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Abstract: Forecast of tree fruit yield requires prediction of harvest time fruit size as well as fruit 
number. Mango (Mangifera indica L.) fruit mass can be estimated from correlation to measurements 
of fruit length (L), width (W) and thickness (T). On-tree measurements of individually tagged fruit 
were undertaken using callipers at weekly intervals until the fruit were past commercial maturity, 
as judged using growing degree days (GDD), for mango cultivars ‘Honey Gold’, ‘Calypso’ and 
‘Keitt’ at four locations in Australia and Brazil during the 2020/21 and 21/22 production seasons. 
Across all cultivars, the linear correlation of fruit mass to LWT was characterized by a R2 of 0.99, 
RMSE of 29.9 g and slope of 0.5472 g/cm3, while the linear correlation of fruit mass to 𝐿 (

( ))2, 
mimicking what can be measured by machine vision of fruit on tree, was characterized by a R2 of 
0.97, RMSE of 25.0 g and slope of 0.5439 g/cm3. A procedure was established for the prediction of 
fruit size at harvest based on measurements made five and four or four and three weeks prior to 
harvest (approx. 514 and 422 GDD, before harvest, respectively). Linear regression models on 
weekly increase in fruit mass estimated from lineal measurements were characterized by an R2 > 
0.88 for all populations, with an average slope (rate of increase) of 19.6 ± 7.1 g/week, depending on 
cultivar, season and site. The mean absolute percentage error for predicted mass compared to har-
vested fruit weight for estimates based on measurements of the earlier and later intervals was 16.3 
± 1.3% and 4.5 ± 2.4%, respectively. Measurement at the later interval allowed better accuracy on 
prediction of fruit tray size distribution. A recommendation was made for forecast of fruit mass at 
harvest based on in-field measurements at approximately 400 to 450 GDD units before harvest GDD 
and one week later. 

Keywords: yield estimation; machine vision; sizing 

1. Introduction
Yield forecasts of tree fruits are essential to harvest resource planning and marketing. 

A range of technologies can be employed in these forecasts, as reviewed by Anderson et 
al. [1]. One approach relies on manual- or machine-vision-based estimates of both fruit 
number and mass. Manual estimation of fruit number involves counting fruit on a sample 
of trees in each orchard, while the estimation of fruit mass distribution requires estimation 
of mass of a sample of fruit in each orchard. As manual procedures, both are tedious given 
the number of samples required for a statistically valid estimation. To alleviate the manual 
workload, machine vision has been applied to orchard fruit counting, e.g., Anderson et 
al. [2] used a camera system mounted to a vehicle to assess number of fruit in mango 
(Mangifera indica L.) orchards, reporting an absolute percentage error of less than 10% in 
15 of 20 orchards.  

An in-orchard estimation of fruit mass can be achieved non-destructively through 
correlation of mass to fruit lineal dimensions, based on fruit allometry, and a forward 
prediction of mass at harvest can be made based on an assumed growth rate. Mango fruit 
mass (M) can be estimated from measurements of fruit length (L), width (W) and thickness 
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(T) (Equation (1), Figure 1), as described by Spreer and Muller [3] and confirmed by Wang 
et al. [4] and Anderson et al. [5]. 

M = kLWT (1)

where k ranges from 0.49 to 0.51 for the cultivars considered (R2 = 0.97, RMSE = 28.7 g) by 
Anderson et al. [5] and Spreer and Muller [3].  

 
Figure 1. Dimensions of length, width, and thickness of a mango fruit. 

The requirement for forward prediction of fruit size at harvest is illustrated in a 2022 
season example of a 50,000-tree orchard for which hot weather conditions resulted in early 
maturation, as judged by dry matter content and flesh colour, when fruit were at a size 
sub-optimal for market requirements (orchardist pers. comm.). Forward knowledge of 
this outcome would have allowed change in agronomic practice, e.g., additional irriga-
tion. However, the labor requirement of manual measurement of fruit dimensions using 
callipers is such that in-orchard fruit sizing is not an established practice in Australian 
commercial practice., and when attempted, typically involve assessment of an inadequate 
sample size, i.e., a sample that does not represent the actual size distribution.  

