seasons were included in the field experiments conducted from
2021 to 2022. The study included six treatments, each with three replicates. The detailed
treatments were shown in Table 2. It should be noted that the application rate of chemical
fertilizers was provided by the local agricultural department. In the TFP, TFB, and TFPB1
treatments, the application rates of PGPR (15.00 kg·hm−2) and biochar (1500.00 kg·hm−2)
were also determined based on the recommended application rates of organic remediation
materials by the local agricultural department. In the TFPB2 treatment, PGPR and biochar
were applied twice as much as in the TFPB treatment, with the aim of exploring whether
increasing the application rate of both has a greater potential for improvement when
farmers’ economic conditions allow.

Table 2. The application rates of chemical fertilizer, PGPR, and biochar in different treatments.

Treatments Chemical Fertilizer
(kg·hm−2)

PGPR
(kg·hm−2)

Biochar
(kg·hm−2)

CK 0 0 0
TF 1500.00 0 0

TFP 1500.00 15.00 0
TFB 1500.00 0 1500.00

TFPB1 1500.00 15.00 1500.00
TFPB2 1500.00 30.00 3000.00

In the experiment, prior to transplanting pepper plants, chemical fertilizer and biochar
were utilized in the soil as a basal fertilizer. Afterward, a rotary tiller was utilized to blend
the fertilizers with the soil thoroughly. Fifteen days after ridging, pepper seedlings were
transplanted and then covered with a plastic film. PGPR was applied 20 days after trans-
planting the pepper seedlings. For the TFP and TFPB1 treatments, PGPR was applied by
dissolving 1 kg of PGPR in 300 L of water. The solution was then allowed to stand for 6 h be-
fore being poured onto the roots of the peppers. The watering volume was 100 mL·plant−1.
For the TFPB2 treatment, 2 kg of PGPR was dissolved in 300 L of water, keeping the other
operational steps consistent with the abovementioned method. Furthermore, the PGPR
solution was applied through irrigation in the TFP, TFPB1, and TFPB2 treatments. Similarly,
the roots of peppers in the CK, TF, and TFB treatments were irrigated with water using the
same method, with a watering volume of 100 mL plant−1. This method was employed to
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mitigate variations in pepper growth stemming from disparities in water supply. Referring
to the local recommended planting density for pod peppers, it was 4.5 × 104 plants·ha−1.
Each treatment was randomly assigned to a block for the experiment, and carried out in a
plot area measuring 40.50 m2. Moreover, consistent field managements were employed to
guarantee the precision of the test outcomes.

2.4. Soil Sampling and Analysis

Prior to the application of fertilizers, soil samples were collected from 15 randomly
selected sites utilizing a soil auger, at a depth of 0–20 cm. We prepared soil samples
according to the method of Ning et al. [29], and determined the physicochemical properties
of the soil.

2.5. Plant Sampling and Analysis

In the pod pepper’s maturation phases, six plants were gathered from each plot. We
prepared plant samples according to the method of Zhang et al. [28], followed by digestion
using a mixture of concentrated H2SO4 and H2O2 to analyze the concentrations of N, P,
and K [28]. Additionally, the fresh samples were harvested from each plot to analyze the
levels of reducing sugars, VC, free amino acids, and nitrates [28].

2.6. Pepper Yield

The quantity of newly harvested pod peppers in each plot was evaluated according to
the ripeness of the pods. The ultimate yield of fresh peppers was ascertained by gauging
the combined weight across multiple harvests. Additionally, the moisture content of freshly
collected pod peppers was established by subjecting them to laboratory drying. Following
this, the yield of dehydrated pod peppers was computed.

2.7. Calculations

We calculated the NPK nutrient accumulation, fertilizer utilization efficiency, and
economic benefits using the previous method [28]. It should be noted that the price per
kilogram of dried pod pepper was CNY 20.00 in assessing economic benefits, and the cost
of chemical fertilizer and biochar was 3350 and 2000 CNY·t−1, respectively. The PGPR was
20.00 CNY·kg−1.

