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Abstract: Postharvest diseases cause huge postharvest losses of horticultural fresh produce. Cooling
and synthetic fungicide are used as traditional postharvest preservation technology. Recently, induced
resistance has been thought to be an optional and perhaps alternative preservation technology. 1-
methylcyclopropylene (1-MCP) and salicylic acid (SA) are two more common chemical agents used
mostly as a preservative for harvested fruit in order to achieve better quality and better taste. Many
reports have also proven that 1-MCP and SA could induce postharvest fruit resistance. The purpose
of this review is to summarize the role of 1-MCP and SA in postharvest fruit resistance, including the
effect of 1-MCP and SA on the induced resistance as well as its involved mechanism; the effects of
1-MCP and SA on firmness, phenolic metabolism, membrane lipid metabolism, and reactive oxygen
species in fruit after harvest; and the effects of 1-MCP and SA on disease resistance-related defense
enzymes, proteins, signaling synthesis, and signaling pathways as well as the combined effect of
1-MCP and SA on the induced resistance and its mechanism. Meanwhile, we prospect for the future
direction of increasing postharvest fruit resistance by 1-MCP and SA in more depth.
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1. Introduction

Although the harvested fruit loses the supply of water and nutrients from the mother,
it maintains life activities using its own stored nutrients. During postharvest storage,
transport, and sale, a series of biochemical reactions occur, the metabolism changes from
synthesis to hydrolysis, and the susceptibility to pathogens increase. Pathogens infect-
ing fruits before or after harvest can cause postharvest decay during storage, transport,
and marketing, and the occurrence and development of diseases depends on both fruit
physiological characteristics and storage environmental conditions after harvest [1]. It was
reported that 10 to 30% of fresh fruit in developed countries rotted after harvest, and 30
to 50% in developing countries decayed due to lacking storage technique [2]. Citrus, for
example, is the world’s largest fruit industry. Citrus postharvest diseases are mainly caused
by fungi. The rot rate was 10% to 30% and even up to 50%, causing serious economic losses
in China [3].

Fungicides are widely used for fruit disease control. Currently, there is growing
consumer concern about fungicide residues in fruit and the emergence of fungicide-resistant
strains. It is necessary to explore effective and harmless fungicides or treatments that can
induce resistance. With the treatment of biotic or abiotic elicitors, postharvest fruits can
be indued with a natural resistance to pathogenic microorganism through activation of
their own defense system, effectively resisting and killing pathogenic microorganisms,
which is called postharvest induced resistance. The induced resistance is characterized by
persistence and broad-spectrum to green mold, blue mold, gray mold, anthracnose, and
several fugal diseases, conferring resistance to many kinds of pathogen infection without
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leading to the appearance of resistant strains, indicating a potential application perspective
in the control and prevention of postharvest disease in fruit [4]. Treatment with yeast, heat,
UV, 1-methylcyclopropylene (1-MCP), ethylene, and aminobutyric acid has been widely
used to induce resistance in postharvest fruit.

1-MCP is an ethylene competitive inhibitor that can irreversibly occupy the ethylene
binding receptor and therefore delay fruit senescence. For its efficiency, simplicity to
operate, low cost, and good economic benefits, 1-MCP has been used widely in fruit storage.
It can be used as a preservative alone or mixed with other preservatives or treatments,
such as heat treatment, ClO2, salicylic acid (SA), jasmonic acid (JA), etc., to achieve the
preservation effect. However, some literature also reported that 1-MCP could induce fruit
resistance, for example, in apple, fragrant pear, strawberry, peach, and persimmon [5,6].
Therefore, in addition, 1-MCP can be used as an abiotic elicitor to induce resistance and
prevent postharvest disease in fruits after harvest.

SA is a common, simple phenolic compound in plants. It can not only produce
antagonistic substances with many pathogenic microorganisms such as bacteria, fungi, and
viruses but also act as a plant growth regulator to improve the resistance of crops to adverse
environmental factors and promote photosynthesis. SA has important influence on plant
disease resistance as well as on fruit maturity, horticultural produce preservation, and seed
germination [7]. SA is an endogenous signaling molecule to activate the system-acquired
disease resistance (SAR) and enhance plant defense and protection mechanisms [8]. It has
been reported that exogenous SA has the potential to significantly improve harvest fruit
resistance [9].

This review focuses on the role of 1-MCP and SA in the induction of postharvest fruit
resistance, including their effects on reactive oxygen metabolism, phenolic metabolism,
defense enzymes and proteins, resistance-related hormone synthesis and the signal trans-
duction pathway, and their combined use in the control of postharvest diseases of fruits.
This study sheds important light on the role of 1-MCP and SA in postharvest fruits resis-
tance and facilitates the development of new and safer strategies for elevating postharvest
fruit resistance against pathogenic microorganism. The outlook for further application of
1-MCP and SA on postharvest storage of fruit is also presented in this study.