Non-destructive in-orchard estimation of fruit dimensions can also be achieved from 
a camera-based system that incorporates a system for measurement or camera to fruit 
distance. Given ease of use, such a system allows for sampling of many more fruit. L can 
be measured from the maximum vertical extent of the fruit in an image acquired from the 
inter-row of fruit on tree, however, fruit may orient such that a measure of the horizontal 
extent of the imaged fruit will be between width and thickness.  

For example, Utai et al. [6] reported mass estimation using machine vision of fruit of 
mango cultivar ‘Nam Dok Mai’ in context of pack-line grading, with fruit in a known 
orientation. An artificial neural network for estimation of mass, with inputs of either man-
ually measured L, W and T or L, W and area as estimated from a top view image, and T 
estimated from a side view image. Using inputs of manual LWT estimates, an RMSE of 
6.6 g was achieved on a test set, while for LWT estimates based on bounding box dimen-
sions from top and side view images, a RMSE of 8.2 g was achieved. Using estimates from 
top view images only of L and segmented area, or L and fitted ellipse area, or segmented 
fruit area only, RMSE increased to 9.5, 11.8 and 10.4 g, respectively. However, all methods 
achieved >95% accuracy in classification of fruit to three size classes.  

The CQUniversity (Australia) group has pursued a line of work related to on-tree 
fruit sizing. Wang et al. [7] developed an Android phone app that processed images taken 
of on-tree mango fruit against a backing board with a scale to obtain estimates of fruit L 
and W, with an RMSE of 5 mm reported. Fruit mass was based on the product of L and 
W2. Wang et al. [4] reported use of a Kinect v2 depth camera mounted on an imaging 
platform with a LED floodlight used to perform orchard imaging at night for mango fruit 
load estimation (as used by Anderson et al. [2]. The depth camera allowed measurement 
of camera to fruit distance and estimation of the actual size of detected and localized fruit 
using the thin lens formula. A subset of imaged fruit was considered, being those fruit 



Horticulturae 2023, 9, 54 3 of 14 
 

 

considered to be un-occluded based on eccentricity of an ellipse fitted to the object bound-
ing box. A RMSE of 4.9 and 4.3 mm was reported for fruit L and apparent W, respectively. 
With the Kinect v2 discontinued from production, Neupane et al. [8] undertook a com-
parison of seven commercially available depth cameras, recommending the Azure Kinect 
camera for this fruit sizing application, based on the RMSE of camera to object distance 
measurements.  

A count of mango fruit made some four to six weeks before harvest is reasonable for 
a harvest forecast as fruit drop is generally low in the period before harvest. A sample of 
fruit in the orchard can also be measured for lineal dimensions at this time, however, a 
pre-harvest estimate of fruit size must be adjusted to allow for growth of the fruit before 
harvest. The increase in fruit mass from fruit set to harvest is typically described by a 
sigmoidal curve, as illustrated by Carella et al. [9]. Growth models are used for forward 
prediction of harvest mass in a number of tree fruit crops, notably apple and citrus. For 
example, Costa et al. [10] predicted final mass of Gala, Golden Delicious and Fuji cultivars 
of apple based on a linear extrapolation from lineal measurements made between 50 and 
80 days after bloom, with prediction of weight at harvest, 80 days later. Prediction error 
was between 7 and 22%, with R2 of 0.87, for Golden Delicious, and up to 10% for the other 
cultivars, relative to actual mass of fruit at harvest. Khurshid and Braysher (2009) [11] 
predicted the final fruit size distribution of Washington Navel oranges from measure-
ments made more than 150 days before harvest, using a non-linear model based on cubic 
smoothing splines developed on data of three seasons and tested on data of a fourth sea-
son. A prediction error of 10%, with R2 of 0.82, was reported. However, such ‘long range’ 
predictions risk failure when growing conditions are not consistent. 

Many authors have presented time series data on mango fruit mass and commented 
on the impact of environmental conditions such as rainfall above 40 mm (e.g., Anderson 
et al. [5]; Carella et al. [9]), without modelling of the growth data. Some authors have ap-
plied a sigmoidal model to measurements of mango fruit mass across the whole fruit de-
velopmental period from fruit set to harvest maturity, (e.g., Da Silva et al. [12]; Souza et 
al. [13]; Carella et al. [9]). Carella et al. [9] noted that (for ‘Tommy Atkins’ and ‘Keitt’ cul-
tivars) fruit mass increase in the late development period, from 50 to 100 days after flow-
ering, could be described by a linear relationship of decreasing slope in each of three se-
quential intervals, each 3 to 4 weeks. This result indicates that measurements taken at two 
times in the final linear growth period can be used to forecast mass at harvest, with the 
rate of fruit growth expected to be cultivar specific and influenced by growing conditions, 
particularly soil moisture status.  

