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Abstract: Fruit species contribute to nutritional and health security by providing micronutrients,
antioxidants, and bioactive phytoconstituents, and hence fruit-based products are becoming func-
tional foods presently and for the future. Although conventional breeding methods have yielded
improved varieties having fruit quality, aroma, antioxidants, yield, and nutritional traits, the threat
of climate change and need for improvement in several other traits such as biotic and abiotic stress
tolerance and higher nutritional quality has demanded complementary novel strategies. Biotech-
nological research in fruit crops has offered immense scope for large-scale multiplication of elite
clones, in vitro, mutagenesis, and genetic transformation. Advanced molecular methods, such as
genome-wide association studies (GWAS), QTLomics, genomic selection for the development of
novel germplasm having functional traits for agronomic and nutritional quality, and enrichment of
bioactive constituents through metabolic pathway engineering and development of novel products,
are now paving the way for trait-based improvement for developing genetically superior varieties in
fruit plant species for enhanced nutritional quality and agronomic performance. In this article, we
highlight the applications of in vitro and molecular breeding approaches for use in fruit breeding.

Keywords: fruits; biotechnological research; induced mutations; genomics; fruit quality; QTLs;
transgenic crops; genome editing

1. Introduction

Fruits constitute an important part of human life due to their edible, medicinal and
cultural value. Worldwide fruit production has been significant, at 896.45 million tons, with
the major proportion contributed by five fruit plants (bananas and plantains, watermelons,
grapes, oranges, and apples [1]. Among the fruits, there has been significant production
in bananas and plantains (Figure 1). Being natural sources of nutrients and secondary
metabolites, fruits are a vital part of the human diet and have nutritional and medicinal
properties [2]. Recently, some fruits have assumed the role of functional foods, as they
provide antioxidants and medicinal phytochemicals [3,4]. There is a continued demand for
fresh fruits and fruit-based products, and hence fruit production of several fruit species has
gained momentum and there is a greater focus of breeders to achieve higher productivity.

Post-harvest losses due to perishability of the produce, faster fruit ripening, and
loss of nutritional quality have become constraints for achieving higher production and
sustained economic gains. In addition, problems such as a long juvenile phase, lower
fruit quality, higher numbers of seeds, and incompatibility of rootstock/scion also pose
challenges that require continued breeding efforts [5,6]. In this context, conventional
breeding methods have significantly contributed to the development of new improved
varieties for fruit quality, aroma, antioxidants, yield, and nutritional traits [5]. However, in
the wake of climate change and nutritional security, several other fruit crop related traits
such as biotic and abiotic stress tolerance and higher nutritional quality demand intensive
research inputs and novel strategies of breeding aimed at crop improvement. Several
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tropical fruits, including banana, citrus, avocado, dragon fruit, papaya, mango, and guava
are now gaining growing attention for implementing integrated omics strategies [4]. In
this context, breeding tools such as polyploidy, in vitro culture, mutagenesis, soma clonal
variation, molecular markers, transgenics, and genome editing are considered important
for trait improvement.
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Figure 1. Worldwide production of major fruit crops.

Polyploidy in crop plants is often associated with increased cell size (the gigas effect),
and the phenomenon has been exploited in ornamental species [7,8]. Polyploidy has played
a significant role in higher heterozygosity, development of novel germplasm, and increased
vigor [9]. Polyploid plants also often have novel biochemical, physiological, morphological,
and ecological traits for environmental adaptation [10]. Several examples of polyploid fruit
species have been reported for higher quality [11], fruit size [12], improved resistance to
diseases in Actinidia sp. [13], and higher productivity [14], in addition to increased biomass,
fruit and flower size, pigment content, and secondary metabolite production [15–17].

Induced mutations have played a key role in the development of desirable mutants
that have been released for cultivation as new crop varieties in several countries across
the globe [18,19]. Some notable examples include, rice, barley, cotton, groundnut, pulses,
ornamentals, rapeseed, and Japanese pear. Biotechnological research in fruit crops—mainly
banana, strawberry, papaya, pineapple, apple, citrus, and grapes—has progressed well
over other perennial fruit trees. Studies in plant cell and tissue culture have contributed to
the development of protocols for large-scale multiplication of elite clones and generation of
virus-free planting material, in addition to providing know-how on soma clonal variation,
somatic embryogenesis, and genetic transformation. Molecular markers have facilitated
the selection of elite clones at early stages of development [20]. The advent of genomics
approaches such as genome-wide association studies (GWAS) and QTLomics has created
opportunities for molecular breeding [21]. Use of In vitro, mutagenesis, transgenic, and ad-
vanced molecular methods has been fundamental to the development of novel germplasm
and for generating knowledge about the regulation of functional traits for agronomic and
nutritional quality and enrichment of bioactive constituents through metabolic pathway
engineering and development of novel products (Figure 2).

