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Abstract: Shipping of in vitro micro-cuttings in tubes or jars is a frequently used method as the plants
are more likely to quickly reproduce and comply with quarantine regulations in plant germplasm
distribution. However, these containers are fragile during transportation. To diminish the risk
associated with the long-distance shipping of in vitro plants, a safe and widely applicable packing
and conservation technique based on microplate and slow growth was developed in this study. Potato
cultivar ZHB and ginger cultivar G-2 were used to optimize the system with microplates (96 wells),
vacuum-sealed packaging, and slow-growth techniques. Under regular culture conditions, packing
in vacuum-sealed microplates reduced the survival of ZHB and G-2 micro-cuttings to 85.8% and
20.0%, respectively, and regeneration to 61.8% and 0%, respectively. Reducing the temperature to
10 ◦C maintained the survival of ZHB and G-2 micro-cuttings in the range of 83.3–100% after 60 days.
Exposure to darkness decreased the survival of G-2 and inhibited regrowth. Thus, conservation in
darkness at 10 ◦C is suggested. The effects of iron concentration and plant growth retardants were
further assessed. The addition of 1/4 MS medium combined with 100 mg/L chlormequat chloride
(CCC) resulted in full survival and growth inhibition of plantlets, without malformation identified.
Finally, incubation with 1/4 MS medium supplemented with 100 mg/L CCC in vacuum-sealed
microplates at 10 ◦C in the dark resulted in high survival and suppressed germination. Sweet potato
HXS was incubated as well to test the broad-spectrum applications of the technique; 100% survival
and 6.7% germination was gained. Morphological indices of released cuttings recovered to control
levels after two cycles of subculture in MS medium. A 0.1–0.2% genetic variation was detected by SSR
and ISSR, suggesting genetic stability of the conserved samples. Finally, micro-cuttings were safely
transported to cities located thousands of kilometers away without package and sample damage.
Our results enable easy distribution of in vitro plant germplasms.

Keywords: plant conservation; long distance shipping; slow growth; microplate; vacuum package

1. Introduction

Availability of and easy access to diverse plant germplasm, including cultivation
crops, their wild relatives, and wild species, are of great importance to human survival
and contribute to people’s livelihood via staple and cash crop breeding [1], pharmaceuti-
cals [2], rehabilitation [3], environmental beautification [4,5], and ecological governance
and stabilization [3]. Vegetatively propagated plants shipped by wrapping the plant or
vegetative mass in express containers for long-distance transportation increases the risk
of quarantine and environmental contamination [6]. Furthermore, seasonal availability of
scion wood or rooted cuttings may limit their usefulness in germplasm distribution. Thus,
a safe and efficient method for plant germplasm transportation, especially for vegetatively
propagating plants, is needed. Micropropagation, which exploits the totipotent nature of
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plant cells to generate new individuals from protoplasts, cells, undifferentiated masses of
cells (callus), small pieces of tissue, and/or excised organs, is a time-tested and practical ex
situ technique for the short- and medium-term conservation of plant germplasm [2,7,8].

Plant germplasm resources are currently exchanged using in vitro micro-cuttings,
which are more likely to massively reproduce and comply with quarantine regulations [9–12].
In vitro samples are subcultured after arriving at the destination and carry no superficial
pathogens or insects. Shipping of micro-cuttings can be a challenge as well. Once the
containers or culture bags are damaged during transportation or travel, the germplasms
cannot be recovered. Biosafety problems still exist if the plant resources carry obligate
pathogens, such as bacteria, viruses, and viroids, and the released micro-cuttings can
infect other healthy plants [9,10,13]. Medium liquefaction or combination with explants
due to shaking or changes in cabin pressure and failure to maintain sterility within the
container, in addition to neglect on shipping docks for extended periods, are additional
challenges [14]. According to a report from the National Clonal Germplasm Repository
in Corvallis, OR, USA, in vitro micro-cuttings are transported and exchanged in sealed
and semi-permeable plastic bags containing firm medium (7–8 g/L agar) and they are
folded and packed in crushproof containers, which minimizes the shifting of plants and
medium in transit. Weather conditions and arrival date also contribute to loss of shipments.
However, appropriate packaging and shipping can increase the viability of the transported
cultures for a month or longer under normal conditions [14].

Decreasing the cellular metabolism of micro-cuttings and prolonging the intervals
between subcultures by slow-growth techniques [15] may minimize the adverse effects
on plant viability associated with delays in customs or quarantine. Slow growth of plant
germplasm via medium-term conservation based on in vitro micropropagation reduces
costs [16]. This method is usually conducted by reducing the culture temperature, sup-
plying osmotic agents in culture medium, and adding growth inhibitors to or removing
growth promoters from the medium [17,18]. To date, several plant germplasms have been
successfully conserved using this method. For instance, seven genotypes of wild and
elite plants were preserved with seven slow-growth media for 12 months; Tavazza et al.
(2015) confirmed that treatments resulted in 65% to 85% of survival and 100% of regrowth
in surviving plants [19]. SSR (simple sequence repeats) and ISSR (inter-simple sequence
repeats) were used to analyze the genetic stability of slow-growing conserved samples.
Tahtamouni et al. (2016) conserved Thymbra spicata supplemented with 0.2 M sucrose
storage medium for 3 months, resulting in 100% survival [20]. The growth, oil yield, and
carvacrol content of recovered plantlets remained unchanged. Eustoma grandiflorum was
successfully conserved in vitro for 90 days by Ramírez-Pérez et al. (2020) [16], without sig-
nificant changes in vitality. The technique of slow growth prolonged the interval between
subcultures significantly and did not alter the genetic stability of conserved samples, which
facilitates long-distance shipping and exchange of plant micro-cuttings.

