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Abstract: As the global climate continues to warm and the greenhouse effect intensifies, plants are
facing various abiotic stresses during their growth and development. In response to changes in natural
environment, plant mitochondria regulate their functions through morphological and dynamic
changes. Mitochondria are highly dynamic organelles with the ability to continuously cleavage
and fuse, regulating dynamic homeostatic processes in response to the needs of organism growth
and the changes in external environmental conditions. In this review, we introduced the structure
of the outer and inner mitochondrial membrane and discussed the relevant factors that influence
the morphological changes in mitochondria, including proteins and lipids. The morphological and
dynamic changes in mitochondria under various abiotic stresses were also revisited. This study aims
to discuss a series of changes in plant mitochondrial ultrastructure under abiotic stress. It is very
important that we analyze the association between plant mitochondrial functions and morphological
and dynamic changes under stress to maintain mitochondrial homeostasis and improve plant stress
resistance. It also provides a new idea for plant modification and genetic breeding under the dramatic
change in global natural environment.

Keywords: mitochondria; morphological and dynamic changes; mitochondrial ultrastructure; cristae;
abiotic stress; oxidative stress

1. Introduction

Plant mitochondria are two membranous organelles of endosymbiotic origin with
their own genetic information. As the energy factory of cells, the main functions of plant
mitochondria are producing ATP through tricarboxylic acid cycle and oxidative phos-
phorylation, releasing energy and producing various metabolic products to participate
in programmed cell death (PCD), oxidative stress, and other key cellular processes. All
of them are crucial for the maintenance of homeostasis in eukaryotes and the growth
of organisms.

In higher plants, mitochondria are usually spherical, sausage-shaped, linear, or net-
work shaped, and their morphology is highly variable [1]. They are usually distributed in
the cytoplasm [2] with diameters ranging from 0.2 to 1.5 µm [3]. Mitochondria dynamic
processes can be divided into fusion and fission. They can fuse and connect with each other
to form network-like structures or split to form dispersed individuals. The movement of
mitochondria depends on cytoskeleton, which is composed of actin filaments, intermediate
filaments, and microtubules [4]. They move rapidly along tubulin and actin filaments in
cellular mitochondria of which processes are regulated by protein kinases [5,6]. Based
on their morphological and dynamic characteristics, mitochondria can adjust their shape,
number, and orientation according to the developmental needs of plant cells [7,8]. Such
morphological and dynamic changes will eventually lead to changes in mitochondrial
functions, which gives them the ability to adapt to changes in the external environment.

With the global warming, plants on land are constantly affected by various adverse or
even negative environmental conditions. Among them, abiotic stress (e.g., high tempera-
ture, low temperature, salt, drought, ozone, UV radiation, etc.) has adverse effects on plant
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growth and productivity [9]. Plants respond to abiotic stress in various ways. One of the
most obvious features is the induction of excessive cellular production of reactive oxygen
species (ROS). Ultimately, it may lead to PCD [10].

In plant cells, the molecular and physiological responses of mitochondria to stress
are well known. As a powerhouse organelle in eukaryotes, mitochondria produce large
amounts of ATP, which can provide 95% of the energy required for life activities. It is the
main site for regulating apoptosis and producing ROS [11]. Therefore, plant mitochondria
play a key role in the process of responding to abiotic stress. Under stress, plant mitochon-
dria sense metabolic changes, such as pH, energy status, and ROS, and respond to them by
inducing permeability transition pores (PTP) and releasing cytochrome c. When stress per-
sists and intracellular ROS exceed the regulatory threshold of mitochondria, they will break
down and lose functions, triggering a cascade of PCD in cells [12–16], which ultimately
leads to the obstruction of plant growth and development. Experiments have confirmed
that mitochondria produce a large number of ROS and the loss of outer membrane po-
tential under various stimuli, which were considered to be the early product of PCD in
Arabidopsis thaliana [17]. Therefore, it is necessary to focus on the morphological and dy-
namic changes in mitochondria induced by abiotic stress to understand their functions. In
this review, we introduced the ultrastructure of plant mitochondria in plants, highlighting
the specific morphological and dynamic changes in mitochondria under abiotic stress,
with the aim of discussing possible mechanisms by which the pattern of changes in plant
ultrastructure under extreme climates affect their growth and development.