The discovery of targeted mutagenesis using genome editing has innovated plant
breeding for fine tuning the traits associated with nutritional, floral, and stress tolerance
traits in fruit crops such as banana, apple, grapefruit, kiwifruit, and strawberry [22]. Com-
pared to conventional and transgenic breeding methods, genome editing has the advantage
of having edited gene(s) for a given trait in a comparatively lesser time span (Figure 3).
In other fruits crops, such as jackfruit, guava, and custard apple, which are underutilized,
traits such as changing crop habit, crop phenology, and other physiological traits make these
fruit trees adaptable to diverse cropping and postharvest patterns, and, hence, considerable
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scope exists for bringing these into mainstream cultivations to widen their commercializa-
tion and application [23]. In this context, it is desirable to improve the development and
production of genetically elite fruit species using strategies ranging from polyploidy to
mutagenesis, in vitro culture, molecular markers, transgenics, and genomics breeding tools.
In this article, we present an overview on the aspects of fruit improvement using in vitro
and molecular breeding approaches.
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Figure 3. Comparison of conventional breeding, transgenic, and genome editing methods in fruit
species [24].

2. Induced Mutagenesis

Since the discovery of X-ray induced mutations and the first mutants developed in
tobacco and apple, the field of mutagenesis has expanded tremendously in the past several
decades for developing superior plant cultivars in several crop plants [25]. Spontaneous
mutation frequency is very low, on the order of one in a million. Both physical and chemical
mutagens have been used to enhance the mutation rate by several folds and increase genetic
variability in crop plants for a wide range of traits, including yield, plant stature, flowering,
salt/drought/heat stress tolerance, disease resistance, high yield, plant architecture, and
nutritional quality. Gamma radiation, fast neutrons, and chemical mutagens have been
observed to induce mutations such as single-nucleotide alterations, large deletions, and
chromosomal aberrations [26]. Alkylating agents such as ethyl methane sulfonate (EMS) are
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widely used in fruit crops [27–30]. Globally, several improved mutant cultivars have been
released for cultivation in cereals, oil seeds, legumes, medicinal plants, horticultural crops,
and plantation crops [31–33]. In the fruits category, 81 mutant varieties have been released
for cultivation (Figure 4) [34]. Induced mutations provide a viable option for the generation
of a novel genetic resource. In the case of horticultural plant species that are asexually or
vegetatively propagated, chimera separation through adventitious shoot multiplication or
plant regeneration from somatic cells can facilitate the genetic purity of the mutants [35]
for fruit related traits such as size, maturity, ripening, color, self-incompatibility, post-
harvest quality, and resistance to insect, pests, and other pathogens. The integrated use
of mutagenesis, in vitro culture, and other genomics techniques has further facilitated
trait-based improvement in fruit crops [36].
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Figure 4. Development of mutant varieties in different fruit species.

Chemical mutagenesis is efficient in whole plants and seeds but less efficient in tissue
culture due to toxicity [37]. In banana, mutants for several traits, including reduced height,
tolerance to Fusarium wilt, early flowering, large fruit size, and black Sigatoka tolerant
types were isolated [32,38,39], whereas mutants tolerant to Bayoud disease were isolated in
date palm [40,41], gamma rays to improve heat tolerance in pineapple [42], self-fertility in
sweet cherry, fruit color in apple, bunch size and early growth in banana, dwarf stature in
papaya, disease-resistance in pear and strawberry, and early growth in grapevine [36].

Mutagenesis enables the creation of genetic variation, especially in those crops having
narrow genetic variability, and identification of casual mutations to facilitate improvement
in productivity. The development of mutant resources in fruit crops has opened up new av-
enues for mutant gene discovery [43] using TILLING [44,45] and several high-throughput
next-generation sequencing-based techniques, such as MutMap, MutMap-Gap, MutChrom-
Seq, Mut-Ren-Seq, and whole-genome sequencing-based mutation mapping which enable
detection of hundreds of mutations in a short period of time [46–48]. The MutMap tech-
nique offers rapid uncovering of causative nucleotide changes in mutant populations
through whole-genome resequencing of mutant plants resulting from crosses of mutants
with the parental line [49] and, in contrast, the MutMap+ technique is based on selfing of
an M2 heterozygous individual for sequencing purposes and does not need crossing [50].
MutMap-based approaches have been successfully employed in crop plants [51,52].