2. The Role of 1-MCP in Induced Resistance of Postharvest Fruits
2.1. Effect of 1-MCP on Induced Resistance and Its Involved Mechanism

As shown in Table 1, some certain concentrations of 1-MCP can improve fruit disease
resistance and, ultimately, disease performance. Li et al. showed that treatment with
1-MCP at a concentration of 5 µL/L effectively inhibited postharvest blue mold caused
by Penicillium expansum in apple fruit [10]. Further, 1 µL/L 1-MCP significantly reduced
the incidence of apple gray mold and inhibited the expansion of disease spots compared
with the control [11], and 1 µL/L 1-MCP treatment could also reduce the disease of blue
mold, gray mold, and anthracnose in golden delicious apples [12]. Jiang et al. showed that
the main disease of “Everest” strawberry was fruit rot caused by a natural infection of the
roots in strawberry, and treatment with 1 µL/L 1-MCP reduced disease occurrence [13],
while 5 µL/L 1-MCP could effectively inhibit the increase of spot diameter, significantly
reduce the disease incidence, and enhance the disease resistance to Penicillium digitatum
in citrus fruit [14]. Additionally, 1 mg/L 1-MCP treatment could also prevent and control
postharvest fruit diseases such as in peach and jujube [15,16]. In this way, 1-MCP can induce
resistance to blue mold (Penicillium expansum), gray mold (Botrytis cinerea), anthracnose
(anthracnosis), and other diseases in apple, strawberry, kumquat, peach, jujube, and other
fruits. 1-MCP at 1 µL/L for 24 h is generally the best choice for treatment.

The current mechanism of resistance of 1-MCP-induced fruits includes maintaining
firmness and delaying senescence to maintain natural resistance, which inhibits the increase
in conductivity and malondialdehyde content, reduces the accumulation of reactive oxygen
species (ROS), impairs phenolic metabolism, and increases the activity of certain key
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antioxidant enzymes and the induction of higher defense-related enzymatic activity such
as chitinase and β-1, 3-glucanase.

Table 1. Studies on the induced resistance effect of 1-MCP treatment on different types of fungus in
postharvest fruits.

Fruits Treatment
Concentration Fungi Reference

“Fuji” apple 1 µL/L Botrytis cinerea [6]
“Everest” strawberry 1 µL/L Botrytis cinerea [13]

Jujube 1 µL/L Botrytis cinerea [16]
“Golden Delicious” apple 0.3 µL/L Colletotrichum acutatum [12]

Cactus pear 1 µL/L Colletotrichum gloeosporioides [17]
Carambola 0.6 µL/L Colletotrichum gloeosporioides [18]

Loquat 50 nL/L Colletotrichum gloeosporioides [19]
“Anxi” persimmon 1.35 µL/L Gloeosporium kaki [20]
“Dangshan” pear 1 µL/L Penicillium digitatum [21]
“Emerald” pear 1 µL/L Penicillium digitatum [22]

Citrus 5 µL/L Penicillium digitatum [14]
“Fuji” apple 5 µL/L Penicillium expansum [10]

“Golden Delicious” apple 0.3 µL/L Penicillium expansum [23]
Peach 0.6 µL/L Penicillium expansum [15]

“Hongyang” kiwifruit 0.8 µL/L Phomopsis sp. [24]

2.2. Effect of 1-MCP on Reactive Oxygen Metabolism

Reactive oxygen species generally refer to some oxygen metabolites and their deriva-
tives that contain oxygen atoms but have more active chemical reactivity than oxygen [25],
such as superoxide anion radicals (O2

−), hydroxyl radicals (OH), hydrogen peroxide
(H2O2), lipid peroxides (ROO−), and singlet oxygen (1O2). Among them, superoxide
anions, hydroxyl radicals, and hydrogen peroxide exert their main effects on plant physio-
logical activities. Producing reactive oxygen species is the inherent biological feature in
plants. The concentration of reactive oxygen species is quite low under normal physio-
logical conditions: not enough to damage the plant because plants have formed a perfect
defense system of removing reactive oxygen species in the process of long-term evolution,
which has caused the production and clearance of reactive oxygen species to be kept at
a dynamic equilibrium, and the reactive oxygen species will not accumulate. Once the
plant is stressed, however, the metabolism of oxygen in the plant changes, the production
of reactive oxygen species is accelerated, and the function of the scavenging system is
diminished, leading to the accumulation of reactive oxygen species in the body, causing
damage to the structure and function of the plant cell and even resulting in death; i.e.,
the plant is damaged by reactive oxygen species. The antioxidant removal system can
transfer or eliminate free radicals and oxidative intermediates, and it is important in the
ripening and aging of fruit [26]. Reactive oxygen species can also transmit signals to the
disease-infected plants, thus activating the plant defense system and obtaining resistance
to pathogens in time.

The excessive accumulation of reactive oxygen species was eliminated by controlling
the activity of superoxide dismutase (SOD) and catalase (CAT) so that the reactive oxygen
species in fruit was in a dynamic equilibrium, which is the mechanism of 1-MCP in
scavenging reactive oxygen species. SOD is widely found in aerobic prokaryotes and
eukaryotes and is also the first antioxidant enzyme to function in a reactive oxygen species
scavenger system. SOD makes superoxide anion radicals in order to generate hydrogen
peroxide and molecular oxygen, which play an important role in the protection of cells from
oxidative damage. High SOD activity and lower values of ion leakage were detected in
apricots treated with 1 MCP, indicating that 1 MCP reduced ethylene production, enhanced
antioxidant capacity, and improved disease resistance [27]. SOD and CAT activity as
well as higher levels of ascorbate were significantly increased by 1-MCP treatment, which
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enhanced the antioxidant capacity and improved the disease resistance in “Conference”
pear fruit [28]. 1-MCP treatment significantly enhanced SOD activity, effectively extended
fruit storage time, and increased disease resistance and antioxidant capacity in “Hayward”
and “Zihong” kiwifruit [29]. Xia et al. found that by treating red-fleshed kiwifruit with
1-MCP (0.8 µL/L), fruit decay mainly caused by Phomopsis sp. was effectively reduced,
increased SOD and CAT activity was found to improve the antioxidant capacity of the fruit,
and phenolic compound contents and defense-related enzyme activity was elevated [30].
Shi et al. found that 1-MCP had a significant effect on non-climacteric fruit as well. They
treated strawberries with 1-MCP, which increased the activity of a variety of antioxidant
enzymes such as SOD and increased the protein content, which helped to lower the toxicity
of the reactive oxygen species generated during catabolic activity, improving strawberry
quality and increasing strawberry disease resistance [31]. Zhang et al. found that 1-MCP
did indeed limit the development of the blue rot lesion diameter, causing significant
reductions in the incidence of natural rot and increases in SOD activity in jujube fruits,
which suggests that 1-MCP-induced resistance in jujube fruit was associated with increased
enzymes involved in scavenging reactive oxygen species [16].