The current exercise was undertaken to underpin work on the use of in-field machine 
vision for measurement of fruit dimensions in support of forward prediction of fruit size 
at harvest. The study focused on the cultivars ‘Honey Gold’, ‘Calypso’ and ‘Keitt’ as ex-
amples, given ready access to field plantings. As there is a high rate of fruit drop in the 
fruit development period before stone hardening (over 50%, and drop can be selective by 
fruit age and thus size, e.g., Anila and Radha, [14]), focus was given to sizing measure-
ments taken from stone hardening stage onwards, i.e., approximately 6 weeks before har-
vest, with consideration of the compromise between time before harvest and prediction 
accuracy. Further, the impact of fruit size measurement error on prediction of tray size 
distribution was explored, as this is a measure of relevance to industry. 

2. Materials and Methods 
2.1. Plant Material 

Experimental exercises were located in ‘Honey Gold’, ‘Keitt’ and ‘Calypso’ blocks 
across 4 farms in differing geographic locations, involving 9 orchard blocks and 11 flow-
ering events in the 2020 and 2021 seasons (Table 1). All trees had similar architecture (ap-
prox. 3 m height and 3 m width), with a range of tree spacings (e.g., 8 × 3, 7 × 4, 6 × 3). 
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Panicles were tagged at floral initiation (panicle ‘asparagus’ stage, Supplementary Mate-
rials), with panicles from two flowering events tagged in orchards 1 and 2. In orchards 3 
to 9, only one flower event per block was tagged. No major rainfall events occurred during 
the measurement periods. Irrigation was discontinued on all populations approximately 
three weeks before expected harvest, following commercial practice. 

Table 1. Fruit populations derived from separate orchards, cultivars, and flowering events, as used 
in sizing exercises. Farm A was in central Queensland, B in Northern Territory, C in Far North 
Queensland (Australia) and D in northern Brazil. In orchards 1 and 2, fruit from which of two flow-
ering events (a,b) were monitored. The monitored period refers to the period (weeks before harvest) 
over which measurements were made. Dates of fruit size assessment refer to day-month and GDD 
units from asparagus stage of panicle development. 

Farm Population Cultivar Season 
Fruit Sample Size 

(n) 
Monitored Period 

(weeks) 

Day-Month of  
Initial Assessment 

(GDD) 

Day-Month of Final 
Assessment 

(GDD) 
A  1a Honey Gold 2020/21 25 7 19-11 (1250) 14-01 (1886) 
A 1b Honey Gold 2020/21 25 7 19-11 (1328) 14-01 (1965) 
A  2a Honey Gold 2020/21 25 9 19-11 (1250) 14-01 (1886) 
A 2b Honey Gold 2020/21 15 9 19-11 (1318) 14-01 (2141) 
A  3 Keitt 2020/21 26 7 22-12 (1796) 02-02 (2456) 
A 4 Keitt 2020/21 17 9 14-01 (2053) 11-03 (2922) 
B 5 Calypso 2021/22 44 5 02-09 (1243) 30-09 (1669) 
B 6 Calypso 2021/22 27 4 02-09 (1410) 23-09 (1739) 
C 7 Calypso 2021/22 29 4 03-11 (1369) 29-11 (1739) 
C 8 Honey Gold 2021/22 20 4 03-11 (1369) 29-11(1739) 
D 9 Keitt 2021/22 32 5 14-10 (1755) 8-11 (2188) 

Fruit that developed on five tagged panicles on each of five to nine trees (giving 17 
to 44 fruit, Table 1) were tagged with numbered flagging tape for each of the 11 flowering 
events. Fruit were tagged between 4 and 9 weeks before harvest maturity, as judged by 
growing degree days (GDD) from flowering.  