3. In Vitro Approaches

Plant cell and tissue culture techniques have played a significant role in the multiplica-
tion of commercially important fruit species, conservation of genetic resources, production
of bioactive compounds, and genetic modification of desirable traits. Commercial produc-
tion of fruit species has been possible based on optimized protocols of in vitro multiplication
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(micropropagation) in peach, apple, cherry, apricot, citrus spp., mango, banana, and date
palm. In vitro technologies have also contributed to the development of methods for rais-
ing virus-free plants, rapid multiplication of elite clones, somatic embryogenesis, soma
clonal variation, transgenic plants, and germplasm conservation. In the case of vegetatively
propagated plants, multicellular meristems are often employed for undertaking in vitro
mutagenesis [53,54]; however, occurrence of chimeras and phenotypic instability are limita-
tions. Somatic embryogenesis, temporary immersion, and plant cell cultures have immense
potential for in vitro propagation and genetic transformation in fruit trees such as mango,
banana, pistachio, apple, papaya, coffee, and date palm. Somatic embryogenesis offers
many advantages over organogenesis, including its high multiplication rates, scale-up via
bioreactors, and delivery through synthetic seeds, in addition to offering as a suitable target
for gene transfer [55]. In banana, successful and high frequency somatic embryogenic
systems have been developed for use in raising high frequency, large-scale propagation
systems and in mutant development using in vitro mutagenesis [56–58]. Embryogenic cell
cultures are also advantageous for obtaining non-chimeric progeny as well as for rapid
separation of chimeric sectors. A scheme for successful establishment of embryogenic cell
suspension cultures derived from male floral apices in banana is depicted in Figure 5, and
the system is now routinely applied in various potential applications, including developing
synthetic seeds, mutants, transgenic plants, and genome edited plants [59–63].
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Figure 5. Development of high frequency embryogenic cell suspension cultures in banana (kindly
provided by Dr M Saraswathi, NRCB, Trichy, India): (a) Explant; (b) Initiation of floral hands
on callus induction medium; (c) Embryogenic calli (microscopic view); (d) ECS in orbital shaker;
(e,f) Embryogenic cell suspension; (g,h) Regeneration or maturation; (i) Microscopic view of matured
somatic embryos (j) Embryo germination; (k) Primary hardening.

Plant tissue culture provides immense scope for the micropropagation of fruit and
horticultural crops, such as strawberry, papaya, banana, grapes, pineapple, citrus, tomato,
cucumber, and watermelon [64,65]. In commercial crops such as banana, tissue culture-
based shoot tip culture techniques have played a great role in the micropropagation industry
through high volume in vitro multiplication and generation of elite planting material. In
the last decade, mass propagation through somatic embryogenesis and embryogenic cell
suspension (ECS) has been achieved [66–68], suggesting that such protocols will be of
potential benefit to the micropropagation industry. However, the need to maintain genetic
uniformity in the clonally propagated plant population has become a major problem for the
micropropagation industry, as any genetic variation in the plant progeny is an unwanted
phenomenon [69]. The notable example is banana, in which occurrence of off-types from



Horticulturae 2023, 9, 58 6 of 20

tissue cultured plantlets ranged from 6 to 38% in Cavendish cultivars [70]; however, it could
be as high as 90% as reported earlier [71]. From the point of commercial micropropagation,
variation of any kind, in particular, genetic variations may be considered obstructive and
worthless, as such variations may lead to loss of genetic fidelity.

Over the past few decades, the occurrence of genetic variations in the in vitro cul-
tured tissues such as undifferentiated cells, isolated protoplasts, and calli tissues have
been in evidence [72–74]. Larkin and Scowcroft used the term “soma clonal variation”
for variation arising from cell or tissue cultures. Instances of soma clonal variations have
become a common occurrence, and presently such variation has become a novel source
of inducing genetic variation for desirable traits. Soma clonal variation has tremendous
scope in the case of fruit crops, as these are mostly vegetatively propagated and have
other breeding concerns such as narrow genetic base and a prolonged juvenile phase.
Several new cultivars have been developed for a wide range of desirable traits (Table 1).
Soma clonal variation followed by in vitro selection has been used as the in vitro system
for the screening of desirable characters in vitro, and the resultant soma clones devel-
oped as improved varieties have been used in fruit crop breeding [75,76]. In strawberry,
Yoo et al. [77] suggested that selection pressure during in vitro selection and precise de-
tection of soma clonal variation can be useful to incorporate new traits such as resis-
tance to Phytophthora, herbicide tolerance, and heat tolerance to develop lines for use in
strawberry breeding.