2.8. Statistical Analysis

Single- and multiple-factor analysis of variance (ANOVA) were performed using
the SPSS 20.0 software (SPSS Inc., Chicago, IL, USA). Duncan’s method was utilized for
multiple comparisons at p < 0.05. The figures were created using Origin 8.0 software
(OriginLab Corporation, Northampton, MA, USA).

3. Results
3.1. The Impact of Applying PGPR and Biochar on the Yield

The application of PGPR and biochar positively affected the pepper yield, as illustrated
in Figure 1. When compared to TF treatment, the utilization of PGPR and biochar, either
separately or in combination (TFP, TFB, TFPB1, and TFPB2), resulted in an increase in the
yield of fresh peppers by 11.52–49.68% (2021) and 20.99–66.86% (2022). The TFPB2 treatment
yielded the highest amount of fresh peppers over the span of two years, particularly in
2022, where it reached a maximum of 16,315 kg·ha−1. Furthermore, the findings indicated
a similarity in the changes observed in both dry pepper yield and fresh pepper yield.
In comparison to TF treatment, the applying PGPR and biochar alone or in combination
resulted in a significant increase in dry pepper yield by 2.09–53.08% (2021) and 34.43–75.44%
(2022), respectively. In both 2021 and 2022, the TFPB2 treatment demonstrated the highest
yield of dry peppers.
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Figure 1. The yield of fresh (A,B) and dry (C,D) peppers, and ANOVA (E) in different treat-
ments. In (A–D), the different lowercase letters indicate significant differences among different
treatments at p < 0.05 in the same year. In (E), Y represents year, T represents different treatments, and
Y×T represents the interaction between year and treatment. ns represents no difference, ** represents
statistical significance at p < 0.01. The same applies below.

3.2. The Impact of Applying PGPR and Biochar on the Quality of Fresh Pepper Fruits

The quality of fresh pepper fruits was improved by applying PGPR and biochar
(Table 3). The results exhibited no significant difference in the content of free amino acids
among all treatments in 2021. However, in 2022, the TFPB2 treatment exhibited a signifi-
cantly higher free amino acid content than the TF treatment. In comparison to TF treatment,
the applying PGPR and biochar alone or in combination led to a significant increase in
reducing sugar content, with an increase of 24.90–50.87% in 2021 and 37.63–70.82% in 2022.
The application of PGPR and biochar in combination (TFPB1 and TFPB2) resulted in an
increase of 7.56–20.79% in reducing sugar content in 2021 and 7.42–24.12% in 2022, as
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compared to the PGPR and biochar treatment alone (TFP and TFB). In the meantime, the
utilization of PGPR and biochar alone or in combination resulted in an increase in VC
content of 8.42–32.63% in 2021 and 30.59–56.47% in 2022. Furthermore, the application
of either PGPR or biochar alone, or their combination, resulted in a notable decrease in
the nitrate content of fresh fruits by 16.24–21.61% in 2021 and 21.02–41.56% in 2022, com-
pared to TF treatment. Notably, the combination of PGPR and biochar exhibited the most
significant impact.

Table 3. The fruit quality of fresh pepper in different treatments.

Year Treatments Free Amino Acid
(g·kg−1)

Reducing Sugar
(mg·kg−1)

VC
(g·kg−1)

Nitrate
(mg·kg−1)

2021

CK 3.70 ± 0.10 a 29.06 ± 0.91 f 0.69 ± 0.04 e 78.98 ± 1.64 b
TF 3.74 ± 0.10 a 32.73 ± 1.16 e 0.95 ± 0.05 d 84.19 ± 2.28 a

TFP 3.77 ± 0.09 a 40.88 ± 1.65 d 1.03 ± 0.04 c 70.52 ± 2.70 c
TFB 3.79 ± 0.12 a 43.54 ± 0.78 c 1.11 ± 0.04 b 67.95 ± 2.61 cd

