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Abstract: Grapevine (Vitis vinifera subsp. Vinifera) is one of the most widespread and economically 
important perennial fruit crops in the world. Viticulture has changed over the years in response to 
changing environmental conditions and market demands, triggering the development of new and 
improved varieties to ensure the crop’s sustainability. The aim of this review is to provide a per-
spective on the recent developments in biotechnology and molecular biology and to establish the 
potential of these technologies for the genetic improvement of grapevine. The following aspects are 
discussed: (i) the importance of molecular marker-based methods for proper cultivar identification 
and how NGS-based high-throughput technologies have greatly benefited the development of gen-
otyping techniques, trait mapping, and genomic selection; (ii) the recent advances in grapevine re-
generation, genetic transformation, and genome editing, such as new breeding technology ap-
proaches for enhanced grapevine yield, quality improvement, and the selection of valuable varieties 
and cultivars. The specific problems and challenges linked to grapevine biotechnology, along with 
the importance of integrating classical and new technologies, are highlighted. 
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1. Introduction 
Domesticated grapevine (Vitis vinifera subsp. vinifera), one of the most economically 

important perennial fruit crops in the world [1,2], had a worldwide production of approx-
imately 78 million tons in 2020 [3]. In 2020, the International Organization of Vine and 
Wine (OIV) estimated the world area under vines at 7.3 million ha [4]. The European Un-
ion (EU) had 3.2 million hectares of vines in 2020, equivalent to approximately 44 % of the 
world’s total wine-growing areas [5]. Over half of these areas were cultivated with red 
wine varieties. Most of the harvested grapes are used for wine production but also for 
consumption as fresh fruit, raisins, juices, vinegar, seed oils, and spirit drinks [6,7]. Grape 
extracts are also used as food additives, in cosmetics, and in the pharmaceutical industry, 
while some species are grown for ornamental purposes [8,9]. 

Grapevine cultivars are susceptible to biotic (bacteria, fungi, viruses, and insects) and 
abiotic stressors (drought, extreme temperatures, and salinity) that reduce both the yield 
and lifespan of vineyards, causing substantial economic losses to grape production and 
the wine industry [10]. Vegetative propagation and growth on rootstocks ensure the 
grapevine tolerance to phylloxera, an insect pest that almost destroyed European viticul-
ture in the late nineteenth century [11]. Other pathogens, such as gray mold, downy, and 
powdery mildew, as well as bacterial diseases (e.g. black rot and Pierce’s disease), cause 
serious yield losses [11,12]. Due to continuous climate change, viticulture faces outbreaks 
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of these diseases, while thermal stress and severe dryness registered during the last dec-
ade harmfully impacted the whole winemaking sector, especially in southern European 
winemaking regions [13–15]. Thus, a reduction in table quality vines and wine grape pro-
duction was anticipated [13]. All these threats triggered the need to improve viticulture’s 
sustainability by imposing new varieties versus traditional varieties [15–17]. 

Conventional breeding, based on the hybridization of valuable grapevine genotypes, 
is difficult due to the long life cycle and heterozygosity [18]. Moreover, numerous diseases 
require specific solutions found in the natural variations of the Vitis genus [19] but also in 
genetic improvements via molecular manipulation. Thus, in recent years, biotechnology 
research proved to be a powerful complement to conventional breeding methods playing 
an increasing role in the improvement of the existing grapevine varieties and rootstocks. 
The novel approaches include the development of molecular markers for fingerprinting, 
genetic mapping, genetic diversity assessments in populations, gene tagging for breeding 
purposes (marker-assisted selection), and gene cloning; these technologiesaim to improve 
on the current plant transformation strategies and genetic editing to enhance disease tol-
erance and improve berry quality [9,17]. 

In the precision breeding of grapevine, only genetic elements encoding desirable 
traits are used; thus, the results are more predictable than conventional breeding. In the 
last decades, whole genome sequencing by next-generation sequencing (NGS) platforms 
and bioinformatics have allowed the rapid selection of plants for propagation and manip-
ulation for different purposes. 

Although modern techniques of precision breeding have taken a large scale and nu-
merous valuable varieties have been obtained, genetically modified plants, however, are 
not easily accepted on the market. Edited plants were considered a solution to genetically 
transformed plants, mostly because the edited plants did not contain a transgene; thus, 
these plants were not subject to legal restrictions. Depending on the specific legislations 
in different countries, such as the USA, Argentina, Australia, and Brazil, even genetically 
modified organisms (GMOs) are accepted on the market because it is considered that ed-
ited plants do not contain foreign genes; thus, risk assessments are unnecessary. On the 
other hand, the European Union also considers that organisms obtained via mutagenesis, 
as well as those obtained via genome editing, are GMOs, as stated in the GMO European 
Directive 2001/18/EC [20] and should pass through the regulatory process of classical 
GMOs [21,22]. It is important to mention that point mutations induced by gene editing 
are practically impossible to distinguish from the natural ones or those induced by muta-
genesis. This uncertainty could have negative consequences not only for agriculture but 
also for the economy; most researchers claim that organisms with only small genetic mod-
ifications without any foreign genetic material should not be considered GMOs [21,22]. 
Nevertheless, the latest technologies, i.e., genetic transformation and genome editing, are 
currently developing, the main limitation in grapevine being related to the complexity of 
some important agronomic traits [23]. 

In this review, we discuss the most recent achievements, specific problems, and chal-
lenges linked to grapevine biotechnology, along with the importance of integrating clas-
sical and new technologies for the genetic improvement of grapevine. 

2. Grapevine Genetic Diversity and Molecular Markers Used in the Identification of 
Cultivars 

Archaeological and archaeobotanical data showed that grapevine domestication be-
gan 6000–8000 years ago in the Transcaucasian region [24]. The dispersal of cultivated 
varieties from this primary center throughout the Near East and Europe relied upon (i) 
cultivars, the later clonal selection, and (ii) vegetative propagation [6]. In addition, sec-
ondary domestication events in other areas were also reported [25–28]. 