Table 1. Some examples of soma clonal (genetic) variability and development of new varieties in
different plants [78].

Plant Released Variety Improved Traits Reference

Banana

TC1-229 Semi-dwarf and resistant to
Fusarium wilt [79]

TC2-425

Larger bunch size, resistant
to Fusarium oxysporum f. sp.

cubense (Foc) race 4;
high yield

[80]

CIEN-BTA-03, Resistant to yellow Sigatoka [81]

CUDBT-B1 Reduced height and
early flowering [82]

Tai-Chiao No. 5
Superior horticultural traits

and resistance to
Fusarium wilt

[83]

Blackberry var. ‘Lincoln Logan’ Thornless [84]
Sweet orange

(Citrus sinensis) DG-2 Tolerant to citrus
canker disease [85]

Sweet orange
(Citrus sinensis)

EV1, EV2,
N7-3, N13-32,
OLL-4, OLL-8,

Valquarius,
SF14W-62,
UF 111-24

Better yield and fruit quality [86]

Pineapple
(Ananas comosus L., Merr.)

Cvs. P3R5 and
Dwarf,

Variation in fruit color,
growth habit, fruit size, and

length of plant
generation cycle

[87,88]

Tomato
(Lycopersicon esculentum L.) DNAP9 High solid contents [89]

4. Genomics Insights into Fruit Quality

Since the advent of genomics tools and availability of sequencing platforms for most
organisms, functional genomic analysis has become a reality in many crops. In fruit crops,
genomic sequence information has been reported [24,90,91] paving the way for molecular
insights into fruit quality and plant traits based on whole-genome or single gene duplication,
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transposon insertions, and gene function. The red fruit color in many fruit crops has
been shown to be due to specific MYBs mediated regulation of different anthocyanins,
phlobaphenes, and betalains [92]. In addition, MYBs also have a role in carotenoid synthesis
and flavor, texture, taste and aroma, astringency, and piquancy [92,93]. It is also possible to
induce higher levels of flavonoids through the overexpression approach; for example, in
apple, MYB10 resulted in enhanced anthocyanins including epicatechin, procyanidin B2,
and quercetin glycosides and, when the MYB10 engineered apples were fed to mice, altered
expression of inflammatory genes and reduced inflammation was observed in treated
mice [94]. The studies suggest that fruit nutritional quality may be manipulated through
MYB transcription factors for better health.

Gene duplications have resulted in fruit sweetness, nutritional content, and qual-
ity, e.g., high ascorbic acid associated with GalUR gene expansion in orange and jujube
fruits [95,96], and fruit sweetness associated with expansion of sorbitol metabolism-related
genes S6PDH, SDH, and SOT in fruits of the Rosaceae [97] and pear [98]. Variation in gene
structure, phenotype, and functional attributes in fruit crop genomes has been shown to be
associated with transposon insertion(s), for example, high-fruit quality in apple with a long
terminal repeat retrotransposon insertion upstream of MdMYB1 [99,100], parthenocarpic
fruit development in apple due to insertion in MdPI gene [101], TE insertion in the 5′

flanking region of MYBA1 blocking anthocyanin expression and yielding white berry skin
color [102,103], blood orange color due to a Copia retrotransposon insertion [104], retro-
transposon Rider insertion leading to elongated fruit shape in tomato [105], and transposon
insertion in the YUCCA gene in peach causing stony hard phenotype [106].

