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Abstract: Plant growth in a controlled environment system is highly dependent on the availability of
light. The light-emitting diode (LED) is capable of providing the needed quality and quantity of light
for the plant. The purpose of this study was to determine the effect of white LED light intensity on the
growth of in vitro propagated apple (M-9) seedlings in a controlled environment system. Seedlings
were grown for 30 days under five different white LED light intensities: 100–500 (L1), 250–500 (L2),
500–500 (L3), 250–250 (L4), and 100–100 (L5). Our findings indicate that seedlings treated with
L3 grew substantially taller than seedlings treated with L1, L2, or L5. The number of leaves, stem
diameter, shoot fresh weight, root fresh weight, and shoot dry weight of L3 treated seedlings were
considerably greater than those growing in other treatments. Furthermore, root length, root dry
weight, chlorophyll content, and photosynthesis rate were considerably increased in the L3 treatment
group compared to the L5 treatment group. However, there was no significant difference in the
stomatal conductance or transpiration rate of apple seedlings between the light treatments. Moreover,
a positive correlation was seen between stomatal conductance and transpiration rate. These results
suggest that light intensity PPFD 500-500 were favorable for the initial growth of in vitro propagated
apple seedlings.

Keywords: in vitro; light intensity; number of leaves; shoot height

1. Introduction

Global warming caused by drastic climate change accompanied different abiotic stress
conditions for plants [1]. It poses critical challenges for food security and sustainability [2].
At the same time, the population of the world coupled with the expansion in land use
for residential and commercial purposes has led to the continual decline of agricultural
farmland [3]. Furthermore, in 2050, around 60% of additional food production will need
for globally [4]. Under such circumstances, farmers are now turning to new farming tech-
nology, controlled environment systems. A controlled environment system is a technology
for plants grown in environmentally-controlled structures, such as greenhouses, growth
chambers and high tunnels [5].

Apple is one of the most valuable fruit crops around the world. In the Korean horti-
culture industry, apple plays a significant role and it was estimated that around 33,600 ha
of land of Korea were cultivated for apple production [6]. Hence, healthy seedlings are
a primary requirement for profitable apple production [7]. Morphological traits in the
seedling stage help to identify healthy and productive apple plants [8]. Tissue culture
(in vitro) is an adequate technology for mass production of required quality seedlings [9].
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Notably, in vitro propagated seedling’s proper acclimatization in ex vitro culture, by dif-
ferent environmental factors (temperature, light, humidity, etc.) is crucial to retain their
further productivity [10]. Seedlings grown in a controlled environment are a preferable
solution for ex vitro acclimatization.

Light is the primary environmental factor and source of energy, which greatly influ-
ences plant growth and development. Light intensity, photoperiod, and wavelength can
affect the morphological and physiological response of a plant [11]. Furthermore, photo-
synthesis in a plant is regulated by its received light intensity [12]. Artificial lighting in
the control environment system is expected to take advantage of crop production because
it is unaffected by weather and it is possible to maintain the required unit for high yield.
However, it is an expensive technology compared to traditional farming. High energy cost
is associated with light supplementation and creates an obstacle for profitable production in
a controlled environment system. On the other hand, LED light is a promising technology
to improve light efficiency and help to replace traditionally used horticultural lighting
(e.g., metal halide lamps and high-pressure sodium lamps). LEDs have distinct benefits
including high photoelectric conversion efficiency [13]. In recent years, light emitting
diodes (LEDs) have been proposed as a potential alternative light source for in vitro plant
growth and development. Many studies use LEDs to support plant growth in controlled
environment systems, such as plant tissue culture rooms and growth chambers [14–16].

Several pieces of research demonstrated the positive effect of LED light on the mineral
element content in different plants [17–21]. In addition, some studies focused on plant
cultivation under LEDs of blue (B) and red (R) light as they have the highest photon ef-
ficiency [22–25]. Particularly, maximum attention of LED light-related research in plant
science, taken for leafy vegetables. However, the effects of LED light on the morphology
and productivity of fruit-producing horticultural crops still need to be investigated. Fur-
thermore, a research report about the effect of the intensity and color of the light-emitting
diode on apple plant seedlings is still lacking.