The genus Vitis [2n = 38] exhibits significant genetic diversity among cultivars, wild 
subspecies, and hybrids [29,30]. This is mainly due to their asexual reproduction, wide 
range of suitable planting, and frequent communication among grape accessions [31]. 
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There are approximately 60–70 inter-fertile wild Vitis species widespread throughout Eur-
asia and Northern America [32]. Vitis vinifera subsp. sylvestris, the only wild Vitis taxon 
native to Europe and the Near East, is considered the ancestor of almost 10,000 domesti-
cated grapevine cultivars [31]. Moreover, approximately 1200 commercial grapevine cul-
tivars are interspecific hybrids of the domesticated grapevines and other wild Vitis species 
[33]. Consequently, there is a huge number of named cultivars (15,000), including several 
synonyms (identical genotypes but different names) and homonyms (same names but dif-
ferent genotypes) [34]. The working group on Vitis, referring to the European cooperative 
programme for plant genetic resources (ECPGR), reports 27,000 accessions of grapes held 
only in European collections [35]. In spite of the passport data available for approximately 
35,000 accessions from European countries, the problem of cultivar synonyms and the 
presence of duplications need to be solved [35]. Therefore, a proper identification system, 
cultivar registration and protection, seed certification, and plant variety rights are essen-
tial in grapevine germplasm management for breeding programs but also for economic 
interests, trade, and scientific knowledge [30,36]. 

2.1. Morphological Markers 
Grapevine cultivars have traditionally been identified based on their morphological 

characteristics (ampelography) jointly provided by the International Organization of Vine 
and Wine (OIV), the International Union for the Protection of New Varieties of Plants 
(UPOV), and the International Plant Genetic Resources Institute (IPGRI) [37]. Although 
efficient for the assessment of qualitative traits, the application of morphological markers 
is limited in the evaluation of quantitative traits. Moreover, this method is time-consum-
ing, requiring extensive field trials and the identification of closely related cultivars is dif-
ficult [38]. 

To complement the morphological identification of grapevine varieties and over-
come classification errors and double designations, cytogenetic, biochemical, as well as 
DNA and RNA-based technologies were developed for the analysis of the existing grape 
germplasm diversity [30]. 

2.2. Cytological Markers 
In earlier studies, following morphological markers, cytological markers (karyo-

types, banding patterns, deletions, repeats, translocations, and inversions) were devel-
oped. The chromosome number and morphology, and the DNA amount and composition, 
are characterized with Giemsa staining, fluorochrome banding, silver staining, and fluo-
rescence in situ hybridisation (FISH) [39]. However, only a few cytogenetic studies are 
available in grapevine, mainly due to the large number of small chromosomes and the 
difficulty of obtaining good chromosome preparations from the roots or anthers [30]. Se-
quential silver nitrate staining and FISH were used to study ribosomal DNA (rDNA) loci 
[39–41] to localize the retrotransposon Gret1 [40], BAC clones [42], and telomeric se-
quences [43]. However, FISH is considered a niche technique because it allows the analy-
sis of only a few samples at a time, and its accuracy is highly dependent on excellent qual-
ity confocal microscopy and image analysis procedures [30]. However, with the advent of 
sequencing technologies (next-generation sequencing (NGS)) and the availability of high-
quality de novo reference genomes for grapes, new horizons were opened for modern 
cytogenomics [30]. Thus, the physical mapping of DNA sequences on chromosomes facil-
itated comparative plant genomics, improving the genome and chromosome assemblies. 

2.3. Molecular Markers 
Molecular markers include protein-based markers (products of gene expression) and 

DNA-based markers derived from the direct analysis of polymorphisms in DNA se-
quences [44]. Depending on the detection method used, DNA markers are categorized as 
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hybridization-based markers and polymerase chain reaction (PCR) and DNA sequence-
dependent molecular markers. 

Since their discovery, different molecular markers, such as restriction fragment length 
polymorphisms (RFLPs) [45], random amplified polymorphic DNA (RAPD) [46], se-
quence characterized amplified regions (SCARs) [47,48], simple sequence repeats (SSRs) 
[31,49], inter-simple sequence repeats (ISSRs) [50,51], amplified fragment length polymor-
phisms (AFLPs) [52], single nucleotide polymorphisms (SNPs) [53], expressed sequence 
tags (ESTs) [54,55], and random amplified microsatellite polymorphisms (RAMPs) [56] 
have been widely used for the genetic diversity characterization of grapevine cultivars, 
molecular mapping, parentage analysis, clone’s identification, and the detection of syn-
onymies. 

Among these, SSRs and SNPs have become the preferred markers for the characteri-
zation of grapevine genetic resources and varietal identification in germplasm collections 
[30]. Several studies reported nuclear and chloroplastidial SSR loci (nSSR and cpSSR) as 
useful to demonstrate the multiple origins of V. vinifera spp. sativa (cultivated grapevine), 
to reveal synonymies, homonymies, as well as inter and intra-specific genetic variations 
and phylogenetic relationships among wild and cultivated grapevines [27,57–62]. In re-
cent years, SNP markers have also gained high popularity for evaluating allelic variations 
throughout grapevine genomes and dissecting complex traits via QTL (quantitative trait 
loci) for breeding programs [63,64]. SNPs are highly abundant across plant genomes and 
offer higher reproducibility than microsatellite data, facilitating the integration and inter-
pretation of genotyping data throughout grape gene banks and databases [65,66]. The rise 
of NGS and resequencing techniques have facilitated the release of an extensive number 
of SNPs [31,67] and the development of reliable platforms, such as VitisGDB (the multi-
functional database for grapevine breeding and genetics), for comparing and mining Vitis 
genomic information [68]. There are currently many reference Vitis databases, including 
simple genetic information or only descriptive information (i. e., the species name, coun-
try of origin, cultivar names, usage, etc.) Among these, we mention the International Va-
riety Catalogue (VIVC) [69], Instituto de Ciencias de la Vid y del Vino [70], the European 
Vitis database [71], the Greek Vitis database [72], the Italian Vitis database [49], the mo-
lecular pathway database, the transcriptome database, grape sRNA atlas [68], etc. 