2. Morphological and Dynamic Changes in Mitochondria
2.1. Ultrastructure of Mitochondria

Mitochondria are two membrane-closed organelles whose morphological characteris-
tics include four functional regions from the outside to the inside: outer membrane (OM),
intermembrane space (IMS), inner membrane (IM), and mitochondrial matrix (Figure 1).
Mitochondrial outer membrane separates the mitochondria from the cytoplasmic matrix.
Their IM can be divided according to its different functions into inner boundary membrane
(IBM), which is close to and parallel to OM and cristae membrane (CM), which bulges
toward the matrix [18,19]. Notably, CM is not a simple extension and folding of IM. Instead,
it is connected to IBM through a narrow tubular cavity called cristae junctions (CJs) [19,20],
which have been described as the third compartment of mitochondria [21]. IBM and CM
have different topologies and protein compositions, where IBM is located next to OM and
possesses the mechanism by which most proteins enter inner mitochondria. While CM is
the main site of oxidative phosphorylation and contains the complex of respiratory chain
as well as F1Fo-ATP synthase [22,23]. An increasing number of studies has demonstrated
that the shape of CJs is related to the process of mitochondrial fusion and fission [24,25],
especially to PCD [22,26,27].

2.2. Structure of Cristae

In plants, although significant progress has been made in identifying proteins involved
in mitochondrial morphology, little is known about the protein complexes that control
CJs biogenesis. In yeast and mammals, the large GTPase optic atrophy 1 (OPA1), the
mitochondrial contact site and cristae organizing system (MICOS), and the IM protein
dimer F1Fo-ATP synthase are involved in the regulation of cristae morphology [22,27,28].
Mammalian OPA1 (Mgm1 in yeast) is involved in remodeling and fusion of the mitochon-
drial inner membrane [29–31]. In addition, MICOS is an evolutionarily conserved large
heterooligomeric protein complex of IM, mainly located in CJs [32–35]. MICOS is composed
of two different subcomplexes, with MIC10 and MIC60 (also known as mitogen) as the
core components [18], which maintain the stability of normal mitochondrial endometrium
cristae and are crucial for the formation of cristae [33,36,37]. The overexpression of Mic60
and Mic10 leads to the bifurcation of cristae [38] and the strong expansion and deformation
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of CM and CJs [39]. In plants, according to phylogenetic analysis of eukaryotes, only MIC60
and MIC10 are conserved [40,41].
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Figure 1. Mitochondrial structure of plants. IMS: intermembrane space; IM: inner membrane;
CM: cristae membrane; CJ: cristae junctions; IBM: inner boundary membrane; OM: outer membrane.
The blue spots in the matrix are ribosomes; the red spots in the CM are mitochondrial respiratory
chain complexes. Image credit: Hui Tang.

MICOS, as a large multi-subunit complex involved in mitochondrial biogenesis and
stability, is closely related to the maintenance of mitochondrial structure. The absence of
several MICOS subunits leads to intense changes in mitochondrial cristae morphology,
including the loss of cristae and the formation of cristae stack (which appear as stacks within
the mitochondrial matrix) [19,42,43]. Moreover, lipid exchange is also necessary to maintain
the integrity of the mitochondrial membrane. An Arabidopsis study has shown that MIC60
interacts with the mitochondrial outer membrane transportase (TOM) through the TOM
40-kD subunit (TOM40) to form part of the mitochondrial transmembrane lipoprotein
(MTL) complex, which influences the mitochondrial lipid transport [44]. In addition, Mic60,
together with the mitochondrial outer membrane protein DGD1 suppressor 1 (DGS1), forms
multi-subunit complexes in Arabidopsis [45]. The loss of DGS1 resulted in the whole plant
physiology being affected, namely it altered the stability and protease accessibility of this
complex and altered the lipid content and composition of the mitochondria, particularly
causing changes in the abundance and size of cristae in the morphology [45].

The energy conversion of the mitochondrial respiratory chain is achieved by elec-
trochemical proton gradient inside and outside the mitochondrial inner membrane. This
potential gradient is then utilized by the F1F0-ATP synthase to produce ATP. The F1Fo-ATP
synthase, one of the mitochondrial electron transport chains (ETC) complexes, i.e., com-
plex V, exists as a dimer and is found along the most tightly curved regions of the cristae
ridge or around narrow tubular fractures [22,46,47]. In plants, ATP synthase accounts for
about 8.44% of the volume of the mitochondrial inner membrane, which is assembled
together with complex I~IV on mitochondrial cristae to form multiple and bulky ETC com-
plexes, which jointly affect the mitochondrial inner membrane structure [48]. It has been
proved that the dimer state of F1Fo-ATP synthase can affect the structure of cristae [48]
and the deletion of ATP synthase subunits e and g leads to “onion-like” structures of
cristae [28,47,49]. Strauss and Hofhaus [50] have found that the control of ATP synthase
on cristae morphology and the ATP synthase would exert a strong local curvature on the
membrane, resulting in the formation of cristae so that protons would gather in the cristae.
At this time, mitochondrial cristae act as a proton trap, and ATP synthase can achieve more
efficient ATP synthesis by changing the mitochondrial inner membrane morphology driven
by strong proton power [50].