Genomics based approaches have relevance to fruit crop breeding because of the
limitations of long generation time and extended juvenile period [24,107–109]. Approaches
such as GWAS (genome wide association) enable the appraisal of the positions and effects of
QTLs/genes using available cultivars/lines and does not need a segregating progeny [109],
whereas genomic selection (GS) can be useful to accurately exercise selection and genetic
gain required for the improvement of fruit quality and yield traits [110]. Early selection
during the juvenile phase can fasten the selection efficiency to minimize the population
required to be taken to subsequent field trials [111,112]. QTLs for several important
agronomic traits such as fruit quality and disease resistance have been reported and are
being used in marker-assisted breeding [108]. QTLs have been developed for different fruit
related characters such as harvest time, fruit skin color, fruit weight, and sugar content in
apple, pear, peach, mango, avocado, papaya, and grapevine [113–120]. QTLs for disease
resistance include scab resistance in apple [121] and pear [122], plum pox virus resistance
in apricot [123], brown rot resistance in peach [124], and downy and powdery mildew
resistance in grapevine [125,126]. Major QTLs were mapped on linkage group 3 for skin
and flesh color (anthocyanin pigment) in sweet cherry, anther color in almond × peach
progenies, and skin color in peach, Japanese plum, and apricot [127,128]. Advances in
sequencing methods have facilitated the detection of polymorphism at single nucleotide
level in apple, pear [129], prunus [130], plum [131], citrus, and banana [132]. Cao et al. [133]
performed GWAS in 104 landrace accessions of peach using 53 genome-wide SSR markers
and found good association with fruit traits and phenological period. Another GWAS
based study in Japanese pear using 76 cultivars showed association of 162 markers with
fruit harvest time and black spot resistance [134]. In a significant GWAS study in apple,
Kumar et al. [135] found few hundred SNPs associated with fruit related traits.

5. Transgenic Approaches

Genetic engineering based on genetic transformation methods is now routinely applied
to improve plants [136]. Transgenic breeding has an important role in the improvement of
fruit crops, as fruit crop breeding is limited by problems such as long-life cycle, propagation
method, high heterozygosity, and reproductive barriers [137]. Among the different trans-
formation methods, Agrobacterium tumefaciens mediation is widely used based on efficient
tissue and cell culture conditions, somatic embryogenesis, and plant regeneration. Genetic
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transformation of fruit crops has been very successful for enhancing disease resistance
and drought, frost, and salt tolerance, modified plant growth pattern, and fruit quality [6].
Since the first commercialization of genetically engineered Flavr Savr™ tomato [138], sev-
eral fruit crops have been transformed using a wide variety of genes for improving plant
productivity, resistance to insect/pests and diseases, and fruit ripening. There have been
several examples of induction of abiotic stress tolerance in fruit crops [5]. Cold tolerance
has been developed in apple by overexpression of the cold-inducible Osmyb4 gene [139],
multiple stress tolerance in banana plants by overexpressing the stress-responsive WRKY
transcription factor (MusaWRKY71) gene [140], drought and salt tolerance in banana
through overexpression of the dehydrin gene [141], cold tolerance in papaya by expres-
sion of a Transcriptional activator gene, C-repeat binding factor (CBF) [142], and salt
tolerance in kiwi fruit through expression of AtNHX1 with high K to Na ratio [143]. To
impart resistance to Xanthomonas wilt caused by Xanthomonas campestris pv. Musacearum,
hypersensitive response-assisting protein (Hrap) or plant ferredoxin-like protein (Pflp)
gene from sweet pepper (Capsicum annuum) was constitutively expressed, and resistance
was achieved in banana transgenic plants [144]. Transgenic banana plants of cv. Grand
Naine were developed for fungal disease resistance using three genes (endochitinase gene
from Trichoderma harzianum, stilbene synthase from grape, and superoxide dismutase from
tomato) [145]. One of the successful transgenic events in banana include the biofortification
of pro-vitamin A by using phytoene synthase enzyme (PSY) and iron (Ferritin gene from
soybean) [146,147].

Development of transgenic fruits began with the ‘first phase’ in which fruit crops
such as apple, pear, plum, cherry stock, grapes, walnuts, kiwifruit, citrus, and European
chestnut were all transformed using the Agrobacterium method. In the second phase of
development, RNAi technologies were majorly adopted for generating GM fruit crops
(plum, cherry, apple) in addition to fine-tuning of protocols for Agrobacterium genetic
transformation (blueberry, sour cherry), marker-free plants (apple, citrus, and apricot), and
commercialization of some transgenic events, such as of non-browning apples. Phase II
has covered the development of protocols for genome editing in fruit crops (apple, grape,
sweet orange, grapefruit, kiwifruit). In major food crops, adoption of GM varieties has
been phenomenal, with large areas under cultivation and economic gain [148]. A report by
ISAAA in 2019 estimates that GM crops are grown in 29 countries on 190.4 million hectares
(~112-fold increase over 1.7 million hectares in 1996). This includes growing of GM fruit
crops in countries such as the USA (papaya, squash, apple), China (papaya), and Costa Rica
(pineapple). GM virus-resistant papaya has been the most widely cultivated genetically
engineered fruit, followed by virus-resistant squash, apples, and pineapple.

