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Abstract: Pepper (Capsicum annuum L.) holds immense global importance, as it is widely cultivated
for its economic value in the food industry and its health benefits. Consequently, substantial breeding
progress has been made in cultivar development, whole-genome analysis, and transformation tech-
niques aimed at enhancing agricultural traits, including fruit development and capsaicin synthesis.
However, research concerning the phylogenetic relationships within C. annuum remains insufficient.
In this study, we characterized the plastome sequences of seven C. annuum, including five hot pepper
and two bell pepper cultivars, while also elucidating their phylogenetic relationships. Furthermore,
we conducted comparative analyses to gain insight into their evolutionary history. The seven plas-
tomes displayed typical quadripartite structures and ranged from 156,821 to 156,922 bp, displaying
highly conserved sequences. In contrast to prior studies, our phylogenomic analyses revealed that
C. annuum species did not form a monophyletic group. Each subclade was thought to be related to a
different evolutionary history, such as hybridization, domestication from wild ancestors, and artificial
selection. Therefore, we were able to discern the relationships among cultivars based on their genetic
profiles of plastomes. Our findings also revealed that the Korean landraces Younggo 4, 5, 10, and
11 share the most recent common ancestor with Mexican landrace CM334.

Keywords: pepper; Capsicum annuum; cultivar; plastome; phylogeny; comparative analysis; artificial
selection; genetic profile; Korea landraces Younggo

1. Introduction

The genus Capsicum L. (Solanaceae) is native to the temperate and tropical regions
of Central and South America [1], comprising 42 recognized species [2]. It stands out as
one of the most widely cultivated plants globally due to its immense economic value in
the food industry and its health benefits. Among these species, five species (C. annuum L.,
C. frutescens L., C. chinense Jacq., C. baccatum L., and C. pubescens Ruiz. & Pav.) have been
extensively cultivated and domesticated [3]. They can be classified into three complexes
based on morphological, cytogenetic, and molecular data [4–6]: the C. annuum, C. baccatum,
and C. pubescent complexes. The C. annuum complex includes C. annuum, C. chinense,
C. frutescens, and C. galapagoense, whereas the C. baccatum complex comprises C. baccatum,
C. chaocense, C. praetermissum, and C. tovarii. The C. pubescens complex consists of
C. cardenasii, C. eximium, and C. pubescens [1,5–7]. However, morphological character-
istics, such as seed color, corolla color, flower position, and fruit size and shape, have
limitations in classifying domesticated species due to overlapping features. In contrast,
cytogenetic and molecular studies utilizing partial sequences of chloroplast and nuclear
DNA support the existence of these three complexes [1,4,5,8]. Moreover, Madgy et al. [9]
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employed 321 whole plastome sequences to elucidate the plastomic boundaries among
these Capsicum complexes. Although these studies contribute to understanding the taxo-
nomic relationships within Capsicum, they have limitations, including low support values
or the exclusion of certain species, as well as biased samplings from specific countries.

Capsicum annuum is classified into two distinct types based on pungency and fruit
shape: hot pepper and bell pepper. In addition to their agricultural significance, both types
of peppers are vital genetic resources that drive research efforts, including the development
of monitoring systems for detecting transformation, gene editing and transformation, and
enhancement of agricultural traits, such as fruit development, capsaicin synthesis, and
disease resistance [10–15]. In recent studies, CRISPR (clustered regularly interspaced short
palindromic repeats) tools have been effectively employed for genome editing to improve
disease resistance in both hot and bell peppers [11,16]. Interestingly, these biotechnological
applications have highlighted contrasting sensitivities among genetic backgrounds, sug-
gesting the existence of molecular disparities [17,18]. Knowing where these differences in
molecular responses originate is important in research on improving crop quality.