2.2. Harvest Maturity Estimation 
The date of commercial harvest maturity was based on GDD from the asparagus 

stage of flowering, calculated following the procedure described by Ometto [15]. A base 
lower temperature (Tb) of 12 °C and a base upper temperature (TB) of 32 °C was employed 
using a target GDD of 1680 for ‘Calypso’ (Moore, [16]), 1800 for ‘Honey Gold’ (Moore, 
[16]), and 2185 for ‘Keitt’ (Amaral, [17]). Daily maximum and minimum temperatures for 
GDD calculations were acquired from a temperature record of 15 min interval data from 
LoRa enabled sensors (SensorHost, Rockhampton, Australia) in screen enclosures 
mounted 1.2 m above ground and located in an open space adjacent to each orchard. GDD 
was automatically calculated daily within an in-house developed on-line application, with 
forward prediction of harvest date based on 10-year average temperature history for each 
site (www.fruitmaps.info).  

2.3. Fruit Measurements  
Weekly measurements were made of the lineal dimensions of fruit L, W and T, con-

tinued until beyond harvest maturity as judged by GDD. L, W and T measurements were 
made to a resolution of 1 mm using callipers (Craftright Metric, Australia). Following har-
vest, fruit were weighed to an accuracy of 1 g (GX-1000, A&D Weighing, Thebarton, Aus-
tralia). Forward predictions of mass were made based on a linear rate of increase esti-
mated from measurements made at 5 and 4, and 4 and 3 weeks before harvest. 

The impact of error on fruit mass assessment was considered in context of packing 
into the 7 kg fruit trays typically used by the Australian fruit industry. These reinforced 
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cardboard trays are marketed with either 10, 12, 14, 16, 18, 20 or 22 fruit per tray, with 
corresponding fruit mass averages of 720, 600, 514, 450, 400, 360 and 327 g. 

2.4. Statistics 
Standard error (SE) on slope of regression lines of fruit mass on GDD was calculated 

for each population. A Chi squared statistical test on significance of differences between 
frequency distributions was undertaken using SigmaPlot v5.0 software. The statistics of 
Root mean square error (RMSE) (Equation (2)) and Mean Average Error (MAE) (Equation 
(3)) for the regression model of actual fruit mass on fruit mass estimated from lineal di-
mensions were calculated as:  

RMSE =
∑ (𝑦 − 𝑦 )

𝑛
 (2)

MAE =  
|𝑦 − 𝑦 |

𝑛
 (3)

where, ‘𝑦 ’ represents the actual measurement, ‘𝑦’ represents the predicted value, and ‘𝑛’ 
represents the number of samples in the study. 

3. Results and Discussion 
3.1. Estimation of Fruit Mass from Linear Dimensions 

Fruit mass was well described by the product of fruit lineal dimensions, L, W and T 
(Equation (1)) for both cultivar specific models and the combined cultivar model (Figure 
2). Although fruit of the assessed cultivars vary somewhat in shape, the combined cultivar 
model achieved a R2 > 0.997 and RMSE of 29.9 g, which was similar to that of cultivar 
specific models (Figure 2). Slopes (g/cm3) of 0.55, 0.55 and 0.54 (with SE of 0.005 or less in 
all cases) were recorded for the ‘Honey Gold’, ‘Keitt’ and ‘Calypso’ populations, while the 
slope for a combined cultivar model was 0.55 (SE of 0.004). Use of the combined model M 
(g) = 0.5472*LWT was considered acceptable for mass estimation of these three cultivars. 
The fit of a linear relationship between mass and volume infers that variation in fruit spe-
cific gravity with fruit maturation was negligible in context of the slope of mass to LWT. 

These results are consistent with that of Spreer and Muller [3] who reported a linear 
correlation between fruit mass and LWT for Thai cultivar ‘Chock Anan’, with R2 0.95 to 
0.98 and RMSE from 8 to 17 g for data of three seasons, and overall slope of 0.54 g/cm3. 
For the Australian cultivar ‘Calypso’, Anderson et al. [5] reported a R2 of 0.97, RMSE of 
28.7 g and slope of 0.49–0.51 g/cm3. 

The fruit lineal dimension of length can be estimated from images of un-occluded 
fruit on a tree, but as fruit orientation is uncontrolled, the maximum horizontal dimension 
of imaged fruit will be of orientations ranging from width to thickness. Given a random 
orientation, on average the apparent width of the imaged fruit will represent the average 
of fruit W and T (Wang et al. [4]). The correlation of fruit mass to the product of fruit 
length and the square of the average of W and T (Equation (4)) was similar to that for the 
product of L, W and T (Figure 2d cf. Figure 3). This result supports the proposed use of 
machine vision estimates of fruit lineal for estimation of fruit mass. 