In the last years, DNA marker systems used in grapevine characterization have 
evolved from interrogating small numbers of loci and individuals to tens of thousands of 
loci in studies of large populations [73]. Moreover, Vitis spp. genome sequencing has led 
to significant progress in the development of large-scale high-throughput DNA markers 
and the identification of QTL, allowing the confirmation of candidate genes and the de-
velopment of breeding programs based on marker-assisted selection (MAS). The earliest 
method, restriction site-associated DNA [RAD] sequencing, was successfully applied to 
identify significant traits in elite grape cultivars [74,75]. Other sequencing-based methods, 
such as whole genome resequencing approaches, have been applied for the characteriza-
tion of somaclonal variations within cultivars [76,77]. Moreover, RNA-seq has been 
widely applied in Vitis vinifera to study different aspects such as bud development [78], 
berry development and ripening [79], and the response to disease or pathogens [80]. Re-
cently, a set of 2000 DNA low-cost marker panels transferrable across the entire Vitis ge-
nus was designed and implemented using rhAmpSeq (RNase H2 enzyme-dependent am-
plicon sequencing), which could be easily adapted for other taxa for ecological and evo-
lutionary studies, QTL mapping, a genome-wide association study (GWAS), and molec-
ular breeding [81]. 

In general, each technology provides results with a different resolution and accuracy, 
and the degree of detected genetic divergence depends on the marker system applied and 
the scope and type of plant samples used. The different applications of molecular markers 
in grapevine are presented in Table 1. 

Although high-throughput sequencing technologies provide enormous potential to 
improve our way of understanding and accessing grapevine biodiversity, downstream 
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bioinformatic analysis requires reliability to be ensured. There is not just one perfect array 
for all different research questions; therefore, the choice of the genotyping tool should be 
based on the purpose, sample size, resolution, accuracy, and budget available. 

Table 1. Application of the most widely used molecular markers in grapevine. 

Application Molecular Marker * References 

Genetic diversity 
population structure 

RAPD, ISSR, SSR, retrotransposon-
based markers, SRAP, SNP, RAMP,
REMAP, and IRAP 

[49,50,82–88] 

Cultivars, rootstocks, and 
clone identification 

RAPD, cpSSR; SCAR; RFLP, SSR, SNP,
AFLP, SAMPL, M-AFLP,  
MSAP, CAPS, IRAP, REMAP, SSAP,
EST, and retrotransposon-based
markers 

[31,38,45,47,89–98] 

Synonymies and 
homonymies clarification 

RAPD and SSR  [99–101] 

Origins of cultivated 
grapevine/phylogeographi
c patterns 

cpSSR, SSR, and SNP 
[27,53,57,60,62,102–
104] 

Genetic linkage maps RFLP, SRAP, and SNP  [105,106] 

Disease diagnostics RFLP, SCAR, SSR, SSCP,  
ITS, and RNA sequencing 

[48,80,107–110] 

Transcriptome analysis 
and new gene discovery 

EST  [54,55,111] 

Genetic stability and 
somaclonal variation 

RAPD, AFLP, SSR, CDDP, ISSR, and
MSAP 

[112–117] 

QTL mapping 
RAPD, CAPS, AFLP, SCAR, SSR, SNP, 
RAD sequencing, rhAmpSeq markers,  
SLAF-seq, and sequencing 

[70,74,75,81,118–127] 

* RFLP, restriction fragment length polymorphism; RAPD, randomly amplified polymorphic DNA; 
SCAR, sequence characterized amplified region; AFLP, amplified fragment length polymorphism; 
M-AFLP, microsatellite-amplified fragment length polymorphism; SSR, simple sequence repeat; 
cpSSR, chloroplast simple sequence repeat microsatellite; ISSR, inter simple sequence repeat; 
SAMPL, selectively amplified microsatellite polymorphic loci; SRAP, sequence-related amplified 
polymorphism; SSCP, single strand conformational polymorphism; S-SAP, sequence-specific am-
plification polymorphism; CAPS, cleaved amplified polymorphic sequence; SNP, single nucleotide 
polymorphism; EST, expressed sequence tag; RAMP, randomly amplified microsatellite polymor-
phism; REMAP, retrotransposon-microsatellite amplified polymorphism; IRAP, interretrotrans-
poson amplified polymorphism; SSAP, sequence-specific amplified polymorphism; ITS region se-
quences- ribosomal DNA internal transcribed spacer; CDDP, conserved DNA derived polymor-
phism; RAD sequencing, restriction site-associated DNA sequencing; rhAmpSeq, RNase H2 en-
zyme-dependent amplicon sequencing; SLAF-seq, specific length amplified fragment sequencing. 

3. Grapevine Plant Regeneration Methods 
Biotechnology research offers the potential to improve the yield and quality of 

grapes. The development of in vitro plant regeneration methods is essential to overcome 
the difficulties in conventional breeding studies, preserve and propagate valuable geno-
types, as well as to increase genetic variability through genetic engineering (transgenic, 
cisgenic, and gene-edited plants) [128,129]. In addition, in vitro mass multiplication rep-
resents an alternative to the current greenhouses or outdoor repositories and allows the 
exposure of genotypes to in vitro-induced stresses (i.e., biotic and abiotic risks) [82]. 

To date, grapevine regeneration has been obtained with two fundamental pathways 
of propagation and regeneration through organogenesis and somatic embryogenesis 
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[7,128]. Organogenesis is based on the ability of competent tissues to form whole plants 
directly from the meristematic regions of explants (direct organogenesis) or intervened 
with callus formation (indirect organogenesis). Indirect organogenesis induces 
somaclonal variation involving both genetic and epigenetic changes in in vitro regener-
ated plants. In applied studies involving commercial scale multiplication or transgenic 
plants, the plants must be “true to type”, meaning high genetic uniformity of the regener-
ated plants [130,131]. Therefore, to demonstrate the genetic fidelity as well as the 
somaclonal variation of the in vitro plants, molecular marker approaches were applied. 
Somaclonal variation is an alternative source of genetic variability in horticultural crops 
with a narrow genetic base or difficult breeding [132]. 