Mitochondrial membrane structure and cristae shape are also affected by some proteins
that affect membrane stability. Membrane-anchored ATP-dependent metalloproteinases
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called FtsH4 or AAA proteases are believed to be key enzymes for the quality control of
membrane proteins in mitochondria and chloroplasts [51]. The absence of AtFtsH4 changed
the leaf morphology of the rosette at the later stage of development, and the number of
mitochondrial cristae decreased significantly in the micromorphology of organelles during
the short-day cycle [51].

At present, the molecular mechanism of the morphological change in plant mitochon-
drial cristae is not perfect, as a result of the structure of plant cells is more complex. In
order to fill this gap, maybe we can refer to the above reports to promote the study of plant
mitochondrial morphology.

2.3. Dynamic Changes in Mitochondria in Plants
2.3.1. Proteins Associated with Mitochondrial Fusion

The dynamic processes of mitochondria depend on the proteins involved in the
regulation of mitochondrial formation, fusion, and fission.

In mammals and yeast, the dynamin-related protein 1 DLP1/Drp1(the yeast ho-
mologous Dnm1p), which is a superfamily member of large guanosine triphosphatases
(GTPases), mediates the dynamic process of mitochondrial division [52]. Located mainly
in the cytoplasm, DLP1/Drp1 has a highly conserved NH2-terminal GTPase domain at
the N-terminal, followed by an intermediate domain, and a GTPase effect-domain (GED)
with mitochondrial targeting at the C-terminal [53]. Mitochondrial fission requires recruit-
ment of Drp1 to the mitochondrial surface and activation of its GTP-dependent fission
function. In mammals, the primary receptors that recruit Drp1 to facilitate mitochondrial
fission include mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff),
and mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51, respectively).
They drive DRP1-mediated division by interacting [54] or recruiting different subgroups
of Drp1 [55]. There are mitochondrial fission factors in Arabidopsis, dynamin-related pro-
teins DRP3A and DRP2B (ADL2a and ADL2b, the functional orthologs of Dnm1p and
DLP1/Drp1), thought to be key factors in both mitochondrial and peroxisomal fission. In
the double mutant, drp3a/drp3b, the mitochondria are connected to each other, resulting
in massive elongation [56]. They are functionally redundant in mitochondrial fission, but
the frequency of mitochondrial fission in Arabidopsis depends on the total abundance of
DRP3A and DRP3B [56]. In Arabidopsis thaliana, there are two closely related Fis1 homo-
logues (i.e., FIS1A and FIS1B) that have been reported to target mitochondria, peroxisome,
and chloroplast, which have been shown to promote mitochondrial fission [57,58]. From
now on, there is no other homologue of the mitochondrial fission factor (Mdv1p/Caf4p,
Mff or MiD49/51) in Arabidopsis thaliana. However, there are Arabidopsis-specific fission
factors–elongated mitochondria 1 (ELM1) and peroxisome and mitochondrial division
factors (PMDs). ELM1 localizes to the outer surface of mitochondria and mediates mito-
chondrial fission by recruiting DRP3A; moreover, mitochondria in elm1 mutant showed a
slender shape [59]. However, elm1 mutant has residual mitochondrial fission activity [59],
which may be caused by a completely independent mitochondrial fission system. It has
been reported that elongated mitochondria had been observed in pmd1 mutants; however,
PMD1 did not physically interact with DRP3 or FIS1 [60]. It suggests that PMD1 may
promote mitochondrial proliferation in an independent manner from DRP3/FIS1.

2.3.2. Proteins Associated with Mitochondrial Fission

Mitochondrial fusion is also regulated by large GTPases, which requires three
steps: the connection of two mitochondria, fusion of the OM, and fusion of IM [61,62].

Mitofusin (Mfn)1 and Mfn2, (homolog Fzo1 in yeast) are involved in mitochondrial
tethering and OM fusion. In the absence of Mfn1 or Mfn2 cells, the imbalance of the fusion
and fission events leads to mitochondrial fragmentation, leading to severe mitochondrial
and cellular dysfunction [63,64]. Mfns structurally contain the C-terminal GTPases region,
middle region (MD), transmembrane region (TM, including TM1 and TM2), and the GTPase
effector domain (GED). MD and GED are two predicted heptad repeat domains (HR1 and



Horticulturae 2023, 9, 11 5 of 18

HR2). The sequence composed of eleven amino acids in the middle of TM1 and TM2
region was identified as mitochondrial targeting sequence MTS. It facilitates anchoring and
targeting of these proteins to the mitochondrial membrane [65]. The hetero-type complex
formed by Mfn1-Mfn2 or the single homologous Mfn1 or Mfn2 complex are important
regulators of mitochondrial outer membrane attachment and fusion [64,66].