M = k L*( ))2 (4)
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Figure 2. Scatter plots of fruit mass (g) against LWT (cm3) for (a) ‘Honey Gold’ (populations 1a, 1b, 
2a, 2b and 8 n = 110) (top panel), (b) ‘Keitt’ (populations 3, 4 and 9, n = 75); (c) ‘Calypso’ (population 
5, 6 and 7, n = 100), and (d) all populations, i.e., combined cultivars (n = 285). Pearson’s linear regres-
sion fit, equation with SE of slope, R2 and RMSE are shown. Mean and SD of fruit mass of ‘Calypso’, 
‘Honey Gold’ and ‘Keitt’ populations were 369 ± 74, 553 ± 118, and 524 ± 149 g, respectively. 

(d) Combined cultivars 
y = 0.5472x (slope SE 0.004) 

R2 = 0.9977 
RMSE = 23.9 g 

(c) Keitt 
y = 0.5412x (slope SE 0.005)  

R2 = 0.9982 
RMSE = 24.7 g 

(a) Calypso 
y = 0.5518x (slope SE 0.004) 

R2 = 0.9971 
RMSE = 20.36 g 

(b) Honey Gold 
y = 0.5494x (slope SE 0.005) 

R2 = 0.9978 
RMSE = 25.36 g 
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Figure 3. Scatter plot of fruit mass (g) against L ( ))2 (cm3) for all populations, i.e., combined cul-
tivar data. Pearson’s linear regression fit, equation and R2 shown on graph. Samples are common to 
those presented in Figure 2. 

3.2. Sampling 
In the current study, tagged fruit were measured by calliper weekly, and later har-

vested and weighed. This approach avoids sampling variation. For commercial orchard 
management, tagged fruit could be monitored, but this would require careful selection of 
‘representative’ fruit in each orchard. More commonly, a ‘randomly’ selected sample of 
fruit would be measured. Walsh et al. [18] recommend use of a systematic uniform ran-
dom sampling strategy, with required sample number (n) is approximated as: 

𝑛 = 𝑡 (
SD

e
)  (5)

where SD is population standard deviation, e is accepted error and t is the t statistic for 
the desired probability level. For example, for 95% probability, a prediction error of 20 g 
and a SD of 139 g (from Table 1), a minimum sample number of 95 is recommended. For 
cultivar specific sampling, the ‘Calypso’ SD of 74.3 g invokes a minimum sample number 
of 30, the ‘Honey Gold’ SD of 119 g, 60, and the ‘Keitt’ SD of 141 g, 100. These numbers 
are achievable in terms of the required workload for calliper assessment (approx. 2 h for 
measurement of 100 fruit across an orchard) within commercial practice, although the 
work is tedious. 

3.3. Prediction of Fruit Mass at Harvest 
The rate of fruit growth will be influenced by factors such as crop load and plant 

water status. Non-linearities in mass increase are expected from variations in growth con-
ditions, particularly plant water status, e.g., as reported for mango by Anderson et al. [5], 
with a 40 mm rainfall event associated with a decrease in fruit dry matter content but an 
increase in fruit size. Such responses are well documented for a range of fruits, e.g., stone 
fruit [19,20]. 

For the measured period of up to seven weeks before harvest, the R2 of a linear re-
gression fit to the time series data of fruit mass was above 0.89 for all populations assessed, 
on both a GDD (Figure 4) and calendar day (data not shown), reflecting relatively stable 
environmental conditions in these cases. However, growth rates varied between popula-
tions, i.e., cultivar and growing condition. Rates are reported in terms of g/GDD in Figure 
4. For the same data sets, the rates estimated in units of g/week were: (i) between 16.9 and 
34.2 g/week for the Calypso sets; (ii) between 17.0 and 32.5 g/week for the Honey Gold 
sets, and between 15.3 and 18.8 g/week for the ‘Keitt’ sets. 

y = 0.5439x 
R² = 0.9976 

RMSE = 25.0 g 
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Figure 4. Plot of fruit mass estimated from lineal measurements of L, W and T using a combined 
cultivar model against Growing Degree Days (GDD) from ‘asparagus’ stage. Measurements were 
made at intervals of 7 days. Top panel: ‘Calypso’ fruit from two blocks that flowered two weeks 
apart (pop. 5 and 6) in the same farm in NT, and from a FNQLD orchard (pop. 7). Middle panel: 
populations of Honey Gold fruit from two flowering events in each of two blocks in CQLD (pop. 1 
and 2) and a block from FNQLD region (pop. 8). Bottom panel: ‘Keitt’ fruit from two blocks that 
flowered two weeks apart (pop. 3 and 4) and a block from Northeast, Brazil (pop. 9); Data is pre-
sented as mean with associated SE, for n = 17 to 44 (see Table 1). Harvest maturity date (by GDD) 
for each fruit cultivar is indicated by a vertical red line. 