TFPB1 3.80 ± 0.09 a 46.83 ± 1.30 b 1.21 ± 0.03 a 66.35 ± 2.62 cd
TFPB2 3.83 ± 0.12 a 49.38 ± 1.12 a 1.26 ± 0.04 a 66.00 ± 2.97 d

2022

CK 3.56 ± 0.07 c 24.08 ± 1.01 e 0.63 ± 0.03 e 76.81 ± 3.14 b
TF 3.69 ± 0.04 bc 30.40 ± 0.80 d 0.85 ± 0.03 d 84.43 ± 2.81 a

TFP 3.79 ± 0.12 ab 41.84 ± 1.21 c 1.11 ± 0.02 c 66.68 ± 3.35 c
TFB 3.80 ± 0.09 ab 44.58 ± 0.66 c 1.14 ± 0.04 c 64.49 ± 3.28 cd

TFPB1 3.81 ± 0.14 ab 47.89 ± 2.48 b 1.23 ± 0.04 b 58.82 ± 3.40 d
TFPB2 3.96 ± 0.09 a 51.93 ± 2.59 a 1.33 ± 0.03 a 49.34 ± 4.07 e

ANOVA

Y ns ns ns **
T ** ** ** **

Y×T ns ** ** **

Note: The different lowercase letters indicate significant differences among different treatments at p < 0.05 in the
same year. ns represents no difference, ** represents statistical significance at p < 0.01.

3.3. The Impact of Applying PGPR and Biochar on the NPK Accumulation

The application of PGPR and biochar exhibited a positive impact on the accumula-
tion of NPK nutrients (Figure 2). Relative to the TF treatment, the application of PGPR
and biochar, either individually or combined, resulted in an increase of 14.10–70.88%,
4.13–55.08%, and 12.20–49.23% in N, P, and K accumulation in 2021. Moreover, in 2022, the
increase reached 42.82–125.60%, 40.54–143.95%, and 41.30–96.94% for the same nutrients.
In 2021, the co-application of PGPR and biochar treatments (TFPB1 and TFPB2) resulted in
an increase of N, P, and K accumulation by 13.23–49.77%, 16.66–48.93%, and 11.21–33.01%,
respectively, compared to application alone (TFB and TFV). Similarly, in 2022, these com-
bined treatments showed an increase of 13.70–57.95%, 15.12–73.58%, and 13.55–39.38% for
N, P, and K accumulation, respectively.
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among different treatments at p < 0.05 in the same year. In (G), ** represents statistical significance at
p < 0.01.



Horticulturae 2023, 9, 1104 8 of 14

3.4. The Impact of Applying PGPR and Biochar on Agronomic and Recovery Efficiency of NPK

Table 4 demonstrates that the utilization of PGPR and biochar resulted in a significant
enhancement in fertilizer efficiency. Compared to the TF treatment, the application of
PGPR and biochar alone or in combination resulted in an increase of AEN, AEP, and AEK
by 4.46–113.86%, 4.46–113.86%, and 4.46–113.86% in 2021. In 2022, the increase was even
higher, ranging from 55.05–120.62%, 55.09–120.77%, and 55.05–120.62%, respectively. In
2021, the REN, REP, and REK values following PGPR and biochar application either alone or
in combination were 1.22–2.11 times, 1.07–1.98 times, and 1.22–1.88 times higher than those
of the TF treatment in 2021. In 2022, these values were 1.72–3.12 times, 1.70–3.48 times, and
1.71–2.68 times higher than those of the TF treatment, respectively. The co-application of
PGPR and biochar treatments (TFPB1 and TFPB2) resulted in an average increase of 7.55%
in REN, 8.83% in REP, and 13.32% in REK when compared to their individual application
(TFP and TFB).

Table 4. The fertilizer utilization of different treatments.