The light intensity and spectrum are the main crucial triggers for plant growth and
development [26]. Notably, as a monochromatic light source, the intensity and spectrum of
LEDs are possible to adjust based on plant requirements. For this reason, growers need to
upgrade their knowledge about suitable light conditions for cost-effective apple seedling
production in a control environment system. Therefore, the objective of this study was
to investigate the influence of white LED light intensity on the growth parameters at the
initial stage of apple seedlings which were propagated by in vitro method.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

This experiment was performed under controlled environment conditions in Kangwon
National University, Chuncheon, South Korea (latitude, 37◦48′ N, longitude, 127◦52′ E)
using in vitro propagated apple (M-9) seedlings. Seedlings were transplanted into a plug
tray (every tray has 72 holes, hole size 5 cm depth and 4 cm width) containing an oasis block
(sponge-like floral foam, length 2.5 cm, width 2.5 cm and height 3.0 cm) and acclimatized in
a container (length 60 cm, width 40 cm and height 20 cm) filled with water and connected
with an air pump (DK-9000, Dae-kwang electronics, Seoul, Korea). Acclimatization was
carried out for 14 days under a controlled environment (temperature 25 ± 2 ◦C, light
intensity 30 µmol·m−2·s−1, photoperiod 16 h/8 h and relative humidity was gradually
decreased from 98% to 84%).

2.2. Preliminary Temperature Treatment

After 14 days of acclimatization, to find vigorous seedlings from their favorable
growing temperature we conducted a preliminary temperature treatment. The unique size
of 40 seedlings (each seedling having three leaves, shoot height 2 cm and stem diameter
1.4 mm) were transplanted into a growth chamber (SJ-503PH, Sejong Scientific Co. Ltd.,
Bucheon, Korea) for three different temperature treatments set as 18/18 ◦C, 23/18 ◦C and
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30/18 ◦C for day/night (16 h/8 h photoperiod). Twenty seedlings were used in every
treatment and the experiment was conducted twice. Light intensity and relative humidity
of growth chamber were maintained 100 µmol·m−2·s−1 and 80 ± 5%, respectively. The
electrical conductivity of a nutrient solution (Mg-Ca-K-P-N = 2.0-7.0-5.0-3.5-13.1 mEq·L−1,
Aichi Prefecture, Japan) was 0.8 dS·m−1 and pH was 5.8± 0.2. The survival rate of seedlings
was recorded and observed maximum in T2 treated seedlings at seven days after treatment
(Table 1). At twenty days after treatment, the survival rate of T2 treated seedlings was
higher than T3 treated seedlings.

Table 1. Effect of temperature on the survival rate of apple seedlings at 20 days after treatment in a
growth chamber. T1, T2 and T3 indicate day/night temperature 18/18 ◦C, 23/18 ◦C and 30/18 ◦C,
respectively.

Treatment
Survival Rate (%)

0 DAT 7 DAT 20 DAT

T1 100 z a y 95.0 b 95.0 a
T2 100 a 100 a 97.4 a
T3 100 a 92.1 b 84.0 c

DAT = Days after treatment; z Each value is the means (n = 40). y Means within columns sharing the same letter
are not significantly different based on Duncan’s multiple range test at p ≤ 0.05.

Shoot height, the number of leaves and leaf area are important traits to identify
a seedling’s vigor. At 20 days after temperature treatment, shoot height and leaf area
were significantly higher in T2 treated seedlings compared to T1 and T3 treated seedlings
(Figure 1). Leaf number was higher in T2 treated seedlings than T1 (Figure 1C). Other
growth parameters, such as leaf length, leaf width, stem diameter, chlorophyll content,
shoot fresh weight and root fresh weight were also measured (Table 2). All growth parame-
ters cumulatively indicated T2 treated seedlings were more vigorous. For this reason, we
selected seedlings grown in the T2 temperature for the final experiment (light treatment).

2.3. Treatment (Light Effect)

After 20 days of preliminary temperature treatment, unique size (approximately
10 leaves, shoot height 3.8 cm and stem diameter 1.7 mm) of healthy apple seedlings
were selected and transplanted into plug tray (32 holes in a tray, hole size 5.5 cm depth
and 5.5 cm width) filled with substrate media. Substrate media was made by mixing of
peat moss (Berger BPP, 100% sphagnum peat moss, pH 5.4–6.2) and perlite (Newpershine,
GFC Co., Chungnam, Korea) The ratio of peat moss: perlite was 9:1. For 30-days treatment,
five different light intensities were maintained (Table 3). The bar type of white LED light
(ZVAS, Sunghyun Hightech Co. Ltd., Hwaseong, Korea) was used and the photoperiod
was set at 16 h/8 h for day/night periods. In this white LED, the spectral fraction (photon
flux, µmol·m−2·s−1) of green, blue and red are 51.7%, 24.6%, and 21.4%, respectively [27].
Six white LEDs were fixed at 35 cm height from the plug tray. Light intensity was adjusted
(length 45 cm × width 120 cm). The environment condition was controlled (temperature
25 ± 2 ◦C, relative humidity 60 ± 5%). Growth parameters and SPAD values were investi-
gated at 10-day intervals. Photosynthesis rate was measured on the 30th day of treatment.