Human optic atrophy-1 (OPA1) (homologue Mgm1 in yeast) is mitochondrial local-
ization protein, which is a member of the dynamin family. Thus, it has the characteristic
structure of the dynamin family, including N-terminal mitochondrial targeting signals
(MTS) and transmembrane domains, GTPase domain, a central domain, and a GED at
the C-terminal. When the OPA1 imports into mitochondria, its matrix-targeting signal
is removed, and as an L-isoform tightly bound to or embedded in IM, the rest resides
in the mitochondrial intermembrane space [67,68]. In general, OPA1 mediates IM fusion
and maintains the cristae structure. When OPA1 is deactivated, it can cause mitochondria
to fragment [69].

From now on, no specific fusion factor has been found in plants. Mitochondria
often presents as highly fragmented and suggests that plants with the dynamical process
of mitochondria are mainly composed of fission. However, fusion phenomenon does
occur. For example: mitochondria in lower plants, such as the unicellular freshwater alga
Micrasterias denticulata, are globular and exist independently of each other in the cytosol at
room temperature. As the temperature decreases, mitochondria begin to aggregate and
fuse with each other. When subjected to extracellular freezing stress at −2 ◦C, Micrasterias
mitochondria are aggregated into local networks, and their OMs are connected or fused
with each other and finally aggregated into a large mitochondrial network [70]. In higher
plants, Arimura [71] demonstrated the fusion of mitochondria through an interesting
phenomenon. They labeled mitochondria in onion epidermal cells with mitochondria-
targeted, photoconvertible fluorescent protein Kaede and then used light processing to
turn some of the mitochondria within a cell from green to red. Finally, they found the
appearance of yellow mitochondria.

2.3.3. Fusion and Fission of Cardiolipin with Mitochondria

The composition of the mitochondrial membrane is also critical to the dynamic process
of mitochondrial fusion and fission. Mitochondrial membrane is composed of phospha-
tidic acid (PA), phosphatidylserine (PS), cardiolipin (CL), phosphatidylethanolamine (PE),
phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylinositol (PI), in
which PC and PE are the main components. One of the potential mechanisms by which
lipids affect mitochondrial morphology may be due to their ability to recruit and/or acti-
vate proteins that mediate the process of fission and fusion. For example, as a precursor
for glycerol lipid synthesis, which is produced by Mt-GPAT functions, LPA produced on
OM may stimulate GTPase activity of Mfns and enhance mitochondrial fusion during
OM fusion [72]. Similar stories were reported in CL. CL is unique in mitochondria and
significantly enriched in IM, accounting for 10–20% of total phospholipids [73], and even
up to 25% at the contact site between IM and OM [74]. In yeast, CL binds to the soluble
form of Mgm1 in order to stimulate its GTPase activity and affect the MGM1-mediated
IM fusion process [75]. Additionally, its cardiolipin unsaturation level is the key to mi-
tochondrial functions and IM integrity [76]. In the mitochondria of Arabidopsis thaliana,
cardiolipin content in ftsh4 mutant leads to the deregulation of mitochondrial dynamics
and causes perturbations within the OXPHOS complexes, which generates more reactive
oxygen species and less ATP [77]. In addition, CL is also involved in the remodeling of the
highly folded cristae of mitochondria [78] and affects mitochondria-mediated apoptosis
and other mitochondrial functional processes. It is reported that CL is a key determinant
for mt-DNA stability and segregation during mitochondrial stress [79]. Thus, these results
further demonstrate the importance of CL not only for mitochondrial functions but also for
the health of the organism as a whole.
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3. Mitophagy

During mitochondrial respiration, the electron transport chain in IM generates mem-
brane potential and ATP, which is the main site for the ROS production. When mitochondria
are subjected to oxidative stress, mitochondrial osmotic conversion, mt-DNA damage, and
excessive ROS are produced to disturb cell homeostasis [80]. Therefore, a quality control
system is needed to clean up cellular damaged mitochondria to prevent mitochondrial
dysfunction and minimize the spread of toxic substances. Mitophagy is considered to
be the central mechanism for mitochondrial quality and quantity control, which is an
evolutionarily conserved process [81]. Damaged mitochondria are specifically wrapped
into the autophagosome and fused with the lysosome, thus completing the degradation of
mitochondria and maintaining the stability of the intracellular environment.

The role of mitophagy has been extensively studied in yeast and mammals. In yeast,
the mitophagy mediated by Atg32, which is an autophagy related gene in yeast, is used
to optimize the quality and quantity of mitochondria [82,83]. In mammal, autophagy is
also essential for controlling mitochondrial quality, as its impairment is associated with
neurodegenerative and cardiovascular diseases in human [81,84]. The controlled clearance
of dysfunctional mitochondria through mitophagy is an important aspect of maintaining
human health.

Currently, 43 autophagy related genes (Atg) have been identified in fission and bud-
ding yeast [85]. Most core Atg genes are largely conserved in plants: direct homologues of
20 core Atg genes from yeast have been reported in Arabidopsis thaliana [86]. Additionally,
they have similar functions to their yeast counterparts [87,88].