2.3. Effect of 1-MCP on Phenolic Metabolism

Phenolic metabolism forms an integral part of secondary metabolism and has an
important role in plant defense responses. Phenolic bacteriostat, mainly biosynthesized by
benzene propane metabolic pathway, including simple phenolic acids, flavonoids, benzene
propane, and polyphenol, is closely related to plant disease resistance. PPO (polyphenol
oxidase), POD (peroxidase), and PAL (phenylalanine ammonialyase) are the enzymes
involved in the metabolism of phenolic compounds in plants, and they play an important
role in the induced disease resistance of fruits.

The mechanism of 1-MCP on phenolic metabolism is to effectively accumulate PAL,
PPO, lignin, total phenol, and other disease-resistant substances in pulp through the
influence of phenylpropane pathway in fruit, thus improving the postharvest resistance
of fruit. PAL is the key enzyme involved in the metabolic pathways of benzene propane,
which is involved in the biosynthesis of phenols, flavonoids, phytoalexins, lignins, and
other chemical resistance compounds. The activity level of PAL is often regarded as a
biochemical index of plant disease resistance. 1-MCP treatment increased PAL, POD,
SOD, and CAT in jujube fruit, which enhanced resistance. This suggests that enhanced
fruit resistance was associated with increased activity of phenylalanine ammonialyase.
Combined 1-MCP and ClO2 treatment improved PAL activity, with dual physiological and
antibacterial effects, and effectively improved the resistance of strawberries [21].

Polyphenol oxidase is a key enzyme in the phenolic metabolism pathway, which is
involved in enzymatic browning as well as in the biodefense reactions in fruits. PPO mainly
oxidizes phenols into highly toxic material, directly limiting or poisoning the invasive
pathogenic microorganism. Peroxidase is mainly involved in the generation of lignin and
phytoalexin and can also remove H2O2 and O2− from tissue cells to avoid their excessive
accumulation in cells. Zhang et al. found that immersion of mature avocado in aqueous
solution with 1-MCP significantly retarded the accumulation of total soluble phenolics,
flavonoids, and total antioxidant capacity [32]. 1-MCP treatment inhibited postharvest
rot of “Anxi” persimmons, delayed the synthesis of phenolic substances, increased PPO
enzyme activity, and increased the strength of the postharvest fruit [20].

2.4. Effect of 1-MCP on Disease Resistance-Related Defense Enzymes and Proteins

Plants respond to attacks by pathogens by producing a wide range of pathogenesis
related (PR) proteins [33,34]. The first family of these proteins (PR-1) was identified
in the early 1980s [35]. Since then, a crowd of reports have documented similar PR-1
proteins originating from numerous species of monocot and dicot plants [36–40]. Transgenic
expression in plants confirmed the defensive function of some PR-1 proteins [41–45].
These PR proteins have now been classified into 17 different families [46], including β-
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1,3-glucanases (PR-2), chitinases (PR-3, -4, -8, and -11), osmotins with proteins similar to
proteins (PR-5), defensins (PR-12), thionins (PR-13), lipid-transfer proteins (PR-14), etc. It is
well-established that signaling compounds such as abscisic acid (ABA), ethylene, jasmonic
acid (JA), salicylic acid (SA), mechanical wounding, UV light exposure, osmotic stress, and
microbial infection are involved in the regulation of PR expression [47–51]. PR proteins
have been shown to be closely related to systemic acquired resistance (SAR) and systemic
induced resistance (ISR) [52].