2.4. Measurement of Plant Growth Parameters

Shoot height of the plant was measured from the top of the growing media to the plant
tip using a tape ruler. Stem diameter was measured in the base of the plant (1 cm above the
growing medium) using a digital caliper (CD-20APX; Mitutoyo Corp., Kanagawa, Japan).
The number of leaves was counted manually (except those less than 1 cm). Leaf length
and leaf width (fully expanded leaf of a plant) were measured by a ruler. Chlorophyll
meter SPAD-502 (Konica-Minolta, Osaka, Japan) was used for chlorophyll measurement.
Photosynthesis rate, stomatal conductance and transpiration rate were measured by using a
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portable photosynthesis meter (LI-6400XT, LI-COR Inc., Lincoln, NE, USA). Photosynthesis
rate was measured in a leaf chamber at 23 ◦C leaf temperature, 400 µmol·mol−1 CO2.
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Figure 1. Effect of temperature treatment on the morphology of plants (A), shoot height (B), number
of leaves (C) and leaf area (D) of apple seedlings at 20 days after treatment in a growth chamber. T1,
T2 and T3 indicate day/night temperature 18/18 ◦C, 23/18 ◦C and 30/18 ◦C, respectively. The lines
above the bar represent the standard error of the mean (n = 5). Means above each bar followed by the
same letters are not significantly different by Duncan’s multiple range test (DMRT) at p ≤ 0.05.

Table 2. Effect of temperature on the growth and chlorophyll content of apple seedlings at 20 days
after treatment in a growth chamber. T1, T2 and T3 indicate day/night temperature 18/18 ◦C,
23/18 ◦C and 30/18 ◦C, respectively.

Treatment
Leaf (cm) Stem Diameter

(mm)
SPAD
(Value)

Fresh Weight (g)

Length Width Shoot Root

T1 3.0 z b y 1.8 b 1.74 a 30.1 a 2.93 a 0.38 a
T2 3.7 a 2.4 a 1.73 a 29.6 a 2.99 a 0.37 a
T3 3.5 a 2.4 a 1.56 b 31.6 a 2.98 a 0.38 a

z Each value is the means (n = 5). y Means within columns sharing the same letter are not significantly different
based on Duncan’s multiple range test at p ≤ 0.05.

Table 3. Regulations of light intensity treatments on apple seedlings.

Treatment
PPFD (µmol·m−2·s−1)

0–10 Days 11–20 Days 21–30 Days

L1 100 250 500
L2 250 500 500
L3 500 500 500
L4 250 250 250
L5 100 100 100
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Plants were picked up from the plug tray then carefully cleaned by water to remove
different materials and substrate medium. The shoot and root of the plant were separated
for further investigation. A ruler was used for measuring root length. An electronic balance
(CUW420HX, CAS corporation, Yangju, Korea) was used for measuring shoot fresh weight
and root fresh weight. Dry weights of the shoots and roots were calculated after drying
them in an oven (JEIO TECH OF-22GW, Daejeon, Korea) at 65 ◦C to a constant weight.
Shoot dry weight and root dry weight were measured using an electronic balance.

2.5. Statistical Analysis

The experiment was conducted in a completely randomized design with five single
plant replicates per treatment. Effects of treatments were analyzed using the SAS program
(Statistical analysis system, version 9.3, SAS Institute, Cary, NC, USA). Significant differ-
ences among the means were examined using ANOVA (Analysis of variance) followed by
DMRT (Duncan’s Multiple Range Test) at a 5% level (p ≤ 0.05). OriginLab 10.0 software
(Origin Lab, Northampton, MA, USA) was used for principal component analysis (PCA).