Year Treatments
AE (kg·kg−1) RE (%)

AEN AEP AEK REN REP REK

2021

CK — — — — — —
TF 4.04 ± 0.33 c 12.12 ± 1.00 c 4.04 ± 0.33 c 19.54 ± 1.09 e 10.56 ± 0.55 d 27.90 ± 1.82 e

TFP 4.22 ± 0.27 c 12.66 ± 0.82 c 4.22 ± 0.27 c 23.87 ± 1.23 d 11.34 ± 0.60 d 33.96 ± 2.49 d
TFB 6.70 ± 0.80 b 20.11 ± 2.41 b 6.70 ± 0.80 b 31.27 ± 2.04 c 15.17 ± 0.77 c 40.55 ± 2.76 c

TFPB1 7.72 ± 0.62 a 23.15 ± 1.85 a 7.72 ± 0.62 a 36.89 ± 1.47 b 19.08 ± 0.28 b 47.54 ± 1.90 b
TFPB2 8.64 ± 0.38 a 25.92 ± 1.13 a 8.64 ± 0.38 a 41.30 ± 0.55 a 20.95 ± 1.07 a 52.37 ± 0.42 a

2022

CK — — — — — —
TF 4.85 ± 0.28 e 14.54 ± 0.85 e 4.85 ± 0.28 e 13.93 ± 0.82 e 9.78 ± 0.94 e 20.77 ± 1.74 e

TFP 7.52 ± 0.57 d 22.55 ± 1.70 d 7.52 ± 0.57 d 24.01 ± 1.71 d 16.60 ± 1.76 d 35.59 ± 1.07 d
TFB 8.57 ± 0.64 c 25.70 ± 1.93 c 8.57 ± 0.64 c 31.71 ± 1.01 c 22.21 ± 1.37 c 43.16 ± 1.84 c

TFPB1 9.74 ± 0.18 b 29.21 ± 0.55 b 9.74 ± 0.18 b 37.37 ± 0.82 b 26.63 ± 2.00 b 51.06 ± 1.63 b
TFPB2 10.70 ± 0.53 a 32.10 ± 1.58 a 10.70 ± 0.53 a 43.51 ± 1.30 a 33.99 ± 1.50 a 55.57 ± 0.83 a

ANOVA

Y ** ** ** ns ** ns
T ** ** ** ** ** **

Y×T ** ** ** ** ** **

Note: AEN stands for agronomic efficiency of N, AEP stands for agronomic efficiency of P, AEK stands for
agronomic efficiency of K. REN stands for recovery efficiency of N, REP stands for recovery efficiency of P, REK
stands for recovery efficiency of K. The different lowercase letters indicate significant differences among different
treatments at p < 0.05 in the same year. ns represents no difference, ** represents statistical significance at p < 0.01.

3.5. The Impact of Applying PGPR and Biochar on Output Value and Net Income

In comparison with TF treatment (Table 5), the application of PGPR and biochar, either
alone or in combination, resulted in an increase in the OV of dry peppers by 2.09–53.08%
(2021) and 34.43–75.44% (2022), respectively. Furthermore, compared to TF treatment, the
net income of PGPR and biochar, either alone or in combination, increased by 1.63–43.90% in
2021 and 38.55–68.24% in 2022. The co-application of PGPR and biochar (TFPB1 and TFPB2)
resulted in a 9.77–41.58% increase in net income in 2021 and an 11.20–21.43% increase in
2022, as compared to the application of PGPR or biochar alone (TFP and TFB). Among all
treatments, the TFPB2 treatment exhibited the highest net income for dry peppers over the
2-year period, reaching 59,788 CNY·ha−1 in 2021 and 61,664 CNY·ha−1 in 2022.
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Table 5. The economic benefits of different treatments.