In plants, mitophagy mediated changes in mitochondrial morphology are associated
with mitochondrial quality control. In the UV-B damaged atg mutants of Arabidopsis thaliana,
mitochondria were highly fragmented and increased in number [89], indicating that cells are
unable to clear damaged mitochondria when mitophagy was blocked. During somatogenic
senescence in cells, the number of mitochondria is significantly reduced [90]. Moreover,
mitochondrial fragmentation is accompanied by a decrease in mitochondrial volume prior
to PCD [91]. Therefore, mitophagy may be involved in mitochondrial degradation to
maintain cell homeostasis during PCD in plant cells. In another study, mitophagy reduced
after it mutated fusion- and fission-associated proteins [92]. All these suggest that the
process of mitochondrial morphology is closely related to mitophagy.

4. Interactions between Organelles Affect Mitochondrial Dynamics Processes

Cellular organelles are inextricably linked to each other. Among them, membranous
organelles, with the endoplasmic reticulum (ER) at their core, form a fine and complex
network of interactions that coordinate with each other to perform a series of important
physiological functions.

In higher plants, the polygonal structure and motility of the endoplasmic reticulum
promote mitochondrial fusion and the formation of elongated mitochondria [3]. A close as-
sociation between the endoplasmic reticulum and mitochondria has been found to be impor-
tant for lipid synthesis and trafficking as well as the maintenance of normal mitochondrial
morphology [44,93]. In Arabidopsis, the GTPase structural domain of AtMiro2 regulates
ER–mitochondria interactions, facilitating mitochondrial fusion and inhibiting motility [94].
Chloroplasts are another semi-autonomous organelle with a double membrane structure in
plant cells and also have their own genome. In plants, mitochondria are usually clustered
around chloroplasts [2,95], which may facilitate energy conversion between mitochon-
dria and plastids. Mitochondria can dissipate excess reducing equivalents in chloroplasts
to maintain optimal plant growth [96]. Peroxisomes are single-membrane organelles in
eukaryotes with a diameter of 0.1–1 µm and do not contain their own genome [97]. In
mammals, linkages are formed between mitochondria and peroxisomes [98], and in plant
cells, mitochondria are spatially tightly linked to peroxisomes and chloroplasts [99], and it
was found that, under light induction, peroxisomes and chloroplasts interact and recruit
mitochondria to form a three-organelle complex [100]. This complex network formed
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between organelles may be one of the effective ways for metabolite exchange within plant
cells. However, the mechanism of this intermediate is not clear yet.

In conclusion, the functional association of mitochondria with other organelles also affects
to some extent the morphological changes and kinetic processes of the mitochondria themselves.

5. Morphological Changes in Mitochondria in Response to Abiotic Stress
5.1. Morphological Changes in Mitochondria under Temperature Stress

The frequent occurrence of global climate extremes will result in a higher frequency of
temperature stress in plants. It has been reported that global temperature is expected to
increase by 3.2 ◦C compared to pre-industrial levels, exceeding the Paris Agreement global
target of 1.5 ◦C [101]. The extreme high temperature brought about by global warming
will inevitably have a negative impact on the developmental growth of plants, impair-
ing the normal functions of organelles and causing metabolic disorders. Mitochondrial
swelling and ultrastructural disorders can occur during high temperature stress [102]. In
both Melanoxylon brauna and Glycine max seeds, it was difficult to identify the mitochon-
drial cristae structure in embryonic axis cells under high temperature stress [103,104],
probably because heat stress led to membrane damage, resulting in the development of
mitochondrial cristae.

Low temperature or freezing stress can also affect mitochondrial morphological
changes. It has been reported that the mitochondrial structure of cells in the root sys-
tem of sugarcane seedlings became blurred, broken, or disappeared, and the cristae was
damaged and reduced at 4 ◦C [105].

Although low temperature stress will destroy the normal shapes of plant mitochondria,
on some level, the plant mitochondrial dynamics process will also facilitate the adaptation
of mitochondria to mild hypothermia stress. Recently, it was found that mitochondria of
germinating leaves changed from a highly active, elongated state to the round one with low
functional activity at different stages of spring development in Galanthus nivalis L., as the
surrounding soil temperature transitioned from low to positive temperatures. This change
did not affect the germination process [106]. Additionally, the elongated mitochondria in the
early stages of germination may be for better adaptation to the low temperature of the soil
surface. In another study, transient chilling treatment can induce the mitochondrial division
induced by DRP3A in wild-type Arabidopsis leaves, and the mitochondrial morphology
is restored after a 24 h cold treatment [107]. Such cold-induced transient fragmentation
may not impair mitochondrial functions. Although mitochondrial fragmentation reduces
the mitochondrial area, it increases the mitochondrial number at the same time. Notably,
mitochondrial fusion in Arabidopsis cells at low temperature is not mediated by the
recruitment of DRP3A by ELM1 [107]. It may be due to cold treatment increasing the
affinity between DRP3A and OM or that unknown cofactors, such as other proteins or
lipids, which help DRP3A locate or promote the functions of other types of mitochondrial
fission. Mitochondria can also maintain their functions through fusion mechanism in plants
at low temperature. For example, under cryogenic emergency conditions, mitochondria
in the three algae species tended to fuse, resulting in mitochondrial elongation and the
formation of interconnected networks, while no changes were observed in respiratory
capacity and photosynthetic rate [70].