3. Results and Discussion

From 10 days of light treatment, shoot height was higher in L3 treated seedlings compared
to L1 and L5 (Figure 2A). At 30 days after treatment, it was significantly 35%, 18% and 70%
taller compared to L1, L2 and L5 treated seedlings, respectively (Figure 2A, B). Furthermore,
from 20 days of treatment, the number of leaves was higher in the L3 treated seedlings than
those grown in L1 and L5 treatments (Figure 2C). At 30 days after treatment, it was 27%
significantly higher in L3 treated seedlings than L5 treated seedlings. Research about the
apple seedling’s response under different light intensities (in white) is consistently inadequate.
However, some researchers performed experiments to know the effect of light intensity on
other horticultural plants. Kang et al. [28] showed that 35 days after treatment in a plant
factory system, shoot height and number of leaves of lettuce were increased under high light
intensity (290 µmol·m−2·s−1) than low light intensities (200, 230 and 260 µmol·m−2·s−1). Red
firespike grown in greenhouse conditions showed shoot height and number of leaves was
higher in high light intensity than 45% and 65% shaded conditions [29]. Robinson et al. [30]
reported that the growth of apple plants in an orchard is higher when light availability is high.
Rezazadeh et al. [29] reported height and leaf numbers of the plant increased under high light
intensity due to receiving high irradiance in a 24 h cycle and resulting in more photosynthesis.
Moreover, low light intensity inhibits plant growth by affecting gas exchange [31].

At 30 days after light treatment, leaf length was significantly higher in L4 treatment
than others and not significantly different between L1, L2, L3 and L5 treatments (Table 4).
Leaf width was not significantly different between the treatments. The stem diameter of
a seedling is a general indicator of plant survival ability [32]. Earlier research in different
plant seedlings, showed plants having larger stem diameters tend to better survival than
plants having small stem diameters [33,34]. After 30 days of treatment, stem diameter was
significantly 20%, 14%, 14% and 33% higher in L3 treated apple seedlings compared to
those grown in L1, L2, L4 and L5 treatment, respectively (Figure 2D). Continuous high light
intensity at the same range is the reason for the greater stem diameter in L3 treated apple
seedlings than others. Fan et al. [35] reported, after 30 days of combined red and blue light
treatment, the stem diameter of tomato seedlings was 5–20% higher in 450 µmol·m−2·s−1

compared to those grown in 50, 150, 200 and 300 µmol·m−2·s−1.
Light conditions influence the root growth of a plant by interfering in root-environment

interaction including nutrient uptake [36]. At 30 days after light treatment root length
of L3 treated apple seedlings was 16%, 9% and 10% higher than L1, L2 and L5 treated
seedlings (Table 4). Increased shoot height and leaf number in L3 treated seedlings may be
the reasons for higher growth in below-ground roots than others. Because shoot growth
and root growth of a plant are interrelated. Durand et al. [37] showed balance source: sink
ratio of a plant depends on its root growth, nutrient uptake and carbohydrate accumulation
in leaves. Lactuca indica L. grown in 500 PPFD showed higher root length compared to
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50 PPFD, 100 PPFD and 250 PPFD in 18-days treatment [38]. Furthermore, fresh weight of
shoot and root, and dry weight of root were significantly greater in L3 treated plants than
those grown under L1, L2, L4 and L5 treatments (Table 4). In addition, the root dry weight of
seedlings was considerably higher in the L3 treatment compared to other treatments (except
L2). Shoot fresh weight was lowest in L5 treated seedlings. It recommends, light intensity
100 PPFD is not suitable for the initial growth of apple seedlings. Xu et al. [39] reported,
good root and shoot growth of plant indicate effective utilization of light wavelength by
photosynthesis process.
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Figure 2. Effect of light intensity on the shoot height (A), growth morphology (B), number of leaves
(C) and stem diameter (D) of apple seedlings at 30 days after treatment in a controlled environment.
L1, L2, L3, L4 and L5 indicate light intensity (Table 3). Lines in the graph represent the standard error
of the mean (n = 5). Means above each bar followed by the same letters are not significantly different
by Duncan’s multiple range test (DMRT) at p ≤ 0.05.
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Table 4. Effect of light intensity on plant growth characteristics of apple seedlings at 30 days after
treatment. L1, L2, L3, L4 and L5 indicate light intensity (Table 3).

Treatment
Leaf (cm) Root Length

(cm)
Fresh Weight (g/Plant) Dry Weight (g/Plant)

Length Width Shoot Root Shoot Root

L1 5.4 z b y 3.3 a 8.6 b 1.5 c 0.3 b 0.42 c 0.05 c
L2 5.6 b 3.3 a 9.2 b 1.9 bc 0.4 b 0.62 b 0.08 ab
L3 5.7 b 3.4 a 10.0 a 2.6 a 0.6 a 0.85 a 0.12 a
L4 6.4 a 3.7 a 10.2 a 2.1 b 0.3 b 0.64 b 0.07 bc
L5 5.3 b 3.3 a 9.1 b 1.1 d 0.2 b 0.32 c 0.04 c

z Each value is the means (n = 5). y Means within columns sharing the same letter are not significantly different
based on Duncan’s multiple range test at p ≤ 0.05.