1-MCP can improve fruit resistance to pathogens by inducing a wide range of
pathogenesis-related (PR) proteins in fruit. Chitinase (CHI) acts on the fungal cell wall
to degrade its chitin, to destroy the cytoskeleton of the fungus, and to achieve antifungal
effect [53]. After fungal infection, rice was treated with 1-MCP, and the rice’s chitinase
activity increased; the germination, growth, and reproduction of fungal spores was in-
hibited; and the rice’s resistance was enhanced [54]. Using a transcriptome study, Li
et al. found that 1-MCP alleviated the overall transcriptome changes after refrigeration
in cactus pear fruit [17]. Functional classifier analysis revealed that the most significant
effect of 1-MCP was to avoid the large-scale downregulation of transcripts belonging to
the stress, RNA and transcription, signaling, and cellular classes. In addition, exposure to
1-MCP significantly reduced the levels of phytase and chlorophyll enzyme transcripts as
well as increased chitinase transcript levels, thereby providing molecular evidence for its
observed effects in delaying pericarp staining and increasing resistance to pathogens. β-1,3-
glucanases (GLU) belong to the PR-2 class and play an important role in disease resistance
in plants [55]. β-1,3-Dextran is an important structural component of the fungal cell wall,
exposed on the surface of many fungal hyphal tips and capable of being directly attacked
by β-1,3-glucanase [56]. β-1,3-glucanase is often expressed in concert with chitinase in
plant defense responses, thus enhancing plant disease resistance [57]. Cao et al. found
that 1-MCP treatment significantly reduced the rot incidence of loquat fruit by significantly
inhibiting the accumulation of superoxide radicals and hydrogen peroxide, inducing higher
activity of chitinase and β-1,3-glucanase and maintaining natural resistance by delaying
senescence [19]. Treatment with 1-MCP inhibited fruit decomposition in postharvest “Anxi”
persimmon likely because 1-MCP promoted disease resistance by increasing the activity
of chitinase and β-1,3-glucanase and by retaining higher amounts of substances related
to disease resistance. 1-MCP + PL treatment also induced an increase in PAL activity
and increased intracellular lignin and total phenolic content, which is conducive to the
formation of structural barriers with indirect resistance to pathogens. The disease index of
the 1-MCP + PL-treated fruit was significantly lower than control. The 1-MCP treatment
alleviated the occurrence of disease during fruit storage and reduced postharvest decay
loss in melo fruit [58]. Lin et al. found that treatment with paper leaf 1-MCP effectively
reduced disease index in the carambola fruit; produced increased CHI, GLU, PAL, PPO,
and POD activity; and maintained a high total phenolic content. [18].

PR1 is a marker gene of SAR. The molecular mechanism of the SA-regulating PR1
gene in response to pathogenic microorganism infection has been widely studied in model
plants. Studies in Arabidopsis showed that the nonexpressor of pathogenesis-related gene-
1 (NPR1), as a key contributor to SA signaling, interacts with TGACG motif-binding
transcription factor (TGA) transcription factors, activating SA response elements in the
promoter of PR1 [59]. Later, the researchers successively confirmed the prevalence of
PR1 in plants and its role in the defense process in the plant leaves. Niki et al. found
that overexpression of AtPR1 in Arabidopsis enhanced resistance to downy mildew [60].
Li et al. found that expression of VvPR1 in response to tobacco wildfire infection and PsPR1
expression increased within 24 h [61]. To our knowledge, there was no report on induced
expression of PR1 by 1-MCP treatment in postharvest fruits. However, in soft spring wheat
(Triticum aestivum L.), 1-MCP induced disease resistance to leaf spots (Septoria nodorum
Berk.) by increasing zeatin, hydrogen peroxide, and accumulation of gene transcripts
(PR-1 and PR-2). All of the defense responses studied were suppressed, and pathogen
development was more concentrated in control and ethylene-treated wheat. Cytokinins
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were localized to the mesophyll cells and cell walls of wheat leaves treated with 1-MCP. The
cell walls of ET-treated leaves were devoid of zeatin, and the hormone was concentrated in
the developing hyphae of the pathogen. These findings make it possible to hypothesize that
wheat resistance is controlled by an antagonistic interplay of salicylic acid and ethylene
signaling pathways with cytokinin participation [62].

2.5. Effect of 1-MCP on Fruit Firmness

Texture softening mostly occurs in the process of fruit ripening, which makes the
fruit flavor quality and taste reach its best state but makes the fruit more susceptible
to microbial infection and physical damage [63]. 1-MCP improves fruit resistance to
pathogens by inhibiting the degradation of cell walls. It was shown that 1-MCP could inhibit
the enzyme activity related to softening in the ripening process (exo-polygalacturonase,
pectin methylesterase, β-galactosidase, and α-L-arabinofuranosidase), thus inhibiting
the degradation of cell wall and delaying fruit softening in apple fruits [64]. Lohani
et al. determined the activity changes of pectinesterase (PE), polygalacturonase (PG), and
cellulase (Cx) in banana fruits during storage and found that 1-MCP was able to effectively
inhibit the effect of ethylene on cell wall hydrolase as well as reduce fruit softening. The
addition of 1-MCP could significantly reduce the rate of starch conversion in harvested
apple; inhibit degradation of pectin, cellulose, and hemicellulose; and retard softening [65].
1-MCP could significantly reduce the conversion rate of starch in harvested apple; inhibit
the degradation of pectin, cellulose, and hemicellulose, and delay softening [66]. 1-MCP
treatment could delay the peak emergence of amylase and PE activity in kiwi fruit, inhibit
the degradation of starch and pectin, significantly maintain fruit firmness, and delay
softening and aging [67]. Ethylene induced the expression of the PG gene DkPG1 in
persimmon fruit, while 1-MCP treatment suppressed gene expression of DkPG1, reduced
the PG enzyme activity, and maintained a high pulp firmness [68]. It is possible that 1-MCP
may effectively inhibit the activity of softening-related enzymes such as PE and PG and
delay the process of softening after ripening in “Santa Rosa” plum fruit [69].