6. New Breeding Techniques

The advances in the new breeding techniques such as cisgenesis/intragenesis, RNAi,
and genome editing have provided great impetus to targeted trait improvement [149,150].
It is significant to note the success achieved in the improvement in quality attributes and
those conferring better plant architecture and tolerance to biotic and abiotic stresses. The
cisgenesis and intragenesis strategies rely on the incorporation of genetic sequences derived
from sexually compatible species or the host plant itself (thus obviating the concern of
foreign sequences in the host genome), and there have been developments in the isolation
and application of cisgenic/intragenic reporter genes and promoters and selectable mark-
ers [151,152]. On the other hand, the phenomenon of RNA interference (RNAi) is based
on the naturally conserved mechanism in plants and operates through the interference of
translation of mRNA through the mediation of double-stranded RNA (dsRNA) molecules
that target the silencing of specific transcripts in a sequence-dependent manner [153]. These
biotechnological advances have been successfully exploited in fruit crops; however, limi-
tations of efficient regeneration system, long generation time, and genotypic dependency
still exist, warranting optimization of culture parameters [154,155]. Nevertheless, there
has been significant research efforts in fruit crops on the implementation of the above
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NBTs in fruit crop improvement [156], and it is interesting to note that cisgenesis and RNA
interference have been successful for the development of transgenic fruit crops for different
plant traits (Table 2).

Table 2. Development of genetically engineered fruit crops for functional traits [139].

Improved Trait Gene Method Achievement References

Apple
Resistance to Apple scab

(Venturia inaequalis) HcrVf2 Cisgenesis Plant exhibited
reduction in fungal infection [157–159]

Resistance to Apple scab
(Venturia inaequalis) Rvi6 Cisgenesis Plants had similar resistance to the

M. floribunda control [160]

Resistance to Apple scab
(Venturia inaequalis) strain

104 (Race 1)
Rvi6 Cisgenesis Plants showed resistance to

Venturia inaequalis strain 104 (Race 1) [161]

Resistance to Apple
Rvi6 scab HcrVf2 Cisgenesis Cisgenic lines containing

the HcrVf2gene [162]

Resistance to fire blight
(Erwinia amylovora) FB_MR5 Cisgenesis Plants expressed lower

disease symptoms [163]

Resistance to
powdery mildew

(Podosphaera leucotricha)
MdMLO19 RNA interference Transgenic apple lines resistant to

powdery mildew [164]

Resistance to crown
gall formation iaaM and ipt RNA interference Transgenic apple lines resistant to crown

gall formation on tree roots [165]

Early flowering induction MdTFL1 RNA interference
Silencing of PcTFL1-1 and PcTFL1-2

genes in transgenic pear with
consequent early flowering phenotype

[166]

Dwarf plant type MdGA20-ox RNA interference
Transgenic apple lines with reduced
height, shorter internode length, and

higher number of nodes
[167]

The reduction of fertility
and the increase of
floral attractiveness

MdAG-like genes:
MdMADS15 and

MdMADS22
RNA interference

Trees with polypetalous flowers.
Reduced male and

female fertility of flowers
[168]

Improve post-harvest
fruit quality

Endo-polygalac-
turonase1 PG1) RNA interference Increased post-harvest fruit quality [169]

Grapevine (Vitis vinifera L.):
Resistance to Powdery mildew

(Erysiphe necator)
VVTL-1 Cisgenesis

Plants showed delayed disease
development and decreased severity of

black rot (Guignardia bidwellii)
[170]

Papaya (Carica papaya):
Papaya ringspot virus (PRSV) PRSV-CP RNA interference Resistance to PRSV Transgenic papaya

resistant to Papaya ringspot virus (PRSV) [171,172]

Plum (Prunus domestica L.):
plum pox virus (PPV) PPV-CP

Resistance to Sharka (PPV)
Transgenic plum clone Honeysweet

resistant to sharka disease
[173–175]

Sweet orange
(Citrus sinensis):

Citrus psorosis virus (CPsV)
CPsV-CP RNA interference Resistance to CPsV Transgenic sweet

orange plants resistant to CPsV [176]