Research into pepper cultivation in Korea began in the late 1950s. The primary re-
search topics focused on improving the quality of landrace, producing F1 seeds via male
sterility and hybridization, and creating disease-resistant cultivars [19]. As an example,
researchers identified four landraces (cultivars Younggo 4, Younggo 5, Younggo 10, and
Younggo 11, called Subicho, Chilsungcho, Youwolchol, and Tojong, respectively) from
different regions in the late 1990s. Each landrace was selected based on specific traits,
such as fruit size, spiciness, and flowering time, leading to further refinement of each
cultivar. Younggo 4 has the longest fruit, while Younggo 5 is distinguished by its thick flesh
compared to Younggo 4. In contrast, Younggo 10 and Younggo 11 exhibit early flowering
time, smaller fruit sizes, and a strong spicy flavor relative to the other two landraces [19,20].
The landrace is characterized by a specific adaptation to the environmental conditions of
its cultivation areas [21]. Given that landraces offer a distinct source of specialized traits,
including disease and pest resistance, nutritional quality, and adaptability to marginal
environments [22–24], understanding their genetic information plays a crucial role in ge-
netic research and conservation.

In this study, we determined the complete plastomes of three Korean landraces
(Younggo 5, Younggo 10, and Younggo 11), one Mexican landrace (CM334), and three
developed cultivars (C15, Dempsey, and Ferrari), all of which have been extensively stud-
ied as valuable genetic resources. Additionally, we conducted phylogenetic analyses using
the plastome sequences, including seven newly sequenced plastomes and those previously
reported. Lastly, comparative analyses were performed to gain insights into plastome
variation and the evolutionary history of C. annuum cultivars.

2. Materials and Methods
2.1. Sampling and DNA Extraction

Korean landraces (Younggo 5, Younggo 10, and Younggo 11) were provided by
Yeongyang Pepper Institute (Yeongyang, Republic of Korea). The commercially avail-
able pepper (C15) was obtained from Nongwoo Bio Co. (Suwon, Republic of Korea), and
the other peppers, Dempsey and Ferrari, were provided by the Vegetable Breeding Research
Center (VBRC, Seoul, Republic of Korea). Seeds of C15 and Younggo 10 were germinated
in a growth medium, and fresh leaves were collected from seedlings that reached 68 and
44 days of age, respectively. Following the sample collection, the seedlings were trans-
planted into 15 cm diameter pots and placed in a growth room. Similarly, fresh leaves
from cultivars Younggo 5, Younggo 11, Dempsey, and Ferrari were sampled from seedlings
aged 51 days that had been grown under controlled conditions (Figure S1). Genomic
DNA was extracted from a 100 mg sample using the Exgene Plant SV mini kit (GeneAll
Biotechnology, Seoul, Republic of Korea) according to the manufacturer’s instructions. The
DNA quantity and quality were confirmed using a spectrophotometer and 1% agarose gel
electrophoresis, respectively.
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2.2. DNA Sequencing, Genome Assembly, and Annotation

A paired-end DNA library was prepared using the Illumina TruSeq Nano DNA
library preparation kit (Illumina, Inc., San Diego, CA, USA), with an insert size of 350 bp.
Subsequently, the library underwent sequencing on the Illumina NovaSeq 6000 (Illumina,
Inc.) at the Macrogen Corp. in Seoul, Korea, generating approximately 10 GB of raw
data for each cultivar. To assemble the raw reads into a complete plastome, we employed
the NOVOplasty ver. 4.3 software [25]. The assembly process employed a 39 k-mer,
with a fragment of the psbA gene from C. annuum var. glabriusculum (accession number
KJ619462) as the seed sequence. For cultivar CM334, we downloaded contigs from NCBI
(AYRZ00000000) and mapped them to the reference genome of C. annuum (MH559327) for
assembly. Following this, we employed CPGAVAS2 [26] and tRNAscan-SE 2.0 software [27]
with default settings to identify and annotate the plastome genes. The annotation of protein-
coding regions was validated through searches for homologous genes using the NCBI
Conserved Domain Database (CDD) [28]. The circular map of the plastome was generated
using OGDRAW ver. 1.3.1 [29]. The annotated complete chloroplast genome sequences
were deposited in GenBank.