2.6. Effect of 1-MCP on Increasing Fruit Disease

In some studies, 1-MCP was reported to be able to reduce postharvest fruit strength
and promote disease occurrence. For example, treatment with 1-MCP reduced resistance in
Japanese prickly pear, with more severe symptoms of black spots [70]. Porat et al. found
that 1-MCP increased rot caused by penicillium in “Shamouti” oranges because ethylene
inhibited mold growth, while 1-MCP inhibited ethylene [23]. Janisiewicz et al. found
that 1-MCP treatment increased the severity of bitter rot and blue molds, reducing disease
resistance of “Golden Delicious” apples [71]. It was shown that although 1-MCP treatment
delayed fruit ripening, it also changed the component of the fruit, which increased tissue
morbidity [21]. Sun et al. found that after storage for 120 days, the rot rate of 1-MCP-treated
fruit was significantly higher than control and increased with the treatment concentration.
This indicates that 1-MCP may reduce the resistance of Dangshan pear to Penicillium and
increase the disease [22]. Jiang et al. found that the effect of 1-MCP treatment on strawberry
fruit was related to the treatment dose: low doses of 1-MCP treatment inhibited rot, while
high doses of 1-MCP treatment promoted fruit rot occurrence [13]. Similarly, the 0.5 µL/L
1-MCP-treated group in “Emerald” pear reduced the fruit decay rate, and the fruit decay
rate (mainly fungal diseases) in the 1.0 µL/L-treated group was higher than that of control
group and the 0.5 µL/L-treated group. The results showed that the high concentration of
(1.0 µL/L) 1-MCP treatment aggravated the occurrence of fruit fungal disease in “Emerald”
pear [72].

Taken together, 1-MCP can enhance fruit resistance or reduce fruit resistance, which
depends on different fruit species and treatment concentration. The reason for reducing
resistance is that in some fruits, ethylene participates in fruit defense reaction induced by
fungi or bacteria, and if 1-MCP combines with the ethylene receptor, ethylene cannot par-
ticipate in the fruit defense reaction, eventually leading to more serious disease. Therefore,
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when inducing resistance with 1-MCP, we should pay attention to determine the effect
of 1-MCP on disease resistance in different fruit species and varieties and optimize the
concentration of 1-MCP.

3. The Role of SA in Induced Resistance of Postharvest Fruits
3.1. Effect of SA on Induced Resistance and Its Involved Mechanism

Salicylic acid (SA) is an endogenous phenolic substance with low content in higher
plants. As an intracellular signaling molecule, SA can regulate important metabolic pro-
cesses in plants, such as inducing flowering, affecting sex differentiation, and regulating
photoperiod [73]. SA plays a role in the plant resistance response to both biotic and abiotic
stresses. Exogenous SA can induce resistance to fungi, bacteria, and viruses in a variety
of plants, including tobacco, cucumber, tomato, potato, pea, wheat, rice, and Arabidopsis,
which has been identified as a chemical inducer of systemic acquired resistance [74]. For
example, Mandal et al. found that exogenous application of 200 µM salicylate by root
feeding and leaf spray induced resistance to Fusarium oxysporum in tomato [75]. Exogenous
SA significantly inhibited the expansion of Penicillium expansum during room-temperature
and low-temperature storage, reduced the weight loss rate, maintained total soluble solid
and titrate acid content, and enhanced preservation effect in apple fruit [76]. SA could
not only produce allergic reactions (hypersensitive, HR) and systemic acquired resistance
(SAR) in plants but also activate a series of important components of defense response
signal transduction process after pathogen infection [77]. Different concentrations of SA
induced disease resistance. Apple (Malus domestica) fruits were treated with 2.5 mmol/L SA
and were then soaked and inoculated with penicillium fungi (Penicillium expansum), which
could effectively inhibit the occurrence of blue mold [76,78]. Further, 3 mmol/L SA treat-
ment reduced the occurrence of citrus (Citrus reticulata) fruit disease to some extent; when
the SA concentration was higher than 6 mmol/L, the growth of citrus blue mold (Penicillium
digitatum) and green mold (Penicillium italicum) was completely inhibited [79,80]. SA at a
concentration of 2 mmol/L or higher could significantly inhibit Alternaria-induced posthar-
vest rot and trigger defense-related mechanisms (such as enhancement of phenlypropanoid
metabolism and stimulation of Chitinase and β-1,3-glucanase) in jujube fruit [81] (Table 2).
Treatment with SA can enhance the production of multiple defense response mechanisms,
including various reactive oxygen species, metabolism of phenols, metabolism of mem-
brane lipid, defense-reaction-related enzymes, and pathogenesis-related (PR) protein, thus
improving fruit disease resistance.

Table 2. Studies on the induced resistance effect of SA treatment to different type of fungus in
postharvest fruits.

Fruits Treatment
Concentration Fungi Reference

Apricot 1 mmol/L Alternaria alternata [82]
Jujube 2 mmol/L Alternaria alternata [81]

Tomato 2 mmol/L Botrytis cinerea [83]

Banana 2 mmol/L
2 mmol/L

Colletotrichum musae
Colletotrichum gloeosporioides

[84]
[85]

Mango 1 mmol/L
5 mmol/L

Colletotrichum gloeosporioides
Colletotrichum gloeosporioides

[86]
[87]

Carambola 1 mmol/L Colletotrichum gloeosporioides [88]
Tomato 200 µmol/L Fusarium oxysporum [76]
Apple 0.2 mmol/L Glomerella cingulata [89]
Cherry 2 mmol/L Monilinia fructicola [90]
Apple 0.3 mmol/L Penicillium expansum [91]
Peach 0.05 mmol/L Penicillium expansum [83]
Citrus 2.5 mmol/L Penicillium expansum [92]
Apple 2.5 mmol/L Penicillium digitatum [76,78]
Citrus 3 mmol/L Penicillium digitatum [79]
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Table 2. Cont.