Year Treatments OV
(CNY·ha−1)

FV
(CNY·ha−1)

NEI
(CNY·ha−1)

2021

CK 24,990 ± 1829 e — 24,990 ± 1829 d
TF 46,799 ± 2778 d 5250 41,549 ± 2778 c

TFP 47,778 ± 2409 d 5550 42,228 ± 2409 c
TFB 61,185 ± 2686 c 8250 52,935 ± 2686 b

TFPB1 66,659 ± 3238 b 8550 58,109 ± 3238 a
TFPB2 71,638 ± 2897 a 11850 59,788 ± 2897 a

2022

CK 15,737 ± 1433 f — 15,737 ± 1433 d
TF 41,903 ± 815 e 5250 36,653 ± 815 c

TFP 56,332 ± 1663 d 5550 50,782 ± 1663 b
TFB 62,004 ± 3430 c 8250 53,754 ± 3430 b

TFPB1 68,324 ± 1845 b 8550 59,774 ± 1845 a
TFPB2 73,514 ± 3301 a 11850 61,664 ± 3301 a

ANOVA

Y ns — ns
T ** — **

Y×T ** — **
Note: OV means output value, FV means fertilizer value, NEI means net income. The different lowercase letters
indicate significant differences among different treatments at p < 0.05 in the same year. ns represents no difference,
** represents statistical significance at p < 0.01. — represents non-exist.

4. Discussion

The study findings demonstrated that PGPR and biochar application, individually or
in combination, positively impacted the yield of continuous cropping peppers. Relative
to the TF treatment, the yield of fresh peppers increased by 11.52–49.68% in 2021 and
20.99–66.86% in 2022. Meanwhile, the yield of dry peppers increased by 2.09–53.08% in
2021 and 34.43–75.44% in 2022. Studies have shown that PGPR has a significant impact
on improving the microbial community structure of rhizosphere soil and enhancing the
functional diversity of microorganisms, and such function promotes the growth of beneficial
bacteria while inhibiting the growth of pathogenic bacteria [16,30]. Simultaneously, PGPR
can create an optimal micro-ecological environment for the plant root system to augment
water and fertilizer absorption capacity, thereby facilitating plant growth [31]. Moreover,
the beneficial impacts of biochar on crop yields can be ascribed to various factors. Studies
have demonstrated that the application of biochar can enhance soil quality. Specifically,
biochar can not only addresses the issue of soil compaction caused by excessive fertilizer
usage, but also promotes higher crop yields [32–36]. Significantly, utilizing biochar can
heighten soil microorganism activity and enhance the microbiological setting, leading to
improved conditions for crop root development and yield [37–39].

Interestingly, the co-application of PGPR and biochar in this study brought about
more significant increases in yield compared to individual applications alone, demonstrat-
ing a synergistic effect of the co-application of PGPR and biochar. Previous studies also
supported our conclusion. These studies highlighted that the combination of PGPR and
biochar could be effective in enhancing the nutrient status and microbial environment of
continuous crop barrier soils. The inhibition of harmful pathogens was identified as a
significant mechanism [40,41]. This phenomenon can be attributed to the dual stimulating
effects of PGPR and biochar [42,43]. On the one hand, PGPR can fulfill important func-
tions, such as solubilizing phosphorus and potassium, fixing nitrogen, and decomposing
effective nutrients in the soil. Additionally, they facilitate the release and sequestration
of trace elements, thereby enhancing soil nutrient cycling [44,45]. On the other hand, the
porous structure of biochar creates an ideal growth environment for PGPR, facilitating their
propagation in the rhizosphere soil. This, in turn, leads to significant alterations in soil
microbial function and community diversity [46,47].



Horticulturae 2023, 9, 1104 10 of 14

The quality of fruit serves as a crucial criterion for evaluating the overall quality of
agricultural products. The results showed the application of PGPR and biochar increased
the levels of fresh pepper quality (Table 3). These results uncovered that the implemen-
tation of effective improvement measures positively influenced the quality enhancement
of continuous cropping peppers. It has been found that PGPR can induce plant resis-
tance by producing a variety of phytohormones, such as organic acids, gibberellins, and
cytokinins [48]. They not only stimulate the accumulation of soluble proteins, proline,
and other substances to counteract external environmental stress, but also enhance crop
quality [49,50]. Moreover, the use of biochar encourages the harmonization and equilibrium
of nutrient metabolism within crops due to its stable fertilization and continuous nutrient
release, resulting in improved fruit quality [51,52]. Additionally, the enhancement in fruit
quality may be attributed to the utilization of PGPR or biochar, which has been shown to
increase the photosynthetic rate of leaves and facilitate the translocation of photosynthetic
products to the fruit [27,53]. This process has also been found to have a positive impact on
fruit quality. Notably, this study also observed the synergistic benefits of PGPR and biochar
in enhancing the quality of continuous cropping peppers, which could be attributed to
their complementary effects [47,54]; however this requires further research.