2.3. Comparative Plastome Analysis

To compare the plastome sequences of the cultivars, Younggo 4 was also included
and analyzed, in addition to the seven cultivars from this study. Genetic distance analyses
were conducted using the Kimura 2-parameter model implemented in MEGA X [30]. All
ambiguous positions were removed for each sequence pair (pairwise deletion option),
leaving a total of 157,212 positions in the final dataset. To explore genetic variability among
the newly sequenced cultivars, we utilized the MIcroSAtellite (MISA) identification tool
(https://webblast.ipk-gatersleben.de/misa/, accessed on 20 August 2023) and set the motif
lengths and minimum numbers of repetitions as follows: 10 repeat units for mononucleotide
SSR motifs, six for dinucleotide motifs, and five for trinucleotide to hexanucleotide motifs.
For nucleotide diversity (Pi) calculation, sliding window analysis was conducted using
DnaSP v. 6 [31]. The step size was set to 300 bp, with a 600 bp window length. A
comparison of the complete plastomes among the eight C. annuum cultivars, including the
seven cultivars and previously sequenced Younggo 4, was performed using mVISTA [32]
with the Shuffle-LAGAN mode option [33]. Relative synonymous codon usage (RSCU)
was calculated for all codons using the statistics panel of Geneious v. 10 [34]. The detection
of single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel) polymorphisms
was carried out using DnaSP v. 6 [31]. To compute the Ka/Ks values (ratios of non-
synonymous to synonymous substitution rates), protein-coding sequences without stop
codons were extracted from the plastomes of eight C. annuum cultivars, with C. annuum
var. glabriusculum as a reference. Ka/Ks values were calculated using the genetic code
11 (bacterial and plant plastid code) and the model selection (MS) mode, employing
KaKs_Calculator 3.0 [35].

2.4. Phylogenetic Analysis

We downloaded plastome sequences of 29 Capsicum species, encompassing seven
C. annuum, six C. baccatum, two C. chacoense, four C. chinense, one C. eximium, four
C. frutescens, two C. galapagoense, one C. lycianthoides, one C. pubescens, and one C. to-
varii, and included Nicotiana tabacum as an outgroup. These sequences were aligned with
the newly sequenced C. annuum cultivars using MAFFT ver. 7 [36]. Gaps or poorly aligned
positions were then removed using Gblocks v. 0.91b [37]. A maximum likelihood (ML)
analysis was performed in IQ-TREE v. 1.4.2 [38]. Model selection was conducted using
ModelFinder [39] within IQ-TREE, resulting in the choice of the TVM+F+I model based on
the Bayesian information criterion. Subsequently, nonparametric bootstrap (BS) analysis
was carried out with 1000 replicates. For the Bayesian inference (BI) phylogenetic tree,
the analysis was run until the standard deviation of split frequencies dropped below 0.01,
using MrBayes v3.1.2 [40]. Sampling in each chain was performed every 100 generations,
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and the first 25% of the samples were discarded as burn-in. The remaining data were used
to generate a consensus tree.

3. Results
3.1. Plastome Organization and Features

The complete plastome sizes of seven cultivars ranged from 156,821 to 156,922 bp,
and all plastomes exhibited a circular quadripartite structure characterized by a pair of
inverted repeats (IRs) separated by a small single copy (SSC) and a large single copy (LSC)
(Figure 1). The LSC, SSC, and IR regions encompassed a range of 87,256 to 87,395, 17,853
to 17,939, and 25,790 to 25,843 bp, respectively. Across all cultivars, the gene contents,
gene order, and GC contents were highly conserved, as indicated in Table 1. In particular,
the plastome sequences of Korean landraces Younggo 4, Younggo 10, and Younggo 11 are
completely identical.

Table 1. Summary of the plastome characteristics of the eight Capsicum annuum cultivars.