The mean of fruit size increased with time, but population spread, as indexed by SD, 
was relatively constant over the monitored period in all 11 populations (Figures 4 and 5). 
It is therefore reasonable to apply a linear projection to the pre-harvest size distribution 
to produce a predicted mass profile at the anticipated harvest date.  
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Fruit size distribution for an example population for four field measurement events 
and actual (harvested) mass is illustrated in Figure 5. The frequency bin size (30 g) was 
chosen as less than the lowest range of fruit masses in a tray (tray size 22, fruit mass range 
approximately 60 g). 

 

 

 

 

 
Figure 5. Frequency distributions of fruit mass (kLWT)  (using 30 g categories) of population 9 for 
each of four weeks (panels A–D) and of actual mass at harvest (panel E). Mean fruit mass at each 
date is shown as a red arrow. Mean and SD of mass (kLWT) was 424 ± 79, 448 ± 86 and 469 ± 88, 479 
± 85 and 485 ± 88 g for panels A to E, respectively. 

 

At harvest 

1 week (51 GDD) 

before harvest 

2 weeks (179 GDD) 

before harvest 

3 weeks (298 GDD) 

before harvest 

4 weeks (434 GDD units) 

before harvest 
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Forecast of fruit mass at harvest for harvest planning purposes is required as early as 
possible in fruit development. Forward predictions were made based on a rate of fruit 
growth estimated from measurements made at 5 and 4, and 4 and 3 weeks before harvest 
(Table 2). Using measurements taken on weeks 5 and 4, predicted average fruit mass at 
harvest was under and over-estimated between −15 and 18% (with a mean and SD of ab-
solute errors of 16.3 ± 1.3% across the 11 populations). For measurements taken on weeks 
4 and 3 before harvest, estimates were between −6% and 8% (mean and SD of absolute 
errors of 4.5 ± 2.4%) of actual mass (Table 2), with an RMSE and bias of predicted fruit 
mass at time of harvest compared to actual fruit mass of 47.5 and 25.9 g, 61.0 and 6.0 g, 
and 43.8 and −34.6 g, for the ‘Calypso’, ‘Honey Gold’ and ‘Keitt’ populations, respectively. 

Table 2. Prediction of harvest fruit mass from pre-harvest measurements of fruit L, W and T dimen-
sions at between 5 and 4, or 4 and 3, weeks before harvest. The GDD values for the start date of size 
measurements (nominally 4 and 5 weeks from target harvest date) are given. Percentage error is 
calculated as (predicted mass − actual mass) divided by actual mass × 100. Bottom rows (*) present 
mean and SD of absolute errors. Sample size per population varied between 17 and 44 (see Table 1). 

Population 
GDD at Measurement 

Start (Weeks before 
Harvest) 

Period (Weeks 
before Harvest) 

Slope  
(g/week) 

Predicted Mass at 
Harvest Maturity 

Actual Mass (LWT) at 
Harvest Maturity 

Percentage 
Error (%) 

1a 505.1 (5) 5 and 4 42.6 599 506 18 
1a 421.2 (4) 4 and 3 12.5 479 506 −5 
1b 523.6 (5) 5 and 4 41.5 560 487 15 
1b 418.5 (4) 4 and 3 23.2 487 487 0 
2a 505.1 (5) 5 and 4 52.2 686 590 16 
2a 421.2 (4) 4 and 3 24.3 574 590 −3 
2b 523.6 (5) 5 and 4 1.2 444 526 −15 
2b 431.0 (4) 4 and 3 30.2 560 526 6 
8 371.3 (4) 4 and 3 20.1 465 453 3 
5 443.1 (4) 4 and 3 32.7 402 408 −2 
6 434.0 (4) 4 and 3 * 16.0 339 353 −4 
7 371.3 (4) 4 and 3 22.6 393 367 7 
3 469.5 (4) 4 and 3 8.1 449 479 −6 
4 427.8 (4) 4 and 3 26.9 594 572 4 
9 433.9 (4) 4 and 3 25.1 523 485 8 

Mean ± SD  514.3 ± 9.2 5 and 4 34.4 ± 22.0     16.3 ± 1.3 * 
Mean ± SD 422.1 ± 27.4 4 and 3 19.6 ± 7.1     4.5 ± 2.4 * 

* Mean ± SD of absolute values of percentage errors. 