In summary, the morphological and dynamic changes in plant mitochondria under
temperature stress, whether fusion or fission, seems to be an energy compensation mecha-
nism to create more ATP by forming a larger number of mitochondria or increasing the
working area of the electron transport chain in IM.

The substances that have a stabilizing effect on membrane components may increase
the tolerance of organelles to heat stress. Spermidine, a plant polyamine, is an important
plant growth regulator that is closely related to plant growth, stress response, and plant
disease resistance [108]. Yang [109] has found in a study that exogenous SPD normalized the
chloroplast and mitochondrial ultrastructure in lettuce seedlings during high temperature
stress because it can effectively maintain the stability of chloroplast and mitochondrial
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double-membrane structure in lettuce seedlings. Similar findings have been reported in
studies of cucumbers and ginger [110,111].

Mitochondrial protease AtFTSH4 deficiency causes the accumulation of oxidative
stress markers in Arabidopsis leaf cells under mild heat stress-induced conditions [77]. It
has been demonstrated that AtFTSH4 is essential for mitochondrial membrane stability
and its deletion leads to impaired mitochondrial ultrastructure [51]. Therefore, how to
maintain the stability of the mitochondrial membrane under temperature stress is necessary
to maintain the functions of mitochondria in plants.

5.2. Morphological Changes in Mitochondria under Drought Stress

In most plants, drought stress will directly affect the water homeostasis of the intra-
cellular environment, resulting in impaired organelle functions. It can lead to changes
in leaf anatomy and ultrastructure, including mitochondrial morphology [112,113], and
the structural breakdown of mitochondria became more severe with the increase in
drought stress [114].

Drought stress in plants inhibits photosynthesis and respiration, with chloroplasts
and mitochondria bearing the brunt of the stress. It has been reported that the volume
of chloroplast matrix and thylakoid in spinach leaf cells increased, while the volume of
mitochondria decreased [115]. This phenomenon may be due to glucose starvation deriving
from decreased photosynthetic activity and the lack of starch in the chloroplasts. In another
study, researchers evaluated the changes in ultrastructure in the leaves of two types of
winter wheat with different drought tolerance, under individual or combined drought and
heat treatment. They found chloroplasts in the leaves of non-drought tolerant wheat were
swollen, photosynthetic rate decreased, and mitochondria were swollen and vacuolized
with their number increased significantly under drought stress [116].

Interestingly, it has been found that an application of exogenous 24-epbrasinolide
(EBR) alleviated ultrastructural damage of chloroplast under drought stress, including
swelling and thylakoid arrangement disorder, and alleviated the photosynthesis inhibition
induced by water stress by increasing chlorophyll content. However, it could not restore
mitochondrial cristae fracture [117]. When plants are suffering from drought, stomatal
closure will be induced, which will lead to the decrease in chloroplast photosynthesis,
the decrease in CO2 assimilation, and the disruption of intracellular energy balance [118].
Drought stress triggers the compensatory mechanism of ATP synthesis by mitochondria in
plant cells when chloroplast function is blocked [119]. The activation of the ATP production
pathway under stress conditions may be in response to the higher demand for ATP under
stress conditions to maintain homeostasis. Mitochondria support chloroplasts by regulating
photorespiratory flux and maintaining energy supply during drought stress [120]. At
present, we have not cleared the sequence and extent of plant mitochondrial and chloroplast
damage in plants under drought stress, although it is probably related to the species and
variety of plants [121,122]. In short, concentration on the changes in organelle ultrastructure
will help us to understand a series of responses of plant mitochondria and chloroplasts
under drought or other stress.