Fruits Treatment
Concentration Fungi Reference

Grapefruit 2 mmol/L Penicillium digitatum [93]
Pear 0.2 mmol/L Physalospora piricola [94]

Peach 5 mmol/L Rhizopus stolonifer [80]

3.2. Effect of SA on Reactive Oxygen Metabolism

Superoxide dismutase (SOD) and catalase (CAT) are two enzymes closely related to
reactive oxygen species metabolism. SA can improve the activity of the fruit superoxide
dismutase (SOD), reduce the rate of production of the superoxide anion, and reduce the
damage caused to the fruit. SODs act as the first line of defense to scavenge the superoxide
free radicals present in fruits so that SOD activity and superoxide free radical content
reach a certain balance. When the fruit is susceptible to disease, the superoxide radical
content in the fruit increases, and the SOD activity also increases at this time, achieving
the effect of scavenging free radicals. In addition, SOD is related to the synthesis of
lignin and antiviral substance, which could enhance the resistance of fruits to various
pathogenic microorganisms. CAT plays an important role in plant defense, stress response,
and the control of the redox balance of cells. The main function of CAT is to catalyze the
decomposition of H2O2 in the fruit into H2O and O2 and remove the hydrogen peroxide
in the body so as to protect the fruit from the poisoning of H2O2. Similarly, ascorbate
peroxidase (APX), mainly existing in the chloroplast, is the key enzyme for scavenging
H2O2 in the chloroplast. After SA treatment, the activity of SOD, CAT, and APX enzymes
was improved, and the excess reactive oxygen species were eliminated, so the reactive
oxygen species in the fruit were in balance, and the resistance of the fruit to pathogens was
enhanced. Gao et al. found that 0.2 mmol/L salicylic acid solution effectively improved the
SOD enzyme activity and induced enhanced resistance to ring rot disease [94]. SA treatment
improved the activity of SOD, POD, CAT, and APX in Murraya paniculata fruit; slowed
down the production rate of superoxide anion (O2

−); and reduced the cell membrane
permeability [94]. Likewise, 0.01 g/L SA improved the activity of SOD and CAT while
reducing the content of malondialdehyde (MDA) in chestnut [95]. Similarly, SA treatment
increased the activity of SOD, POD, CAT, and APX and reduced the production rate
of O2 and MDA content in sugar apple fruit [85]. However, some studies have also
shown that SA treatment could inhibit CAT activity in fruits and vegetables and increase
H2O2 content [96–100]. Treatment of 0.3 mmol/L SA significantly induced the increase
of superoxide anion and H2O2 content in peach fruit, increased the activity of SOD, and
enhanced the resistance of apple fruit to Penicillium expansum [91]. Zhu et al. found that
exogenous SA treatment induced H2O2 accumulation in citrus, showing that H2O2 as an
important messenger molecule could induce enhanced cell wall resistance and induce the
biosynthesis of plant disease resistance-related substances and the expression of defense-
related genes [101].

3.3. Effects of SA on Membrane Lipid Metabolism

In addition, SA treatment may also alter the membrane lipid permeability of harvested
fruit, resulting in improved disease resistance of the fruit. Compared with the control fruit,
SA treatment reduced fruit disease index and pericarp cell membrane permeability in P.
longanae-inoculated longans [102]. Furthermore, treatment with SA decreased activities of
phospholipase D (PLD), phospholipase C (PLC), lipase, and lipoxygenase (LOX); lowered
the content of saturated fatty acids (SFAs), phosphatidic acid (PA), and diacylglycerol
(DAG); but suppressed the reductions in phosphatidylcholine (PC), phosphatidylinositol
(PI), unsaturated fatty acids (USFAs), the ratio of USFAs to SFAs (U/S), and the index of
unsaturated fatty acids (IUSFA) in the pericarp of P. longanae-inoculated longans. Together,
these data demonstrated that SA treatment was able to retain the integrity of membrane
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structures, enhance fruit disease resistance to P. longanae, and thus suppress disease devel-
opment in P. longanae-inoculated longans during storage.

3.4. Effect of SA on Phenolic Metabolism

Similar to the mechanism of 1-MCP-induced resistance, salicylic acid can improve
disease resistance by changing the phenolic metabolism inside the fruit. Three enzymes are
closely related to phenolic metabolism, including POD, PPO, and PAL. Zeng et al. found
that the activity of PAL, POD, and PPO was significantly enhanced after soaking mango
fruits in SA [86]. Compared with control, PPO activity during the whole storage period
(16 d) increased, PAL activity increased by 5 times at 4 d, and the resistance of mango fruit
to anthrax was enhanced. After inducing tomato plants with SA, THE PAL, CAT, POD,
and PPO activity in tomato leaves showed a trend of rising firstly and then decreasing and
then was significantly higher than control, and the resistance of tomato to powdery mildew
was improved [103]. SA treatment of tomatoes inoculated with gray mold pathogens could
induce an increase in the MDA content, increase ascorbate levels and POD and PPO enzyme
activity, and improve disease resistance of carambola [88]. An optimal concentration of
1.5 mM SA was used to treat chickpea, and the treated fruits showed higher induction of
POD and PPO activity in addition to higher phenolics, H2O2, and protein accumulation,
which ultimately induced plant defense [104]. Three citrus species, including “Kinnow”,
“Meyer” lemon, and “Mosambi”, treated with salicylic and jasmonic acid, were infected
with green mold (Penicillium digitatum) and blue mold (P. italicum). The activity of PPO
and POD was proportional to the concentration of salicylic and jasmonic acid applied, the
development of both mildew was inhibited, and the resistance of the three citrus fruits
was improved [92]. It has also been found that SA combined with ultrasound treatment
could improve PAL, POD, CHI, and GLU activities in mango pulp tissue; promote total
phenol accumulation; and effectively inhibit mango postharvest anthrax [87]. Treatment
of apricot fruits with SA spray before harvest could significantly reduce the incidence of
fruit blackspot. The activity of phenylpropane metabolism key enzymes is increased, thus
enhancing the resistance of apricot fruit to postharvest blackspot [82].