For recommendation of a cultivar specific sampling start in GDD, the difference in 
GDD at the sampling dates (3, 4 and 5 weeks before harvest) and GDD at harvest maturity 
was calculated (Table 2, column 2). For example, for Honey Gold, the GDD difference 
between five weeks before harvest and harvest ranged from 505 to 524 units across the 
assessed populations.  

3.4. Prediction of Tray Size Distribution at Harvest 
In the Australian industry, mango fruit are generally packed to 7 kg trays, using uni-

form size fruit. Typical fruit numbers per tray are 10, 12, 14, 16, 18, 20, 22 (Kernot and 
Meurant, [21]), with corresponding fruit mass limits of 720, 600, 514, 450, 400, 360 and 327 
g. Note that mass range decreases as tray fruit number increases, to a minimum range of 
52 g. 

The percentage distribution of fruit by tray sizes was estimated at 4 and 3 weeks be-
fore harvest for example populations of three cultivars (Figure 6). A cultivar specific av-
erage growth rate as calculated from change across these measurement dates (Table 2) 
was used to project fruit sizes and tray size distribution at harvest, allowing comparison 
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to actual harvest mass distribution (Figure 6). Pearson’s chi-squared test indicated a sig-
nificant (p < 0.05) difference between actual and predicted harvest size frequency for the 
three cultivars (data not shown), however the distribution is sufficiently accurate to in-
form harvesting and marketing plans., e.g., a delay in harvest date for a low size distribu-
tion population. 

 
Figure 6. kLWT estimate. Frequency (% of total fruit number) for fruit mass ranges equivalent to 
tray sizes for Populations 1 (top), 5 (middle) and 9 (bottom), i.e., example ‘Calypso’, ‘Honey Gold’ 
and ‘Keitt’ populations, respectively. Each panel displays a distribution for four and three weeks 
before harvest (bars), and for the forecast and actual fruit size at harvest (lines). Forecast size was 
based on a growth rate of 23.2, 32.7 and 25.1 g/week (as estimated from the mass change between 
weeks 4 and 3) for populations 1, 5 and 9, respectively. Fruit mass was calculated using fruit L, W 
and T (Equation (1)). 

The frequency distribution of fruit tray size classes based on estimation of fruit mass 
using L and the average of W and T (Equation (4)) was not significantly different (X2 test, 
p < 0.05) compared to use of kLWT (Equation (1)) (Figure 6, Table 3).  
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Table 3. k L* ( ))2 estimate. Frequency (% of total fruit number) fruit mass ranges equivalent to 
tray sizes at (i) four and (ii) three weeks before harvest, (iii) the forecast fruit size and (iv) for the 
actual harvest mass of fruit, for populations 1, 5 and 9, being example ‘Calypso’, ‘Honey Gold’ and 
‘Keitt’ populations. Forecast fruit size was based on a growth rate of 17.9, 30.3 and 25.1 g/week, as 
estimated from the mass change between weeks 4 and 3, for the three populations, respectively. 
Fruit mass was calculated using fruit L and the average of W and T (Equation (4)). Each estimated 
distribution (i.e., each table column) was compared to that generated using kLWT (Equation (1)) to 
estimate mass, as displayed in Figure 6, using a chi-squared test. 