Characteristics C15 CM334 Younggo 5 Younggo
4/10/11 Dempsey Ferrari

Total size (bp) 156,821 156,881 156,922 156,878 156,895 156,826
LSC (bp) 87,384 87,256 87,391 87,347 87,395 87,380
SSC (bp) 17,853 17,939 17,929 17,929 17,920 17,862
IR (bp) 25,792 25,843 25,801 25,801 25,790 25,792

Total GC content (%) 37.7 37.7 37.7 37.7 37.7 37.7
LSC (%) 35.7 35.8 35.7 35.7 35.7 35.7
SSC (%) 32.0 32.0 32.0 32.0 32.0 32.0
IR (%) 43.1 43.0 43.1 43.1 43.1 43.1

Number of total genes 113 113 113 113 113 113
Number of protein-coding genes 79 79 79 79 79 79

Number of tRNA genes 30 30 30 30 30 30
Number of rRNA genes 4 4 4 4 4 4

3.2. Plastome Sequence Variability

The heatmap in Figure 2 illustrates pairwise comparisons within the plastome of
C. annuum cultivars, highlighting Dempsey as genetically distinct from other cultivars [41].
Although Dempsey and Ferrari share the common “bell pepper” classification, they are
genetically distant. Ferrari is closer to C15, whereas the Mexican landrace CM334 is closely
related to the Korean landrace Younggo.

In the plastomes of eight C. annuum cultivars, we identified a variable range of 31 to
35 SSRs, including mono-, tri-, and tetranucleotide motifs (Figure 3A). All motifs exclusively
consisted of adenine and thymine nucleotides. Mononucleotide SSRs consisted solely of
A/T repeat units. The trinucleotide motif AAT/TTA was consistently present in the ycf1
gene, with five repeats across all cultivars except Dempsey, which displayed seven repeats.
Furthermore, the ATAA/TATT motif was observed only in the intergenic region of the
psaA and ycf3 genes in cultivar C15. Most of the SSRs were located within the LSC region,
ranging from 72.7% in Ferrari to 80% in Dempsey (Figure 3B). Additionally, SSRs were
predominantly found in intergenic spacers (IGS), constituting over 60%, followed by introns
and exons (Figure 3C).

While the sliding window analysis indicates a predominance of conserved sequences,
with an average nucleotide diversity value of 0.0003, the psaA-ycf3 IGS stands out with a
comparatively high Pi value of 0.007 (Figure 4).
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Figure 1. The plastome map of the seven Capsicum annuum cultivars. Genes positioned outside
the circle are transcribed in a counterclockwise direction, whereas genes within the inner circle are
transcribed clockwise. The GC content is depicted by the dark grey inner circle.
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Figure 4. Plastome sliding window analysis for the eight Capsicum annuum cultivars. Nucleotide
diversity is shown on the y-axis, and the position of the plastome is represented on the x-axis.
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The plastome sequences of eight C. annuum cultivars were plotted using mVISTA, with
C. annuum var. glabriusculum hypothesized as the reference (Figure 5). The results indicated
that the LSC region was the most divergent, with non-coding regions showing more
divergence and variability than coding regions. Among the divergent regions, sequence
variations were identified among the eight cultivars, including eight IGS (rps16-trnQ, trnS-
trnG, trnE-trnT, trnL-trnF, rbcL-accD, rpl16-rps3, ndhB-rps7, and trnN-ndhF) and two coding
genes (accD and ycf1) (Figure 5).
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aligned regions, ranging from 50 to 100 %. Capsicum annuum var. glabriusculum (KJ619462) was used
as the reference.

To confirm the sequence variation patterns based on pepper fruit types, specifically hot
peppers and bell peppers, we compared plastome sequences accordingly. The majority of
variations were found in the LSC and IGS in both types. Furthermore, our results indicated
greater sequence divergence within bell peppers, which exhibited 80 SNPs and 41 InDels,
compared to hot peppers, which had 41 SNPs and 34 InDels (Figure 6).
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Figure 6. Number and distribution of single nucleotide polymorphisms (SNPs) (A) and insertion-
deletions (InDels) (B) categorized by pepper types: hot and bell peppers. Hot peppers include
cultivars CM334, C15, Younggo 4, Younggo 5, Younggo 10, and Younggo 11, whereas bell peppers
encompass cultivars Dempsey and Ferrari.