Grapevine, similar to other woody species, has revealed a genotype and explant type 
dependent recalcitrance to in vitro regeneration techniques [17,129]. Many studies have 
reported that rootstock varieties reveal higher organogenesis and somatic embryogenesis 
potential than hybrids and varieties belonging to the V. vinifera species [133]. However, 
several other factors were reported to influence the efficiency of grapevine in vitro plant 
regeneration, such as culture medium composition, especially the type and concentrations 
of plant growth regulators (PGRs) [134,135]; explants’ developmental stage [136] and 
phyllotactic position [137]; light regime [138]; pH value [139], etc. Therefore, over the 
years, numerous studies were focused mainly on optimizing protocols for efficient regen-
eration across different grapevine genotypes. A thorough review of successful reports via 
organogenesis and somatic embryogenesis in several grapevine cultivars and rootstock 
species using different explants was published by Zhang et al. [17]. Further on, we briefly 
discuss some aspects related to the applications of in vitro regeneration systems in grape-
vine improvements. 

The first attempts in grapevine biotechnologies started in the 1960s with in vitro 
propagation for mass production and healthy plant regeneration [23]. Over the years, dif-
ferent studies have focused on inflorescence culture [140,141] to study the mechanisms of 
floral induction [44], hairy root cultures [142–144] to study plant-pathogen interactions, 
the efficiency against nematodes [145,146], or phylloxera [147,148], and shoot tip culture 
combined with thermotherapy, chemotherapy, or cryotherapy to eliminate viruses [149–
151]. 

Nowadays, the rapid technological advancements in molecular and cell biology in-
clude a wide range of new plant breeding technologies (NPBTs), which in association with 
the new genomic data available, offer the opportunity: (i) to develop new grapevine vari-
eties with enhanced yields, quality, stress tolerance, and disease resistance through ge-
netic manipulation [17] and (ii) to have a clearer picture of the molecular regulation of 
plant cells, tissue culture, and regeneration processes [128]. 

Due to their morphogenetic competence, embryogenic tissues are mostly preferred 
in genetic transformation studies for the application of new genomic techniques, such as 
cisgenesis and intragenesis, genome editing, and RNAi [7], and these could be a possible 
tool for virus and viroid elimination [152]. Moreover, somatic embryogenesis could pre-
vent the development of chimerism, allowing the regeneration of genetically transformed 
embryos under selective culture conditions [153]. However, some genotypes have proven 
to be very recalcitrant to somatic embryogenesis; thus, genetic engineering techniques are 
difficult to apply [154]. 

The acquisition of embryogenic competence is related to different patterns of gene 
expression involving internal cell reprogramming leading to a reversion of the differenti-
ation state [128,155,156]. Somatic embryos may be obtained through the development of 
an embryogenic callus (indirect embryogenesis) followed by the emergence of pro-embry-
ogenic masses (PEMs), from which new somatic embryos are formed [157], or may occur 
directly from the explants without the callus developmental phase. In most cases, direct 
somatic embryogenesis is used for clonal propagation rather than indirect somatic embry-
ogenesis, which is characterized by a high incidence of somaclonal variation [158]. The 
explants mostly employed for somatic embryogenesis induction are anthers, ovaries, 
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leaves, petioles, tendrils, and nodal sections [159]. It was demonstrated that, amongst 
other factors, the type and concentrations of plant growth regulators (PGRs) play a crucial 
role in the induction of an embryogenic callus [160]. In particular, 2,4-dichlorophenoxya-
cetic acid (2,4-D) was reported as the most effective compound for the induction of so-
matic embryos [161,162]. 

Considering the importance of somatic embryogenesis in the genetic improvement 
of grapevine and the critical factors affecting its success, the development of efficient and 
reproducible genotype-specific protocols for all major grapevine, table grape cultivars, 
and rootstocks is required. 

4. Somaclonal Variation 
Plants cultivated in vitro could develop different modified characteristics and genetic 

variability due to somaclonal variation [163]. The genetic bases of somaclonal variation 
are gene mutations and also the rearrangements of chromosomes, karyotype changes 
[164–166], or epigenetic modifications driven by hyper or hypo-methylation [167]. Most 
of these are induced by oxidative stress [168], as shown in Figure 1. 

 
Figure 1. Mechanism of somaclonal variation induced by oxidative stress in plants cultivated in 
vitro. 

The genetic variation of micro-propagated plants is generally considered obstructive, 
and the loss of genetic fidelity was often observed. However, increased genetic variability 
has applications in the improvement of horticultural crops. The most important ad-
vantage of somaclonal variations is the reduced time and space for the screening of valu-
able genitors and traits than the crossing of perennial crops. Moreover, different 
somaclones could be used in breeding applications and genetic improvements with in 
vitro selection [132]. 

Several in vitro procedures imposing oxidative stress, such as protoplast culture, cal-
lus induction, or somatic embryogenesis, are more frequently followed by somaclonal 
variation due to the epigenetic changes in plant tissues [169]. Thus, polyploids were ob-
tained with somatic embryogenesis in six Spanish V. vinifera cultivars [170]. High methyl-
ation was detected in two cultivars during somatic embryogenesis, and the AFLP markers 
showed higher variability in these plants, but the SSR patterns were similar in plants de-
rived from somatic embryos and control plants [117]. Somaclonal variation in grapevine 
could also appear by several major genetic changes by the spatial arrangement of 
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periclinal, mericlinal, and sectorial cell layers that are genetically different [171]. Periclinal 
chimeras originated from mutations in one of the cell layers, are stable plants producing 
axillary buds and have the same apical organization as the terminal meristem from which 
they were generated [172]. Somatic embryos in grapevine derive from a single cell; thus, 
the clonal characteristics are not transferred to the progeny, as shown with microsatellite 
markers in Pinot Meunier. Nevertheless, different accessions of Pinot Meunier have three 
alleles in the VVS2 locus and the accessions of Pinot Noir, Pinot Gris, and Pinot Blanc have 
two alleles in this locus, explained by a mutation in one of the two alleles in one of the cell 
layers in Pinot Meunier and its maintenance through the vegetative propagation of a per-
iclinal chimera [173]. A similar variation was also observed in the VVS19 locus in the em-
bryogenic callus induced from the cell layers of anther filaments in Primmitivo ist 
[173,174]. 

Other studies showed that the intracultivar variability within Pinot Noir and char-
donnay are also due to mutations in the by a mutation in one of the two alleles in one of 
the cell layers in Pinot Meunier and its maintenance through vegetative propagation of a 
periclinal chimera[174,175]. Thus, somatic embryogenesis is a valuable tool to understand 
the origins, genetic structures, and relationships between ancient cultivars and should be 
considered before using them for Micropropagation, genetic conservation, or transfor-
mation [175]. 