3.5. Effect of SA on Disease Resistance-Related Signaling Synthesis and Signaling Pathways

The SA-mediated disease resistance signaling pathway contains many genes. At
present, most studies in postharvest fruits have found that the expression of PR-1, PR-
2 (encoding chitinase), and PR-4 (encoding β-1,3 glucanase) are directly related with
resistance, but more in-depth research is still relatively rare. Earlier studies in rice found
that OsBWMK1 localized in the nucleus mediated PR gene expression by activating the
OsEREBP1 transcription factor [105]. It was also found that OsBWMK1 phosphorylates
OsWRKY33, a WRKY transcription factor with WRKY domain (the amino acid motif
WRKYGQK). The DNA binding activity of OsWRKY33 with W-box element (TTGACCA)
of several PR gene promoters was enhanced. [106]. In postharvest banana fruit, SA and
methyl jasmonate (MeJA) treatments significantly increased the content of endogenous SA
and JA and resulted in higher expression levels of MaWRKYs, MaPR1-1, MaPR2, MaPR10c,
MaCHI3, MaCHI4, and MaCHIL1. Yeast one-hybrid analysis showed that MaWRKYs could
bind to the promoters of four SA and MeJA-inducible PR genes, i.e., MaPR1-1, MaPR2,
MaPR10c, and MaCHIL1. This indicated that SA and MeJA treatment activated the banana
PRs and WRKYs genes as well as the WRKY TFs bound to the PR promoter to induce
resistance to anthracnose [85]. It was also found that MaNAC1, MaNAC2, and MaNAC5
were up-regulated after Colletotrichum musae infection and were also significantly enhanced
by SA and MeJA treatment in banana fruit. MaNAC5 cooperates with MaWRKY1 and
MaWRKY2 to induce the expression of several PR genes [84]. Treatment of peach fruits
infected with Rhizopus stolonifer with β-aminobutyric acid (BABA) significantly increased
peach fruit resistance. This was an integrated defense response including an H2O2 burst,
ABA accumulation, and callose deposition. Yeast two-hybrid, luciferase complementation
imaging, and co-immunoprecipitation assays showed that MADS2 was an interacting
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partner with NPR1. MAPK1 also participated in post-translational modification of MADS2
for signal amplification. MADS2 mediated SA-dependent NPR1 activation to positively
regulate BABA-elicited defense in peach [107]. These are relatively new discoveries in
recent years, extending our understanding of transcriptional regulation associated with
induction of pathogen resistance in economic fruit crops.

3.6. Effect of SA on Disease Resistance-Related Defense Enzymes and Proteins

Most reports found that the enzymes related to fruit resistance are basically chitinase
and β-1,3 glucanase. Treatment with SA improved the activity of chitinase and β-1,3 glu-
canase, induced pathogenesis-related proteins, and enhanced resistance in eggplant [108].
The combination of SA and chitosan increased chitinase and β-1,3 glucanase activities,
effectively activating disease resistance to green mold in grapefruit [93]. SA and chitosan
treatment of grape fruit also effectively enhanced the activity of chitinase and β-1,3 glu-
canase, improving the resistance of grape fruit to gray mildew [109]. Treatment with SA
and ultrasound effectively inhibited Penicillium-induced caries, enhancing the activity
of defense enzymes such as chitinase and β-1,3 glucanase, as well as increasing disease
resistance in peach fruit [83].

The relationship between PR-1 and SA has been mentioned in the above paragraph.
Many reports suggested that SA treatment could affect PR gene expression and induce
fruit resistance. For example, SA significantly reduced the occurrence of anthrax; increased
endogenous SA accumulation; increased MaPR1-1, MaPR2, and MaPR10c gene expression;
and enhanced the resistance in banana fruit [110]. Treatment of tomato with SA and Ca2+

caused a significant increase in the expression of PR gene, resulting in increased resistance to
Penicillium and gray leaf spot [111,112]. SA and JA jointly increased the transcription levels
of PR-1, PR-6, and genes encoding isoperoxidase (M21334) and increased the resistance to
advanced blight in potato (Sorokan et al. 2014). SA induced expression of five PR genes,
including PR-1, PR-2 (β-1,3 glucanase), PR-4(chitinase), PR-5, and PR-8, and enhanced
resistance to leaf spot caused by Glomerella cingulata in apple [89].