Based on the sequences of 79 protein-coding genes, we found consistent patterns in
codon usage across cultivars (Figure 7). RSCU analysis revealed an average codon usage
ranging from 23,039 (C15) to 23,061 (Younggo 5) (Table S1). Leucine (2453–2459) is the most
frequently occurring amino acid, followed by isoleucine (1935–1939) and serine (1729–1734).
Conversely, cysteine (255) is the least frequently encountered amino acid. The UUA codon
for leucine exhibited the highest RSCU value (1.96–1.97), followed by GCU for alanine
(1.79) and UCU for serine (1.74–1.75). The AGC codon for serine displayed the lowest
RSCU value (0.35), along with CUG and CUC codons for leucine (0.38–0.39). AUG and
UGG codons, encoding methionine and tryptophan, respectively, showed no bias, with an
RSCU value of 1.00. In addition, the RSCU analysis showed a high encoding efficacy of
the codons that contained A/T at 3′ position with an RSCU ≥ 1.00 compared with codons
ending with C/G at 3′ position, which had an RSCU < 1.00.

The nucleotide substitution rate varied across plastome genes, with Ka and Ks values
ranging from 0 to 0.015 and 0 to 0.045, respectively. Among the 79 genes, we identified
13 genes with Ka/Ks value > 1, which suggests positive selection (Figure 8). These genes
can be categorized into functions related to photosynthesis, transcription, and other func-
tions. Specifically, seven genes are associated with photosynthesis, including subunits of
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photosystem (psaA and psbL), cytochrome b/f complex (petA), ndh complex (ndhD, ndhH,
and ndhI), and Rubisco (rbcL). Additionally, three genes are linked to self-replication, such
as a large subunit of the ribosome (rpl20) and the subunits of the RNA polymerase (rpoB
and rpoC2). We also detected the envelope membrane protein cemA and protease clpP,
which had Ka/Ks values > 1. All cultivars had Ka/Ks values > 1 for ndhD and psbL, while
the cemA, clpP, ndhH, rbcL, rpl20, rpoB, and rpoC2 genes were observed in all cultivars other
than Dempsey. The ndhI and psaA genes were found only in C15 and Ferrari, and ycf1 and
petA were exclusive to Dempsey and Younggo, respectively. The remaining genes had a
Ka/Ks ratio < 1.
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3.3. Phylogenetic Analysis

The plastid phylogenomic tree, incorporating seven cultivars from this study, sup-
ported previously reported species relationships. The genus Capsicum was divided into two
major lineages closely aligned with the C. annuum and C. baccatum complexes, each with
robust support (100% BS; 1 posterior probability, PP). The C. baccatum complex, consisting
of C. chacoense and C. baccatum, shared a common ancestor and formed a monophyletic
group. In contrast, the C. annuum complex exhibited a more complex pattern. Species
within the C. annuum complex, including C. annuum, C. chinense, C. frutescens, and C. galapa-
goense, did not form a monophyletic group. Concerning the positioning of C. annuum, this
species was grouped into two distinct subclades with strong support (Figure 9). Three of
fourteen C. annuum accessions belonged to subclade I, while the rest belonged to subclade
II. Notably, landraces CM334 and Younggo were grouped into subclade II-1 and were
closely related (BS = 98, PP = 1). It was consistent with the genetic distance result (Figure 2).
The bell pepper cultivars Dempsey and Ferrari did not form a monophyletic group; instead,
they belonged to subclades I and II, respectively. C15, Ferrari, and most of the previously
reported C. annuum accessions were situated in subclade II-2 with the basal lineage of
C. galapagoense (MH559322).
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4. Discussion
4.1. Plastome Feature