5. Genome Sequencing and Applications 
Grapevine is not only an important fruit crop but also a plant model for genetic stud-

ies due to its small genome size of 475–500 Mb and 38 chromosomes (n = 19). Most of the 
Vitis species are diploids, but there are also fertile interspecies hybrids [9]. The interna-
tional grape genome program (IGGP) generated the first genome sequence for the Pinot 
Noir clone ENTAV 115 with Sanger and shotgun sequencing, which was important to 
understand the genome organization and the 19 linkage groups of Vitis vinifera. The ge-
nomic sequences of Pinot Noir clone ENTAV 115 (477.1 Mb) were assembled in 2093 met-
acontigs (approximately 28,352 genes and pseudogenes), of which 96.1% were assigned 
to linkage groups and candidate genes encoding relevant traits were predicted. In the 
NCBI taxonomy web portal for V. vinifera, there are 29,971 listed unique coding genes, and 
the information about these genes and the metabolic pathways in which they are involved 
are available at the TIGR site [176]. A consensus map was developed based on the genetic 
maps [177–181] and physical maps [182] previously developed. Other facilities are also 
available for different genomic and transcriptomic analyses, such as the grape BAC library 
from the French national resources center for plant genomics [183]; 14,000 transcripts from 
V. vinifera and 1700 transcripts from other Vitis species were released by The GeneChip® 
Vitis vinifera genome array (Affymetrix). An array-ready oligo set contains 14,562 probes 
of 70-mers representing grape gene transcripts released by Qiagen (http://www1.qi-
agen.com). The design of the grape oligo set was based on the sequence information from 
TIGR’s grape gene index (http://www.tigr.org/tdb/tgi) [9]. 

Advancements in NGS technology allowed the development of genome-wide ap-
proaches for the genetic characterization of complex traits or for marker-assisted selection, 
such as genome-wide association studies (GWAS) or genomic selection (GS). 

GWAS was used to understand the genetic bases of the important traits and to iden-
tify the polymorphic molecular markers associated with these traits [184] that could be 
further used in marker-assisted selection programs. 

In contrast to the GWAS method, which identifies polymorphisms linked to the var-
iations for selected traits, GS allows the prediction of a breeding value for the genotypes 
tested [185] based on large sets of markers. Thus, GS could significantly reduce costs for 
the marker-assisted selection of valuable variants by limiting the size and number of field 
experiments. Genotype-based prediction also allows selection in breeding schemes when 
the phenotyping of breeding candidates is impossible or difficult [186,187]. 
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Unfortunately, GWAS and GS methods, which use genome-wide marker data for 
phenotype prediction, are difficult to use in highly heterozygous species such as grape-
vine [188]. Moreover, the efficiency of GWAS also depends on the genetic architecture of 
the trait; thus, the detection of molecular markers associated with polygenic traits de-
pends on the size of the sample and the density of the molecular marker used [189]. In 
grapevine, there are no available valuable lines from complex breeding schemes; the 
breeders use highly diverse and heterozygous parental genotypes (H =  0.76) [190]. This is 
the result of strong inbreeding depression and vegetative propagation [190,191]. In addi-
tion, this panel of parental genotypes is also characterized by a low level of linkage dise-
quilibrium (LD) between marker loci (r2∼0.2 at 5–10 Kb) [67,191]; most cultivars are inter-
connected by a series of first-degree relationships (i.e., Pinot noir – Chardonnay – Gouais 
blanc, Cabernet franc – Merlot [192,193]), but the number of connected generations is rel-
atively low [194,195]. However, GWAS and GS have become more relevant in grapevine 
since the number of molecular tools is constantly increasing due to the high demand for 
new grapevine cultivars adapted to climate change [196,197]. 

6. Genetic Transformation 
As conventional culture and the selection of new valuable varieties are time and re-

source-consuming, genetic transformation provided an alternative for developing new 
varieties with increased productivity, higher quality, and tolerance to different stress fac-
tors. Conventional breeding cannot provide resistance to diseases or pests to elite cultivars 
of Vitis [198]; thus, these cultivars are currently maintained through vegetative propaga-
tion [199] and require the frequent use of pesticides to control diseases [200]. To overcome 
these concerns, modern biotechnology proposed so-called precision breeding [201] and 
the genetic improvement of elite cultivars, which was previously known as cisgenic or 
intragenic improvements [202]. 

Unfortunately, the grapevine is considered a recalcitrant species in terms of genetic 
transformation due to several aspects, including (i) genes involved in grapevine transfor-
mation, (ii) vectors used for gene delivery and protocols for grapevine transformation, 
and (iii) protocols for transgenic plant regeneration [7]. 

The insertion of specific genes into plants with different methods and vectors was 
developed for over thirty years in perennial crops. In grapevine, physical and chemical 
delivery methods were tested over the years, and transgene delivery was mediated by 
Agrobacterium and viruses [23,203-206] Several grapevine varieties were transformed with 
biolistic bombardment [203] and Agrobacterium-mediated transformation [204]. There are 
also several other methods of transformation, such as electroporation or protoplast trans-
fection [23,205]. Viral vectors were used for the heterologous gene expression or the si-
lencing of host genes (i.e., virus-induced gene silencing -VIGS) [206]. Cloning strategies 
and tools for the genetic engineering of grapevine were detailed and reviewed by [17,23]. 

Several grapevine infectious viruses, such as Vitivirus Grapevine Virus A (GVA) 
[207], the Closterovirus Grapevine leafroll-associated virus-2 (GLRaV-2) [208], and the Fo-
veavirus Grapevine rupestris stem pitting-associated virus (GRSPaV) [209] were used for 
the silencing of PDS (phytoene desaturase) or ChlI (subunit I of magnesium protoporphy-
rin IX chelatase), which was observed with the development of the albino phenotype 
[207,208]. A diagram showing the most important steps in genetic manipulation with 
transformation or editing of grapevine is shown in Figure 2. 
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Figure 2. Diagram of grapevine genetic manipulation with transformation or editing. 