At present, researchers have found that some exogenous or endogenous substances
have a positive effect on mitochondrial morphological maintenance under drought stress;
for example, conjugated non-covalently spermidine (CNC-Spd) and conjugated covalently
putrescine (CC-Put). Morphological integrity of mitochondria of wheat germ during
development under drought stress was maintained by CNC-Spd and CC-Put [123]. Un-
der drought dress, positively charged Spd can maintain the level of -SH group in the
mitochondrial membrane by non-covalently binding with acid proteins in the mitochon-
drial membrane to form CNC-Spd, which enhances the antioxidant capacity of proteins,
which is beneficial to the integrity of mitochondrial morphology. CC-Put may stabilize
the conformation and function of proteins in mitochondrial membranes by preventing
mitochondrial membrane degeneration, thus preserving the integrity of mitochondrial mor-
phology. In mammals, endogenous H2S has been found to maintain the morphology and
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functions of mitochondria, which is a regulator of energy production in mammalian cells
under stress conditions and can delay cell aging by reducing oxidative stress [124–126]. In
Arabidopsis thaliana, endogenous H2S can protect the mitochondrial ultrastructure of leaves
under drought stress [127]. After the mutation and overexpression of DES1 (At5g28030),
a key enzyme for H2S synthesis, the researchers observed the changes in mitochondrial
ultrastructure in aging leaves under drought stress. With the occurrence of stress, the mito-
chondrial membrane was deformed, the mitochondria in WT and des1 lost their internal
structure, and the cristae was seriously damaged and swollen. Compared with WT and
des1, the mitochondria in OE-DES1 were complete and the activity level of ATPase was
increased [125]. This indicates that H2S determines mitochondrial regulatory energy and is
crucial for mitochondrial homeostasis, which is consistent with reports in animals [128].

In addition to the above, many compounds, such as hydrogen peroxide (H2O2) [129],
abscisic acid [130,131], melatonin [132], plant growth regulators melafen and pirafen [133],
triadimefon (TDM) [134], malic enzyme [135], mitochondrial alternative oxidase AOX [136],
and mt-DNA binding protein WHY2 [137], play a protective role in plant drought tolerance.
Atkin and Macherel [120] believed that the existence of highly conductive mitochondrial
potassium channels found in plants may be the key to understanding the changes in
mitochondrial matrix volume under drought conditions. This system has been reported to
be related to energy dissipation and cellular stress defense mechanisms in plants [138–140]
and can regulate mitochondrial volume [141]. This implies that the potential gating of
potassium channels by different compounds (nucleotides, NADH, metals, proteins, etc.)
may play an important role in the mitochondrial response to drought stress, which may
provide some theoretical support for the study of drought resistance mechanism in plants.

5.3. Morphological Changes in Mitochondria under Salt Stress

Mitochondria play a key role in plant tolerance to salt stress [142]. It has been proved
that the impairment of mitochondrial function can lead to the hypersensitivity of plants
to salt stress. For example, the mutation of Arabidopsis RNA editing factor SLO2 affects
the mitochondrial electron transport chain, resulting in a large amount of ROS production,
and the root of Arabidopsis seedlings was damaged on the salt stress medium [143]. Plant
mitochondria respond to PCD signals under severe salt stress by undergoing a permeability
transition, releasing cytochrome c, and decreasing ATP production, ROS outbreak, and
mitochondrial morphological changes [144,145]. Mitochondria need to constantly regulate
their functions to maintain energy homeostasis and reduce the damage caused by such
oxidative stress [146].

The factors that influence mitochondrial functions can change mitochondrial mor-
phology under salt stress. The pH value in mitochondria determines the rate of oxidative
phosphorylation [147] and affects mitochondrial ATP synthesis and ROS levels. Under
exogenous NaCl treatment, ROS derived from NADPH oxidase promoted mitochondrial
alkalization and caused mitochondria to become aggregated under salt stress [148]. It has
been reported that plant mitochondria can respond to salt stress by forming a mitochondrial
network [149] through the bulge of OM or by direct contact with each other. This kind of
network may prevent the rupture of OM caused by salt stress and ensure the survival of
cells, and the increase in matrix volume may also increase the activity of the respiratory
chain and the production of ATP.

Mitochondria move along actin microfilaments (MFs) in plants, which are essential
to mitochondrial arrangement, distribution, and function. In Arabidopsis thaliana, the
actin-related Protein2/3 (ARP2/3) complex regulates mitochondrial-associated calcium
signaling during salt stress [150]. Plants lacking ARP2 increased the content of salt-induced
cytosolic Ca2+, decreased mitochondria movement, and made mitochondria aggregated.
Additionally, the mitochondrial permeability transition pore opened, and the mitochondrial
membrane potential Ψm was impaired in arp2 mutant. Those changes were associated with
salt-induced PCD. In another study, it was found that accumulation of the cytoplasmic male
sterility (CMS) protein ORFH79 resulted in the dysfunction of mitochondria with decreased
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enzymatic activities of respiratory chain complexes, reduced the level of ATP, and even
changed mitochondrial morphology [151]. However, overexpressing a fertility restorer gene
Rf5 inhibited mitochondrial dysfunction caused by ORFH79, restored mitochondrial mor-
phology, and improved plant tolerance to drought and salt stress [151]. The mitochondrial
transcription termination factor (mTERF) protein family affects gene expression in plastid
and mitochondrial genomes [152]. The transcript levels of some mitochondrion-encoded
genes were reduced in mterf27 mutant. Importantly, the loss of mTERF27 function led to
developmental defects in mitochondria under salt stress. The morphology was manifested
as mitochondrial vacuolation and irregular cristae structure [153].