Grapefruit (Citrus paradisi):
Citrus tristeza virus (CTV) CTV RNA interference Resistance to CTV Transgenic grapefruit

lines resistant to CTV [177]

7. Genome Editing

One of the advancements in the past decade has been the precise editing of the plant
genome [178]. Plant genome editing has immense scope for the targeted modification of
plant genes controlling various important traits. The method is based on a restriction nucle-
ase that can detect specific sequences in genomic locations and subsequently cut the specific
gene sequences. Named molecular scissors, the nucleases are zinc finger nucleases (ZFNs),
transcription activator-like effector-based nucleases (TALEN), and the clustered regularly in-
terspaced short palindromic repeats associated nucleases (CRISPR/Cas) [179,180]. All these
nucleases (ZFNs and TALENs) are studied with successful editing opportunities in a wide
variety of organisms ranging from plants to animals; however, based on the cumbersome
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methodologies and cost involved in the genome editing process, these are now replaced by
a popular method referred to as CRISPR/Cas. Currently, this method is extensively used
in plant genome editing [179,181] and comprises RNA guided engineered nucleases that
recognize their associated nucleotide sequences in the target sequence (genes). The pro-
cess of genome editing is accomplished either by directly delivering the single-guide RNA
(sgRNA) with pre-complexed purified CAS9 protein or through cell transfection with a plas-
mid encoding CRISPR-associated protein 9 (CAS9) and sgRNA [182]. CRISPR/Cas9 system
has been applied in several fruit crops, including tomato (Solanum lycopersicum) [183], apple
(Malus domestica) [184], grape (Vitis vinifera) [185], grapefruit (Citrus paradisi) [186], sweet
cherry [187], strawberry, orange, and banana. Some notable examples of genome editing in
fruit crops are presented in Table 3.

Some successful examples include development of disease resistance against citrus
canker in Wanjincheng orange upon the deletion of entire EBEPthA4 sequence from both
CsLOB1 alleles [188], high resistance of grapes to Botrytis cinerea, by CRISPR/Cas9-mediated
knockout of WRKY52 [189], and lower susceptibility to the fire blight disease pathogen,
Erwinia amylovora, in apple by CRISPR/Cas9-mediated alteration in MdDIPM4 [190]. Tri-
pathi et al. [191] developed banana plants resistant to banana streak virus, one of several
serious diseases, through CRISPR/Cas9 mediated induction of mutations in the BSV se-
quences. They observed that genome-edited plants displayed no symptoms of viral disease.
Banana plants exhibiting dwarfism have also been generated using the CRISPR/Cas9 sys-
tem by mutations in the MaGA20ox2 gene, which regulates endogenous GA levels [192,193]
suggesting the usefulness of the genome editing tool for developing dwarf banana cultivars.

Table 3. Successful examples of genome editing in fruit crops.

Plant Method Target Gene Trait Modification Reference

Citrus CRISPR/Cas9
(SDN1) CsLOB1 Disease susceptibility gene

for citrus bacterial canker
Mutant plants exhibited

improved fungal resistance [188]

Grapevine
(Vitis vinifera L.) CRISPR/Cas9 MLO-7 Resistance to

powdery mildew
Efficient targeted

mutagenesis [194]

Grape CRISPR/Cas9
(SDN1) VvWRKY52 Disease resistance against

Botrytis cinerea
Mutants plants showed

higher resistance [189]

Grape CRISPR/Cas9
(SDN1) IdnDH Tartaric acid biosynthetic

pathway
High levels of tartaric acid

in mutants [185]

Apple CRISPR/Cas9 MdPDS Important enzyme in TA
biosynthetic pathway Albino phenotype in plants [184,195]

CRISPR/Cas9 MdDIPM4 Fire blight disease
susceptibility protein

Reduced susceptibility
to the pathogen,

Erwinia amylovora
[190]

Banana CRISPR/Cas9
RAS-PDS genes
(RAS-PDS1 and

RAS-PDS2)

Complete albino and
variegated phenotypein

the plantlets
[196]

CRISPR/Cas9 PDS
100% mutation rate and

triallelic deletions or
insertions among the plants

[197]

CRISPR/Cas9 MA-ACO1
A key component

of the ethylene
biosynthetic pathway

Plants were characterized by
extendedshelf-time [198]

Musa dmr6 Banana Xanthomonas wilt
Mutants showed enhanced

resistance to important
disease, BX

[199]

Fruit crop improvement through conventional means is often hampered by a long
generation period and long juvenile period, in the range of 13–16 years. Since juvenility
is associated with high levels of terminal flowering (TFL) protein, intersecting studies by
Charrier et al. [190,200] demonstrated early flowering by editing of the genes (MdTFL1.1,
PcTFL1.1), resulting in 93% apple lines and 9% pear lines. Such studies go a long way in
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establishing fast breeding schemes for fruit crops. In other interesting research, the juvenile
phase in fruit crops could be shortened through inducing a flowering gene or/and silencing
a floral repressor combined with MAS [191,192,201,202].