The success of a transformation is facilitated by the marker genes as selectable marker 
genes and reporter genes that ensure the rapid and accurate selection of modified cells 
from non-modified cells [210]. Some of the marker genes encode resistance to antibiotics 
or herbicides, and the reporter genes encode proteins such as green fluorescence protein 
(GFP) or glucuronidase (GUS) [211]. Previously, most transgenic plants were obtained 
with vectors containing the NPTII gene as a selectable marker gene and GFP as a reporter 
gene, ensuring the visual selection of transformed plants [210]. For the elimination of the 
marker gene from transgenic plants, a complex system is used, which consists of two 
strains of Agrobacterium, one of them carrying a binary vector which contains the target 
gene, and another containing a binary vector with the selection marker genes as 
codA/nptII. The cells containing the target gene and the codA/nptII genes grow on the me-
dia with kanamycin, and then the cells containing the marker gene are eliminated with 
negative selection based on the codA function [212]. 

The analysis of the gene expression was performed using the VvMybA1 gene in-
volved in the anthocyanin biosynthesis pathway [213]. This gene allows the visual identi-
fication of transformed cells without kanamycin selection [210]. Unfortunately, the trans-
formed plants of grapevines (Thompson Seedless) containing this visual reporter gene 
were not vigorous due to the intense pigmentation and curly and highly brittle leaves 
[213], and the viability was reduced. These inconveniences were mitigated by placing the 
VvMybA1 gene under the control of tissue-specific and developmentally regulated pro-
moters, for example, the promoter of the Dc3 gene, expressed in late embryogenesis in 
carrots (Daucus carota), followed by the production of anthocyanin exclusively in embryos 
[214]. Moreover, being a visible marker, VvMybA1 could be used for monitoring transgene 
expression in the whole plant. Transgene expression could also be monitored by reporter 
genes such as GUS and GFP [215]. Anthocyanin has a pink-to-red color which is easily 
discerned, and it is suitable for the analysis of gene expression in experiments involving 
the selection of hundreds of transgenic plants. [216]. The marker gene VvMybA1, placed 
under the control of the ubiquitin gene promoter, was used for the high-throughput anal-
ysis of genes and promoters [217]. 

The employment of appropriate promoters highly influences the development of val-
uable traits. Unfortunately, the progress of functional analyses in grapevine is reduced in 
comparison with Arabidopsis and rice, mainly due to the limited ability to obtain enough 
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explants and difficulties in the analysis of the gene expression. The functional annotation 
of at least 18,725 genes in the grapevine allowed the evaluation of their promoters, as well 
as the gene expression under developmental and environmental factors. For proper uses, 
a detailed characterization of these promoters is required regarding their sequences and 
activation. First, constitutive viral promoters were used for most of the transgenes in 
grapevines [218] and then after, these promoters were replaced by ubiquitin gene promot-
ers. The gene expression was monitored with an anthocyanin-based assay mentioned pre-
viously [214]. 

Precision breeding requires appropriate promoters for gene expression in particular 
tissues or certain stages of plant development. Thus, the discovery and characterization 
of potential promoters are extremely important for precision breeding in grapevine [218]. 

Successful genetic transformation also depends on the efficient regeneration of trans-
genic plants. Factors such as genotype, explant source, acceptor material, culture medium, 
bacterial strains, selectable markers, and selection methods affect the efficiency of plant 
transformation and regeneration. The genetic transformation of several grapevine culti-
vars, such as Thompson Seedless, Silcora, and Chardonnay, was obtained with shoot or-
ganogenesis from meristematic tissue [219–221]. The in vitro organogenesis of some 
grapevine cultivars and rootstocks was obtained from different types of explants, such as 
petioles, leaf internodes, and shoot apices [137,138,220–222]. One limitation of direct or-
ganogenesis is the regeneration of chimeras explained by the induction of adventitious 
buds from multiple cells [223]. Plant regeneration from somatic embryos induced from a 
single cell could be used to avoid such chimeras. Somatic embryogenesis was also used 
for grapevine micropropagationand genetic transformation. Unfortunately, the induction 
of somatic embryogenesis is generally low and dependent on the type of explants [224]. 
Moreover, the maintenance of embryogenic masses on calluses and somatic embryos is 
also very important [225]. Therefore, transgenesis in grapevine is mostly based on the Ag-
robacterium system, and the regeneration of transformants is generally achieved with so-
matic embryogenesis. Improved Agrobacterium-mediated transformation protocols were 
published to enhance the fruit quality and tolerance to different stress factors [226,227]. 

Several factors influence the regeneration of transformants via somatic embryogene-
sis, such as the grapevine genotype [228], explant source [137,138,229], and culture me-
dium [222,224,230]. All of these factors were reviewed by Zhang et al. [17]. 

Important achievements in grapevine using direct transformation methods and Ag-
robacterium-mediated transformations are shown in Table 2. Several experiments were 
also carried out in order to develop an efficient transformation method; these were re-
viewed by Zhang et al. [17]. 

Table 2. Grapevine improvements with genetic transformations. 

Method Cultivar Target Gene Trait References 
Transient expression assays using direct transformation methods, modified from Jelly et 
al. [231] 

Biolistics Cabernet 
sauvignon 

VvAdh1, VvAdh2 
VvAdh2 Abiotic stress [232,233] 

Biolistics Chardonnay 

VvMYBA1, -F1, -PA1, 
-PA2 and VvCHS1,
VvCHS2, VvCHS3
promoters 

Flavonoid 
synthesis [234] 

Biolistics Chardonnay 

VvMYB5a,-5b and 
VvANR, 
VvANS,VvCHI, 
VvF30 50 H, VvLAR1
promoters 

Flavonoid 
synthesis [235] 
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Biolistics Chardonnay 

VvMYBA1, -A2 and 
VvUFGT promoter
Flavonoids GFP, dual
Luc Walker et al. [225]
VvMYBF1 and
VvANR, VvCHI,
VvFLS1, VvLDOX
promoters 

Flavonoid 
synthesis [236] 

Biolistics Chardonnay 

VvMYBF1 and
VvANR, VvCHI,
VvFLS1, VvLDOX
promoters 

Flavonoid 
synthesis [237] 

Biolistics Chardonnay 

VvMYBPA1 and
VvANR, VvCHI,
VvF30 50 H, VvLAR1,
VvLDOX promoters 

Flavonoid 
synthesis 

[238] 