In this study, the plastomes of seven C. annuum cultivars were sequenced, revealing
highly conserved genes and structures. This structural consistency corresponded with the
enduring characteristics observed in angiosperms, encompassing gene content, gene order,
and GC content [42,43]. Interestingly, we found that Younggo 10 and Younggo 11 have
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completely identical sequences compared to the previously reported Younggo 4 (KR078313).
The difference in fruit length between Younggo 5 and the remaining Younggo members
was attributed to six InDels within the LSC region. Among these, five InDels occurred in
IGS, namely trnS-trnG, trnL-trnF, ndhC-trnV, rbcL-accD, and rpl14-rpl16, ranging from 5 to
21 bp. Furthermore, a 12 bp insertion occurred within the rpl20 gene of Younggo 5 without
inducing a frameshift mutation. Short InDels, recognized as major contributors to structural
genetic diversity, have been documented to play pivotal roles in influencing flowering time
and the variegated colors of flowers [44–46]. In addition, an exonic InDel of the rpl20 gene
in the plastome has been associated with leaf development in N. tabacum [47]. These studies
underscore the prominent influence of InDels in shaping distinct phenotypic traits. Given
the variations in morphology within the Younggo cultivars, it would be necessary to delve
deeper into the connection between divergences in sequences—particularly within genes
like rpl20—and their potential impact on morphological traits.

4.2. Sequence Divergence

The similarity of plastome sequences among C. annuum cultivars was remarkably high,
exceeding 99%, despite their various breeding and domestication backgrounds. This finding
aligns with the trend toward lower diversity in pepper, tomato, potato, and sweet potato
cultivars compared to their wild relatives [48–51]. Interestingly, our analysis revealed that
the cultivar Dempsey stands out in terms of genetic variation. This result may be attributed
to Dempsey’s hybrid origin, which can be traced back to a three-way cross involving hot
peppers PI264281 and PI163192, as well as the bell pepper Jupiter [41]. The introduction of
these two hot peppers as paternal gives resistance to tobacco etch potyvirus and bacterial
spot. In contrast, the other bell pepper Ferrari is a transgenic plant regenerated via the
inducible activation of the BABY BOOM transcription factor [52]. Although they commonly
have bell-shaped fruit, the observation of a high genetic distance between them, their
position in different subclades, and the presence of distinct genetic backgrounds collectively
indicate that these two bell peppers likely originated from different maternal sources.

The detected SSRs were predominantly located within the LSC region and IGSs,
consistent with prevalent characteristics observed in other angiosperms [53–55]. As SSRs
show high polymorphism between individuals, SSR markers have been widely used in
determining genetic diversity and conducting phylogenetic studies [56,57]. However, in
the case of newly sequenced cultivars, they exhibited nearly identical repeat numbers
and motifs, presenting a challenge for the development of SSR markers on plastomes.
We identified the notably variable region psaA-ycf3 among the seven cultivars examined,
which corroborates the findings reported by Magdy et al. [9]. Nevertheless, the average
nucleotide diversity value, which remained below 0.01, highlights the highly conserved
plastome evolution across Capsicum cultivars. These high similarities can be attributed to
domestication or artificial selection, as well as the low cross-pollination rates resulting from
the tendency toward self-pollination in cultivated Capsicum species [7].

4.3. Plastome Evolution

Codon usage bias can be used to understand the molecular evolution and environ-
mental adaptation of species and the superior agronomic performance of the cultivated
species [58]. However, we could not find any significant differences among cultivars. Rela-
tive synonymous codon usage and amino acid frequency revealed high similarities among
them. The prevalence of leucine as the most encoded amino acid and cysteine as the least
was consistent with observations in other Solanaceae species [59–61].