There have been several studies demonstrating the potential of genome editing in
crop plants and that the technology could contribute to global food security and climate
resilience [203,204]. Globally, several countries have already adopted regulations for the
GE plants for commercialization and/or cultivation [205] based on the premise that the
use of the GE crops in agriculture is similar to conventionally bred lines, provided they do
not contain a transgene. Menz et al. [206] introduced the term ‘marker-oriented’ for the
genome edited events based on the criteria that the editing is applied in a crop plant or
ornamental plant, the trait has relevance to plant functionality, and the event is analyzed as
being distinct and unique. In an interesting study, Shew et al. [207] investigated the public
responses in some countries, including the USA, Canada, Belgium, France, and Australia,
to see if they were willing to accept and consume both GM and CRISPR foods. The data
suggest that 56, 47, 46, 30, and 51% of respondents in the USA, Canada, Belgium, France,
and Australia, respectively, showed willingness to consume both GM and CRISPR foods
and were more willing to consume CRISPR than GM food.

Buchholzer and Frommer [205] summarized the present status of GE crops in the
global context and concluded that the USA and several other countries were classified
as transgene-free, and that they are as equivalent to conventionally bred lines. Several
countries, including Russia, countries in Central and South America, two countries in
Africa, China, and India have developed and placed new guidelines for the use of genome-
edited plants in agriculture (Figure 6). Regulatory guidelines to exempt GE crops from
GMO regulations are also being proposed in Europe, the UK, and Switzerland [205].
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Despite the success achieved in genome editing of fruit species, some of the challenges
that need extensive research include lack of annotated genomes, large genome size, long
in vitro growth periods, dependence on a specific genotype and mode of transformation,
lack of stable transformation of a wide range of fruit crops, and polyploidy associated
problems of having multiple homologous genes. There has been some success of multiallelic



Horticulturae 2023, 9, 58 12 of 20

editing in the case of banana [206] and induction of allelic variants and their segregation to
enable developing genome editing in polyploid species [207]. Further, genetic variation
in fruit architecture or quality traits governed by SNPs can be manipulated through base
replacement using a homology directed repair method [208]. Successful examples include
tomato [208,209]. Prime editing has been developed to enable precise alteration of a specific
DNA base replacement [210,211].

8. Conclusions

Fruit crops constitute an important part of global food production system and signifi-
cantly contribute to food and nutritional security. Breeding approaches have played critical
roles in crop improvement; however, in the case of fruit crops, being vegetatively propa-
gated and often having long juvenile life, alternative approaches for their improvement are
required. In vitro culture technologies have offered the scope for high-volume propagation
and multiplication of elite clones, somatic embryogenesis, cell cultures, enhancement of
genetic variability through soma clonal variation, and generation of transgenic plants.
Success has been achieved in fruit crops such as banana, strawberry, papaya, pineapple,
apple, citrus, and grapes. The application of embryogenic cell suspension cultures, as in
the case of banana, has transformed the crop improvement approach using mutagenesis,
transformation, and genome editing tools. However, fine tuning of in vitro protocols could
further boost commercial propagation of elite cultivars in banana and other important
fruit crops. Important fruit crops that are polyploid will require new methodological inno-
vations for investigating genetic architecture of fruit related traits such as fruit firmness,
ripening, longer shelf life, traits for mechanical harvesting and nutritional traits. Extensive
genomics research inputs are warranted for the identification of functional and regulator
genes, functional markers associated with plant phenotypic variation, well-defined genetic
maps, QTLs, genome-wide association studies for improved fruit quality, and other plant
traits. New plant breeding tools including genome editing and cisgenesis have shown
promise for developing plant engineered for functional traits such as resistance to diseases
in Citrus spp. and nutritional quality in banana, pear, and walnut. Molecular breeding in
the coming years will undoubtedly pave the way for production of elite fruit crop varieties
to meet food and nutritional security.
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