In this research, the application of PGPR and biochar, either alone or in combina-
tion, led to a significant increase in the accumulation of NPK (Figure 2) and a significant
improvement in fertilizer utilization efficiency (Table 4). Research has shown that PGPR
can expedite the decomposition of organic matter in the soil, facilitate the dissolution of
insoluble nutrients, and subsequently release available nutrients to enhance the efficacy
of soil nutrients. This process is also beneficial for the absorption and accumulation of
mineral nutrients in plants [55,56]. In addition, research has indicated that the utilization
of biochar enhances the soil carbon-to-nitrogen ratio and suppresses nitrogen conversion
and denitrification through soil microorganisms, thereby facilitating the retention of NH4

+

and NO3
- in the soil [57,58]. Moreover, biochar can serve as a substitute for conventional

phosphorus fertilizers due to its naturally high phosphorus content, which can also modify
the dynamics and effectiveness of phosphorus in soils through processes like phosphorus
adsorption and desorption, as well as by regulating the composition of the soil microbial
community [59–61]. Furthermore, aside from directly contributing to potassium levels,
biochar has the potential to enhance soil potassium content and boost the efficiency of
potassium fertilizer utilization through the promotion of microbial activity [62,63]. Notably,
the co-application of PGPR and biochar results in a further enhancement of nutrient accu-
mulation and utilization by the plants, as compared to their individual application. This can
be attributed to the enhanced colonization ability and survival rate of PGPR in rhizosphere
soil through the addition of biochar [64,65]. Furthermore, the synergistic interaction be-
tween biochar and PGPR amplifies the capability of functional microorganisms to regulate
nutrient transformations and cycling in the rhizosphere soil. This, in turn, promotes the
accumulation of nutrients by plants and improves nutrient utilization efficiency [54,66].
We hypothesize that the synergistic mechanism of PGPR and biochar is mainly realized
through the improvement of the soil microbial environment (including soil microorganisms
and soil enzyme activities, etc.), and although the soil was not evaluated in this study, this
will be the focus of our later research.

Importantly, it should be highlighted that the TFP treatment exhibited comparatively
suboptimal results concerning both biological and economic aspects in the context of
continuous pepper cropping, implying that relying solely on the application of PGPR
was not an ideal approach. This could be attributed to the adherence of PGPR to the soil
particles’ surface, which hindered the target microorganisms from colonizing the deep
soil layers [67,68]. Consequently, this significantly impaired their ability to colonize the
root surface [16,69]. Furthermore, the colonization of PGPR is influenced by various soil
environmental factors, including temperature, oxygen, and moisture, as well as competition
from native microorganisms [54,70]. Microbial immobilization technology is one approach
to addressing the aforementioned issues, with biochar being recognized as an exceptional
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carrier for microorganism immobilization [71,72]. Hence, future studies should prioritize
strengthening research on biochar-immobilized PGPR composites to enhance the soil
remediation function of biochar and PGPR.

5. Conclusions

The study findings demonstrated that applying PGPR and biochar, either alone or in
combination, resulted in increased productivity, improved fruit quality, enhanced fertilizer
utilization, and enhanced economic benefits of continuous cropping peppers in the karst
region of southwest China. In the current conditions, the synergistic use of PGPR and
biochar emerged as the most effective strategy for boosting productivity and economic
advantages in the continuous cropping peppers. Thus, the synergistic use of PGPR and
biochar (TFPB1) is recommended to alleviate the issues of continuous cropping peppers
grown in the karst yellow soil region of Southwest China. In addition, higher PGPR and
biochar (TFPB2) can be applied to increase the production potential of continuous chili
peppers under better economic conditions.
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