The chlorophyll content of leaves is an indicator of the vigor of plants and is influenced
by the light intensity [40]. After 30 days of treatment, chlorophyll content (SPAD) was
significantly around 20% higher in L3 treated apple seedlings than those grown in L4 and
L5 treatments (Table 5). The chlorophyll content is also considered for the photosynthetic
capacity of a plant [41]. The photosynthesis rate of L3 treated seedlings was significantly
higher than those grown in L4 and L5 treatments (Table 5). It was two times higher in
L3 treated seedlings compared to those grown in L5 treatment. High leaf growth and
chlorophyll content in L3 treated apple seedlings are the reasons for higher photosynthesis
activity compared to other treatments. Martin et al. [42] reported that the photosynthesis
rate of a plant greatly depends on its received light intensity. In addition, Weston et al. [43]
reported, photosynthetic light acclimatization of a plant depends on its leaf morphology
and physiology.

Table 5. Effect of light intensity on photosynthesis rate, stomatal conductance, transpiration rate and
SPAD apple seedlings at 30 days after treatment. L1, L2, L3, L4 and L5 indicate light intensity (Table 3).

Treatment SPAD
(Value)

Photosynthesis
(µmol·CO2·m−2·s−1)

Conductance
(mol·H2O·m−2·s−1)

Transpiration
(mol·H2O·m−2·s−1)

L1 32.6 z b y 8.55 ab 0.18 a 3.12 a
L2 34.9 ab 9.17 a 0.16 a 2.79 a
L3 37.9 a 9.88 a 0.16 a 2.67 a
L4 32.8 b 7.54 b 0.17 a 2.87 a
L5 30.9 b 4.24 c 0.20 a 3.23 a

z Each value is the means (n = 5). y Means within columns sharing the same letter are not significantly different
based on Duncan’s multiple range test at p ≤ 0.05.

Stomatal conductance was not significantly different between the treatments (Table 5).
Maybe the treatment period of 30 days and the small number of replicates (5) is not enough
to show the significant variation of stomatal conductance of apple seedlings in these ranges
of light intensities. Furthermore, the transpiration rate of apple seedlings was also not
significant between the treatments (Table 5). Unaffected stomatal conductance in this
experiment is the reason for the unaffected transpiration rate. Prado et al. [44] reported
that the transpiration activity of plants greatly depends on their stomatal conductance.

The principal component analysis (PCA) was also implemented to uncover the correla-
tion of the different growth parameters of apple seedlings with the different light treatments
(Figure 3). From Figure 3 it is illustrated that PC1 indicates 77.02% variability and PC2
indicates 17.63% variability. This PCA biplot represents clear segregation into two clusters
among the parameters. The graph indicates that shoot height, shoot fresh weight, stem
diameter, leaf number, and root fresh weight was positively correlated and their response
is closer to L3 treatment than others. Furthermore, from the graph, it was observed that
there was a positive correlation between transpiration rate and stomatal conductance of
apple seedlings. Our previous study about the influence of container size and substrate
composition on the growth of apple seedlings showed that stomatal conductance and
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transpiration rate were positively correlated [45]. Other research also documented that the
transpiration rate and stomatal conductance of plants have a positive correlation [46,47].
This hypothesis is supported by the present findings.
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Figure 3. Principal component analysis (PCA) illustrates the variable treatment relationships among
the five treatments of apple seedlings at 30 days after treatment in a controlled condition. L1, L2,
L3, L4 and L5 indicate light intensity (Table 3). The lines starting from the central point of the
biplots display the negative or positive associations of the different variables, and their proximity
specifies the degree of correlation with specific treatment. PH-shoot height; LN-leaf number; LL-leaf
length; LW-leaf width; RL-root length; SD-stem diameter; SFW-shoot fresh weight; RFW-root fresh
weight; SDW-shoot dry weight; RDW-root dry weight; SPAD-SPAD value; PSN-photosynthesis rate;
SC-stomatal conductance and TPN-transpiration rate.

4. Conclusions

White LED light intensity 500–500 PPFD was favorable for the seedling stage of the
apple plant. Comparatively, low light intensity delays plant growth and development.
In addition, light intensity 100–100 PPFD was not preferable for apple seedlings. These
findings improved our knowledge about white LED light intensity for the initial growth
of apple seedlings propagated by an in vitro method, and it will be helpful for large-scale
seedling production. In future research, we will investigate the effect of different colors of
LED light on the biomolecular and hormonal responses in apple seedlings and take ten
representative plants which help to overcome the limitation of comparison about a small
number of replicates.
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