Biolistics Chardonnay 

VvMYC1 and
VvMYB5a, -5b, -A1, -
A2, -PA1 and 
VvANR, VvCHI,
VvMYC1, VvUFGT
promoters 

Flavonoid 
synthesis [239] 

Biolistics Chardonnay 
Pinot Noir 

VvMYB14, -15 and 
VvSTS29, -41 
promoters 

Stilbene 
synthesis [240] 

Biolistics Chardonnay VvPGIP1 promoter 
Resistance to B. 
cinerea [241] 

Biolistics 
Thompson 
Seedless VvPGIP1 promoter 

Resistance to B. 
cinerea [241] 

PEG treatment 
Cabernet 
Sauvignon VvMSA Abiotic stress [242] 

PEG treatment Cabernet 
Sauvignon 

VvWRKY1 and
VvJAZ1.1, VvLOX
promoters 

JA defence 
pathway [243] 

PEG treatment 
Cabernet 
Sauvignon VvMYC1 

Flavonoid 
synthesis [239] 

PEG treatment 
Cabernet 
Sauvignon VvMSA Abiotic stress [244] 

Transient expression assays using Agrobacterium-mediated transformation, modified 
from Jelly et al. [220]; Zhang et al. [17] 

Agrobacterium 
Superior 
Seedless 

hpRNA against
VvPDS Gene silencing [245] 

Agrobacterium 
Cabernet 
Franc, Syrah,
Zinfandel 

GLRaV-2 cDNA - [208] 

Agrobacterium Thompson 
Seedless 

D4E1 (synthetic
AMP) 

Resistance to 
A. vitis, X. 
ampelinus 

[246] 

Agrobacterium Cabernet 
Franc 

hpRNA against
VvPGIP1 

Resistance to B. 
cinerea 

[247] 
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Agrobacterium 

Cabernet 
Sauvignon, 
Cinsault, 
Muscat 
Ottonel, 
Syrah 

VvVST1 Resistance to P. 
viticola 

[248] 

Agrobacterium Carignane VpGLOX Resistance to E. 
necator [249] 

Agrobacterium  VpPR10.2 Resistance to P. 
viticola [250] 

Agrobacterium  VpSTS Resistance to E. 
necator [251] 

Agrobacterium  VpPR10.1 Resistance to P. 
viticola [252] 

Agrobacterium Syrah VvNPR1 Resistance to P. 
viticola 

[253] 

Agrobacterium Grenache GLRaV-2 cDNA - [254] 
Agrobacterium Prime GVA cDNA - [207] 

Agrobacterium 
Prime, 
Thompson 
Seedless   

GRSPaV cDNA - [209] 

Agrobacterium Gamay Red VvDFR 
Flavonoid 
synthesis 
 

[255] 

Agrobacterium Chardonnay 
amiRNAs against
Grapevine fanleaf
virus and GUS sensor 

Resistance to 
GFLV [256] 

Agrobacterium 
Thompson 
Seedless 

CaMV35S, CsVMV,
Arabidopsis ACT2 
promoters 

- [257] 

Agrobacterium Thompson 
Seedless 

BDDPs with
CaMV35S, CsVMV
promoters and
enhancers 

- [213] 

Agrobacterium Thompson 
Seedless 

31 grapevine
promoters (PR1, PAL,
Ubiquitin etc.) 

- [217] 

Agrobacterium 
Russalka and
Rupestris du
lot 

GFLV CP (grape
fanleaf virus coat
protein) and four
encoding antifreeze
proteins (Atf11,
Atf62, Atf78, B5) for
Russalka, GUS (β-
glucuronidase gene)
for Rupestris du Lot 

Fan Leaf Virus 
resistance and 
cold resistance 

[258] 

Agrobacterium Chancellor 
tfdA gene (a 2,4- D α-
ketoglutarate 
dioxygenase) 

Tolerance to 
2,4-D 

[259] 
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Agrobacterium Pusa seedlessA rice chitinase gene 
Resistance to 
powdery 
mildew  

[260] 

Agrobacterium Thompson 
seedless 

vvtl–1 (a thaumatin-
like protein) 

Broad 
spectrum 
fungal disease 
resistance 

[261] 

Agrobacterium Thompson 
seedless 

VvMybA1 
(regulatory gene for
the last metabolic step
of anthocyanin 
biosynthesis) 

Development 
of an 
anthocyanin-
based 
quantitative 
reporter 
system 

[213] 

Agrobacterium Crimson 
seedless 

Chitinase and β–1,3-
glucanase genes 

Tolerance to 
downy mildew 

[262] 

Agrobacterium Thompson 
Seedless 

VpPUB23 (a ubiquitin 
ligase gene) 

Overexpressio
n of VpPUB23 
decreased 
powdery 
mildew 
resistance 

[225] 

Agrobacterium Chardonnay VpSTSgDNA2 

Developed a 
protocol and 
increased 
powdery 
mildew 
resistance 

[263] 

Agrobacterium 
Thompson 
seedless and
Freedom 

LIMA-A (a synthetic 
gene encoding lytic
peptide) 

Durable 
Pierce’s 
disease 
resistance 

[264] 

Agrobacterium 
Thompson 
seedless; Red
Globe 

VqSTS6 in Thompson
Seedless; VpPR4–1 
(pathogenesis-related 
proteins) in Red globe

Resistance to 
powdery 
mildew  

[265,266] 

Agrobacterium Brachetto 

Knockdown through
RNA interference of
VvMLO6, 7, 11 and 13
(mildew locus O) 

Reduced 
susceptibility 
to powdery 
mildew 

[267] 

Agrobacterium Thompson 
seedless 

Overexpression of
VaTLP (thaumatin-
like protein) 

Resistance to 
downy mildew [268] 

Agrobacterium Thompson 
seedless 

Overexpression of
VaPUB (a stress-
responsive U-box 
protein gene) 

Disease 
resistance 

[269] 

Agrobacterium Thompson 
seedless 

Overexpression of
VpPR10.1 

Resistance to 
downy mildew 

[270,271] 

Agrobacterium Thompson 
seedless 

Overexpression of
AgNHX1 (Na+/H+

Increased salt 
tolerance 

[272] 
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antiporter gene in
Atriplex gmelini) 