Population 1 1 1 1 5 5 5 5 9 9 9 9 

Fruit mass 
(i) 

week 4 
(ii) 

week 3 

(iii) 
harvest pre-

diction 

(iv) 
harvest actual 

(i) week 
4 

(ii) 
week 3 

(iii) 
harvest pre-

diction 

(iv) 
harvest actual

(i) 
week 4 

(ii) 
week 3 

(iii) 
harvest 

prediction 

(iv) 
har-
vest 

actual 
(g) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

<290 10 4 4 4 59 39 5 11 6 0   

290–325 16 12   18 23 9 9 3 9   

325–360 10 10 4 4 20 18 11 5 16 6  6 
361–405 18 24 18 4 2 18 34 20 16 16 9 19 
405–463 40 24 24 22   32 27 25 28 16 16 
464–514 6 26 28 24   9 23 16 13 22 19 
515–600   22 32    5 16 25 31 31 
601–720    10     3 3 19 9 

>720             

Comparison to distribution based on kLWT estimated mass (as presented in Figure 6), by column. 
X2 * 2.8 1.4 11.3  0.0 0.6 5.5  2.8 0.3 1.9  

p value * 0.723 0.910 0.080  1.000 0.880 0.360  0.900 1.000 0.749  

             
* Pearson’s chi-squared test (X2) and p-value compared to data of Figure 6 (Equation (1)). 

3.5. Recommendations for Future Work 
Post stone-hardening growth conditions were reasonably stable for all populations 

assessed, as seen in the strength of linear regressions based on calendar days as well as 
GDD. Future studies should consider the impact of non-stable environmental conditions 
during the prediction interval, particularly plant water status. More sophisticated forecast 
models could accommodate for changes in factors such as crop load and tree water status. 

Focus was given to assessment of fruit mass after stone hardening, i.e., after the like-
lihood of fruit drop decreased, on the logic that fruit drop can be selective based on fruit 
age, thus altering the fruit mass distribution. This assertion should be further docu-
mented, as earlier prediction of harvest time fruit size is of practical importance in harvest 
management. The manual measurement of fruit size using a statistically relevant sample 
size and strategy [18] is labour intensive, and this represents a barrier to farm adoption. 
The results of the current study are encouraging for use of in-orchard machine vision de-
rived estimates of fruit lineal dimensions, as proposed by Wang et al. [4]. RMSE on fruit 
mass increased only slightly, from 23.9 to 25.0 g, for regressions based on kLWT and kL 
( ))2, respectively, and the frequency distribution of fruit tray size distributions was not 
significantly affected. Use of fruit area as a machine vision input, as suggested by Utai et 
al. [6], is also warranted. 

The use of the in-field machine vision methodology for estimation of fruit size on tree 
orchard was proposed by Wang et al. [7] and Neupane et al. [8], for implementation on 
the farm vehicle mounted imaging platform driven at approx. 5 km/h as described by 
Anderson et al. [2]. This work was extended to a new generation of low-cost distance cam-
eras in a companion paper to the current study [22]. Fruit size estimates made using these 
methodologies could be coupled to fruit growth models as described in this experiment, 
although it remains to be documented whether the accuracy of on-the-go measurements 
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is a limitation on practical application. Decreased accuracy is expected, associated with 
the need to remove partly occluded fruit from consideration. Further, the in-orchard 
depth-camera based fruit sizing method of Wang et al. [4] may not be appropriate to as-
sessment of small (pre-stone-hardening stage) fruit, given the RMSE of this measurement 
technique (ca. 5 mm). 

The percentage absolute error on the forecast of mango fruit mass at harvest based 
on lineal measurements of L, W and T made at 5 and 4 weeks before harvest was, on 
average, 16.3%, while the estimate based on measurements taken at 4 and 3 weeks was, 
on average, 4.5% (Table 2). These mass estimates can be used in combination with esti-
mates of the number of fruit in the orchard, made by manual or machine vision methods 
as described by Anderson et al. [2], for prediction of orchard yield in tonnes/ha. The accu-
racy of such predictions remains to be tested. 

4. Conclusions 
For practical implementation, it is recommended that a first measurement of fruit 

size be made at a GDD associated with stone hardening stage, i.e., at the harvest target 
GDD minus around 400 to 450 units for ‘Calypso’, ‘Honey Gold’ and ‘Keitt’ (Amaral, [17]). 
A second measure should then be made one week later. As development rates vary with 
temperature, this recommendation will be associated with a shorter calendar period be-
tween stone-hardening and harvest in warmer compared to cooler growing areas.  

Supplementary Materials: The following supporting information can be downloaded at: 
https://fruitmaps.info/, accessed on 1 December 2022, Figure S1: ’asparagus’, ‘christmas tree’; Table 
S1: ’heat units target’; Video S1: ’timelapse mango flower to fruit’. 
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