In conclusion, the changes in mitochondrial morphology under salt stress cannot be
simply attributed to osmotic stress. The stress responses of plant mitochondria in the face
of salt stress will affect the mitochondrial dynamics process. Meanwhile, the changes in
mitochondrial morphology will provide a favorable membrane and substrate environment
for the play of mitochondrial functions.

5.4. Morphological Changes in Mitochondria under Other Abiotic Stress

Among abiotic stress faced by plants, temperature, drought, and salt stress are the
main environmental factors that affect the geographical distribution of plants, limit crop
yield, and threaten food security. However, with the increasingly frequent occurrence of
extreme weather, the damage caused by ozone, heavy metal poisoning in soil, hypoxia
stress to plant growth and development, and the adverse impact on agricultural production
should not be underestimated.

Morphological changes in plant mitochondria under this stress are also noteworthy.
Recently, particularly promising studies have focused on the changes in the size and
number of mitochondria in several plants under different stress conditions (Table 1).

Table 1. Mitochondrial morphological changes under several typical abiotic stress.

Type of Stress Species Parts
Morphology of Mitochondria

Reference
Size Amount

Low oxygen
pressure

Nicotiana tabacum L. Mesophyll cells

Giant mitochondria;
eventually became an

extensive mitochondrial
reticulum, including

large plates

The number of
mitochondria

decreased
[154]

Arabidopsis thaliana L. Leaf cells Large and elongated – [155]

Ozone stress
Fagus sylvatica L. Beech foliage cells

Degeneration of cristae
and matrix in
mitochondria

– [156]

Picea abies L. Mesophyll cells The size of mitochondria
decreased Numerous [157]

UV stress

Palmaria palmata L. Algal cells Cristae were visible and
even appeared swollen – [158]

Arabidopsis thaliana L. Leaf cells

The mitochondria
clustered irregularly

surrounding the
chloroplasts or

elsewhere within the
cytoplasm

– [159]

Arabidopsis thaliana L. Leaf cells
(agt mutant) Small and fragmented Numerous [89]

Arabidopsis thaliana L. Leaf cells
(wild type) –

The number of
mitochondria

decreases
[89]
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Table 1. Cont.

Type of Stress Species Parts
Morphology of Mitochondria

Reference
Size Amount

Acid rain Lycopersicon
esculentum M. Leaf cells Swollen, vacuolated,

and cristae collapsed – [160]

Silver nanoparticles
(AgNPs) Hordeum vulgare L. Leaf cells

The mitochondrial
cristae were partially or

totally degenerated
– [161]

Methyl jasmonate,
MeJa Arabidopsis thaliana L. Leaf cells Swollen and spherical – [162]

The relationship between the size and number of mitochondria under stress is very
subtle. The appearance of a large mitochondrial network is accompanied by the decrease
in the number of mitochondria [156], whereas the fragmentation of mitochondria is ac-
companied by an increase in the number of thread particles [89]. This implies that plant
mitochondria may respond to mild stress by fusing into a larger mitochondrial network or
by dividing to increase the number in cells, thus providing a sufficient energy supply to
cells (Figure 2). However, when stress persists or deepens, the fragmentation and collapse
of cristae leads to disintegration of the mitochondrial structure, which implies the loss
of mitochondrial functions. Plant cells need to remove these mitochondria through the
autophagy pathway to prevent the accumulation of toxic substances.
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6. Conclusions

Plant mitochondria serve as important organelles responding to environmental tension,
whose fine structure has a significant impact on homeostasis in plant cells. Morphological
changes in the face of abiotic stress may be the first response after mitochondria integrate
stress signals. This microscopic morphological and dynamic changes will directly affect
the homeostasis of the mitochondrial environment and induce PCD events, such as an
excessive release of ROS.

We have discussed the changes in the ultrastructure of plant mitochondria in the face
of abiotic stress and proposed a potential relationship between abiotic stress and plant
mitochondrial fusion–fission–autophagy. However, we acknowledge that our study has
not been explained in detail at the mechanistic level, and it is still unclear how to represent
the cascade of mitochondrial morphology and dynamics with biochemical levels, such as
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ROS and oxidative phosphorylation under stress conditions, as well as the response to
the abundance and stability of related proteins. In the future, the study of mitochondrial
metabolomics and proteomics is expected to provide new data. Linking morphological
changes in plant mitochondria to the extreme climate stress that plants are facing helps to
understand the molecular nature of organelle stress responses, which is crucial for plant
genetic breeding under the dramatic change in the global natural environment.
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