Agrobacterium 
Thompson 
seedless 

Overexpression of
VvWRKY8 

Repressed 
VvSTS15/21 
expression and 
resveratrol 
biosynthesis 

[273] 

Agrobacterium 
Thompson 
seedless 

Overexpression of
VpSTS29/STS2 

Resistance to 
powdery 
mildew  

[274] 

Agrobacterium 
Thompson 
seedless 

Overexpression of
VlbZIP30 (a basic
region/leucine zipper
transcription factor) 

Improved 
drought 
resistance 

[275] 

7. Genome Editing 
Genome editing consists of precise genetic modifications with different purposes, 

such as gene inactivation, that allow the possibility to explore the function of a particular 
gene and the insertion or replacement of genes at specific sites for genetic improvements. 
Strategies involving genome editing are known as new breeding technologies [23]. Artifi-
cially engineered nucleases, such as zinc-finger nucleases (ZFNs) [276], transcription acti-
vator-like effector nucleases (TALENs) [277,278] and clustered regularly interspersed 
short palindromic repeats (CRISPR) in association with the Cas9 nuclease [279] are capa-
ble of inducing specific double-stranded breaks (DSBs) of DNA molecules. The DBS are 
repaired with natural mechanisms present in all cells, such as non-homologous end join-
ing (NHEJ), which is followed by point mutations due to the insertion or deletion of some 
nucleotides (INDELS) in the target gene, or homologous recombination (HDR) if a DNA 
sequence is available for recombination. CRISPR-Cas9 technology is considered the most 
efficient, among the genome editing tools, due to the high specificity and minimal nontar-
get effects [280]. Gene editing with the CRISPR-Cas9 system requires a guide RNA 
(gRNA) containing a spacer sequence complementary with the desired DNA sequence. 
The complex formed by guide RNA and Cas9 scans the genome, searching for comple-
mentary double-stranded DNA [281]. The nuclease recognizes the protospacer-adjacent 
motif (PAM) and generates a DSB in the specific gene sequence. Thus, genome editing 
through CRISPR-Cas9 technology requires the PAM sequence downstream of the target 
gene and proper guide RNAs, designed based on the gene sequences encoding important 
traits [282]. The description of the genome editing technologies based on ZFNs, TALENs 
and the CRISPR-Cas9 system was provided by Bortesi and Fischer [283] and Butiuc-Keul 
et al. [284]. Despite the many advantages of CRISPR-Cas9 technology over ZFNs and 
TALENs, the occurrence of off-target mutations is one of the shortcomings [285,286], being 
influenced by different parameters, such as the recognition of the target, the design of 
guide RNAs, the frequency of repair events with homologous recombination, and anti-
CRISPR proteins that inactivate Cas9 [280]. 

Another limitation of using CRISPR-Cas9 technology is related to the delivery of the 
system in plant tissues. Generally, gRNAs and Cas9 are delivered into plant cells by Ag-
robacterium, viral vectors, PEG-mediated transformation, biolistic methods, and nanopar-
ticles [280]. The CRISPR-Cas9 system could be released in tissues in its DNA, mRNA, or 
ribonucleoprotein forms and incorporated in different biomaterials for proper delivery 
[287], but these studies were carried out mostly in animal and human cells for cancer ther-
apies. The structure of the plant cell wall limits the delivery of the system; thus, the most 
used system for delivery into plant tissues is Agrobacterium [288]. Nevertheless, the direct 
delivery of the purified Cas9 protein and gRNAs was also applied for the editing of the 
plant genome [289,290]. 
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Most of the studies regarding the genome editing of grapevine were conducted in 
order to increase the resistance to powdery mildew [136,289,291,292] and Botrytis cinerea 
[227], the production of tartaric acid [293], the manipulation of the carotenoid biosynthesis 
pathway, and the induction of the albino phenotype [294,295] [Table 3]. 

Table 3. Grapevine improvements with CRIPSR-Cas9 technology (modified from Zhang et al. [17]; 
Butiuc-Keul et al. [284]). 

Technology  Cultivar  Target Gene  Trait References 

CRISPR/Cas9 Chardonnay MLO-7 
Resistance to 
powdery mildew [289] 

CRISPR/Cas9 Neo Muscat VvPDS 
Albino 
phenotype [294] 

CRISPR/Cas9 Chardonnay, 41B VvPDS 

Albino 
phenotype and 
dwarf 
morphology 

[295] 

CRISPR/Cas9 Chardonnay 
L-idonate 
dehydrogenase 
gene (IdnDH) 

Biosynthesis of 
tartaric acid [293] 

CRISPR/Cas9 Neo Muscat 
VvPDS 
(phytoene 
desaturase gene) 

CRISPR-Cas9- 
mediated 
protocol 
development 

[294] 

CRISPR/Cas9 Thompson 
seedless  

VvWRKY52 Resistance to B. 
cinerea   

[227] 

CRISPR/Cas9 Thompson 
seedless 

VvPR4b 

VvPR4b 
knockout 
decreased downy 
mildew 
resistance 

[291] 

 
Thompson 
seedless 

VvMLO3 and
VvMLO4 

Resistance to 
powdery mildew 

[293] 
 

8. Conclusions and Perspectives 
The selection of grapevine rootstocks and scion varieties with improved fruit quali-

ties, resistance to herbicides, and tolerance to biotic and abiotic stressors requires different 
biotechnologies, such as in vitro plant regeneration and multiplication, mutagenesis, the 
induction of somaclonal variability and selection of new valuable genotypes, and genetic 
transformation and genome editing. The strategies based on genome editing have the ad-
vantage of speeding up crop improvement and reducing the cost of the process, but the 
implementation of these technologies needs government support. Usually, the edited 
plants are not considered transgenic even though the delivery of the CRISPR-Cas9 system 
is mediated by Agrobacterium. Thus, edited plants could be easily accepted on the market. 
Improving grapevine tolerance to diseases and pests is the most promising contribution 
of new breeding technologies because little is known about genes encoding disease re-
sistance and their functions, and the QTLs are not identified. The development of a multi-
resistant genotype is complicated, and V. vinifera is susceptible to different fungi. Thus, 
new breeding technology could be considered a significant alternative to the classical se-
lection and breeding of grapevine varieties resistant to biotic and abiotic stress. 
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