While most plastome genes evolve under purifying selection (Ka/Ks < 1) due to their
critical roles in photosynthesis and self-replication functions, our analysis revealed that 3
to 11 genes within the cultivars experienced positive selection pressure. In particular, three
genes (ndhD, ndhH, and ndhI) of the ndh family, which are associated with photosynthesis,
were identified as being under positive selection. Chloroplast ndh monomers are known to
be sensitive to high light stress, suggesting that the ndh genes likely play a role in stress
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acclimation [62]. The phenomenon of positive selection in the rbcL gene of land plants is
commonly observed [63]. This widespread adaptive evolution may signify an effort to
optimize its performance under changing thermal conditions and in response to coevolution
with proteins in the Rubisco complex. Additionally, the positive selection observed in the
rpoB and rpoC2 genes, encoding the β subunit of RNA polymerase, could potentially lead
to changes in cell wall metabolism, possibly due to alteration in transcription [64]. As
evident from the examples above, positive selection is often interpreted as an indication of
adaptation to changing environments, ecological niches, or coevolutionary processes [60].
In this context, we postulated that the positive selection observed in the genes of C. annuum
cultivars is associated with their adaptation to diverse environments. It may also be
attributed to artificial selection during domestication from wild ancestor C. annuum var.
glabriusculum [65], as well as during subsequent cultivation and development of new
cultivars. A more comprehensive understanding of the relationship between positive
selection in genes and the adaptation of C. annuum cultivars requires further investigation.

4.4. Phylogenetic Relationship

Studies aimed at elucidating the relationships among Capsicum species have employed
various molecular approaches, including isozyme [66], random amplified polymorphic
DNA [67,68], amplified fragment length polymorphism [67,69,70], microsatellite geno-
typing [71,72], SNP [73], molecular markers [4,6], and complete plastomes [9]. These
studies provide robust support for distinguishing the two major complexes within the
genus Capsicum, C. annuum and C. baccatum. Our phylogenetic tree also revealed that
each complex forms a monophyletic group with high support values (BS = 100%, PP = 1).
The C. annuum complex included not only C. annuum but also C. tovarii and C. eximium,
which are categorized within the C. baccatum and C. pubescens complexes, respectively.
Tong and Bosland [74] suggested that C. tovarii shares a closer genetic relationship with
the C. baccatum complex than with other Capsicum complexes. Similarly, Ince et al. [68]
also placed C. tovarii within the C. baccatum clade. However, Magdy et al. [9] reported
C. tovarii (KX913219) and C. frutescens (KR078312) as variants of C. annuum var. annuum,
and Shiragaki et al. [4] suggested that C. eximium should be reclassified as C. frutescens
based on morphological and molecular traits. Based on these studies, we concluded that
subclade II-2 primarily includes C. annuum species.

Unlike previous studies [4,9] showing the monophyly of C. annuum, the C. annuum
species was divided into three subclades in this study: subclade I consists of C. an-
nuum, C. annuum var. glabriusculum, C. frutescens, and C. galapagoense; subclade II-1 in-
cludes landrace C. annuum; and subclade II-2 comprises another cluster of C. annuum and
C. galapagoense. Although the precise lineage of previously sequenced C. annuum remains
elusive, we inferred that these three subclades would correspond to distinct genetic his-
tories: subclade I includes the hybrid cultivar, Dempsey. Subclade II-1 comprises the
C. annuum landrace, which has been domesticated and cultivated for a long period, while
subclade II-2 encompasses cultivars that were chosen either through specific breeding
strategies or genetic modification techniques. For instance, in subclade II-2, Ferrari is a
transgenic plant, as described above, and is renowned for its efficiency in transformation
and regeneration following genetic engineering. The cultivar C15 has been reported as
a transformable inbred line and served as a parental source for developing new culti-
vars [75,76]. Therefore, we were able to discern the relationships among cultivars based on
their plastome genetic profiles. However, further validation involving a broader range of
cultivars with diverse genetic backgrounds and the examination of nuclear or mitochondrial
genomes is warranted.

Due to the distinct characteristics observed within the C. annuum cv. Younggo, such
as variations in flowering time, fruit pungency, and fruit length, they have been treated
as separate cultivars [77]. Our findings revealed robust support that the Korean landraces
Younggo formed a monophyletic group, indicating a shared maternal lineage. To further
investigate these results, phylogenetic analysis using nuclear DNA is warranted.
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