4. 1-MCP and SA Synergistically Reduced the Fruit Disease

Since both 1-MCP and SA can increase the resistance effect of harvested fruit and
reduce the occurrence of disease, can their combined treatment affect the resistance of
harvested fruit? A 5 mM SA and 1-MCP compound treatment decreased the rate of
ethylene production and incidence of flesh browning, increased texture attributes and
reduced the red color of the skin, and enhanced the resistance in postharvest “Laetitia”
plum fruits. Compound treatment with 1-MCP and SA in “Campbell early” table grapes
increased both firmness and titratable acidity compared to control and single treatment
and effectively alleviated stem browning and berry rot during the 16-day storage period
of 19 ◦C [113]. Xu et al. found that combined 1-MCP and SA treatment inhibited the rate
of respiration, ethylene production, decay incidence, MDA content, soluble sugars, and
soluble solids content. The combination treatment also delayed the sweetness and color
changes compared to the untreated bananas, effectively increased the activity of SOD and
CAT, and inhibited the increase in POD activity in banana [114]. The compound treatment
enhanced the disease resistance of bananas and reduced the occurrence of disease better
than 1-MCP or SA alone. SA combined with 1-MCP treatment could effectively inhibit
the occurrence of decay rate and weight loss rate in plums during storage; maintain good
fruit firmness, total soluble solid, titrable acid, and ascorbic acid (VC) content; inhibit
the increase of malondialdehyde and H2O2 content; improve the activity of peroxidase,
superoxide dismutase, and catalase; and reduce O2− production rate [115].

Although the compound treatment of 1-MCP and SA is better than single treatment in
some fruits, the internal mechanism is still not very clear. The above-mentioned papers
gave explanations for fruit firmness, phenols, resistance-related enzymes, and so on. In
plants, there are primarily two types of induced resistance: systemic acquired resistance
(SAR) and systemic induced resistance (ISR), which mostly interact antagonistically. In
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our opinion, after compound treatment, 1-MCP competes for ethylene binding sites; the
ISR pathway is inhibited, its antagonism to SAR is alleviated, and the SAR pathway is
further induced by SA, both reaching a certain equilibrium point perhaps coupled with
the increase of endogenous SA. This approach strongly induces the synthesis of disease
resistance-related protein PR and enhances the signal expression of the defense response,
jointly improving the fruit resistance. On the other hand, it was also found that SA treatment
inhibited ethylene production by reducing ACC synthase (ACS) and ACC oxidase (ACO)
activities [116]. This indicates that 1-MCP and SA together reduce the content of ethylene
after compound treatment. In brief, salicylic-acid-, ethylene-, and jasmonic-acid-mediated
fruit disease resistance signals interact. 1-MCP combined with SA is better than a single
treatment, possibly due to the synergy between 1-MCP and SA in the induction of disease
resistance. 1-MCP inhibits ethylene signaling, while ethylene and SA are antagonistic in
disease resistance signaling, and compound treatment reduces ethylene content, reversely
inducing SA production, enhancing SAR resistance pathway response, and ultimately
improving fruit disease resistance. However, the mechanism of which we speculate still
needs to be verified experimentally.

5. Conclusions and Prospect

Postharvest fungal diseases in fruit have received increased attention from researchers
in different fields, mainly including horticulture, plant protection, and food science. Syn-
thetic fungicides, which have discernable health or environmental risks, are still the main
method used for the control of decay incidence in today’s fruit warehouses. Although many
non-chemical treatments, primarily including biological control agents, natural compounds,
UV, ultrasound, irradiation, hot water and electrolyzed water treatment, and salts, have
been used for the control of fungal diseases in fruits after harvest, these diseases still lead
to enormous economic losses worldwide every year. In recent years, more chemicals have
been used to improve the resistance of various harvested fruits and reduce the occurrence
of disease. Induced resistance helps fruits maintain the energy level to respond to the
attack of different fungi. Induced resistance is also considered to be a sustainable strategy
to deal with the rigorous food safety standards. Increasing evidence shows that the use
of safe and healthy chemical treatment is crucial for the development of new and safer
strategies to continuously manage postharvest fruit decay. 1-MCP and SA are effective,
safe, and harmless, so the role of 1-MCP and SA in induced resistance of postharvest fruits
are reviewed, including the synergetic resistance between 1-MCP and SA, reactive oxygen
metabolism, membrane lipid metabolism, phenolic metabolism, disease resistance-related
defense enzymes and proteins, and genes related to signaling synthesis and signaling
pathways (Figure 1).

Transcriptional regulation mechanisms are very important as the basis for 1-MCP and
SA to indirectly or directly affect disease resistance in postharvest fruits. 1-MCP induced
fruit resistance by affecting the ethylene signal transduction and ISR pathway, and SA
induced fruit resistance through the SAR resistance pathway. However, the mechanism
of induced resistance in postharvest fruits is basically the study of physiological defense
response-related mechanisms and disease resistance-related proteins at present. How is the
ISR pathway regulated by 1-MCP in order to induced resistance? Since there is report about
the induction of the expression of PR1 by 1-MCP [58], and PR1 is a marker gene of SAR,
does 1-MCP treatment regulate the SAR pathway? The crosstalk model between the ISR
and SAR pathways in postharvest fruits is still unknown. We should pay much attention
to the molecular mechanism of induced resistance by using 1-MCP and SA treatment,
especially starting with the ISR and SAR pathways.
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Fruits with 1-MCP or SA treatment alone show increased resistance to pathogen infec-
tion, and recent studies provide new insights into improving self-resistance by the treatment
of 1-MCP in combination with SA. We should apply this compound treatment technology
to preserve a wider variety of fruits and especially to improve the resistance of fruits. The
preservation technique in combination with 1-MCP and SA may be a promising approach
to extend shelf life. In order to explore the mechanism of the synergistic effect of 1-MCP
and SA in fruit resistance, the transcriptional regulation mechanism should particularly be
further studied, and new target genes for inducing resistance should be found, which will
provide theoretical guidance for molecular breeding and postharvest processing.
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