The microplate (96 sample wells) offers limited space for culture and biochemical analysis
of organisms. It allows less than 250 µL of medium loading and shorter than 0.5 cm of micro-
cutting culture. Space-limited culture ensures less thrashing during shipping and smaller
explants, resulting in a slower growth rate. Vacuum sealing can effectively reduce mechanical
damage, bumping, and microbe germination of items during transportation [21,22]. It has
been widely used in the long-distance shipping of fresh plant fruit [23] or semi-finished
bioproducts [22]. In addition, reducing air pressure around plants is another important aspect
of slow-growth conservation. When the air pressure is reduced in the culture environment,
the growth of in vitro plantlets is reduced as well. The initiation of regrowth under normal
conditions revealed no phenotypic modification of the plantlets developing from the inocu-
lums [24]. Space-limited incubation and vacuum-sealed packaging stabilize the substances in
the container while reducing the microbe germination and plantlet growth, and thus has a
high potency for application in long-distance shipping of plant germplasm.

The present study developed an in vitro incubation system for the long-distance
transportation of plant germplasm. Potato and ginger, which are two globally important
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vegetatively propagated agricultural and horticultural crops, were used to optimize the
incubation system based on slow-growth techniques, microplates (96 sample wells), and
vacuum-sealed packaging. Recovery and regeneration of the packed micro-cuttings were
analyzed under normal in vitro culture conditions. The genetic stability was analyzed
using molecular markers SSR and ISSR. The transportation resistance of the present system
was tested using automobile transportation and traveling by train. The application of this
method was tested in sweet potato in vitro micro-cuttings as well.

2. Materials and Methods
2.1. Plant Materials

In vitro materials of 3 cultivated varieties, potato cultivar ‘Zihuabai’ (ZHB), ginger
‘Guizhouxiaohuangjiang-2’ (G-2) (Figure 1A), and sweet potato ‘Hongxinshu’ (HXS), were
employed in this study to establish a stable method for plant germplasm medium-term
conservation and long-distance shipping. Stock plantlets were cultured in Murashige and
Skoog (1962) medium (MS medium) supplemented with 30 g/L sucrose and 7 g/L agar
(pH = 5.8) [25]. The cultures were grown at a consistent temperature of 24 ± 2 ◦C for a 16 h
photoperiod with a light intensity of 50 µM s−1 m−2. Subculturing occurred every 3 weeks
(Figure 1B).

 

B: 3 weeks old cultures 

Subculture 

Potato ZHB 

D: Each of wells was 
loaded with 200 uL MS 

Ginger G-2 

E: Culture of micro-cuttings in 
microplate, one per well 

F: Microplates were sealed 
with vacuum bags, and 
stored for 30 or 60 days 

M: Transportation of microplates-stored 
 Micro-cuttings  

A: In vitro stock 

G: Selection of package types 
   30 days 
H: Selection of storage conditions  
   60 days 
I: Selection of storage media 
  60 days 
J: Testing for sweetpotato 
HXS 

K: Re-establishing in vitro  
cultures 

C: 4 mm long micro-cutting and micro-

Figure 1. A flow chart of use of microplates for storage and transportation of in vitro micropropagated
plant materials.
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2.2. Assessment of Packaging Type

Micro-cuttings, which consisted of one leaf on a 0.4 mm shoot of ZHB and a 0.4 mm
long micro-tiller containing one terminal bud of G-2, were harvested (Figure 1C). Each
well of sterilized microplates (96 wells, Virya, Shanghai, China) was loaded with 200 µL
of MS medium and covered with a lid (Figure 1D). Each microplate was used to ship
both samples, one sample per well (Figure 1E). Plates with plant samples were packed
in a transparent vacuum-sealing packing bag (sterilized or non-sterilized) (Figure 1F).
Vacuum treatment was conducted to test whether evacuating air outside the plate and
fastening the plate limited the growth of plant samples. Samples were incubated in a
normal culture environment for 30 d as described above. The survival rate (%) and new
tissue (newly developed tissues or organs form the original explants; example see results.
A newly elongated shoot of ZHB) germination rate (%) were thereafter measured. The
survival rate was calculated as the number of samples with living tissue, or total number
of samples * 100%. The regrowth of new tissue was measured by dividing the number
of samples with newly generated tissue or organs by the total number of samples and
multiplied by 100%. Micro-cuttings were then transplanted into MS medium under normal
culture conditions for 10 d to test for possible microbial contamination of the unsterilized
package (Figure 1G).

2.3. Assessment of Incubation Condition

The plant samples shipped in vacuum-sealed microplates were incubated in a growth
chamber under conditions of controlled temperature with photoperiod and light intensity.
The cultures were maintained under the following conditions: (1) 25 ◦C for a 16 h pho-
toperiod with a light intensity of 50 µM s−1 m−2 (25 ◦C + 16 h light); (2) 25 ◦C in the dark
(25 ◦C + dark); (3) 10 ◦C for a 16 h photoperiod with a light intensity of 50 µM s−1 m−2

(10 ◦C + 16 h light), (4) 10 ◦C in the dark (10 ◦C + dark); (5) 4 ◦C for a 16 h photoperiod with
a light intensity of 50 µM/m2/s (4 ◦C + 16 h light); and (6) 4 ◦C in the dark (4 ◦C + dark).
Periods were 60 culture days and the survival rate (%) and new tissue germination rate (%)
were assessed as described above (Figure 1H).

2.4. Assessment of Culture Medium

The growth of in vitro samples was slowed down to extend the duration of germplasm
conservation and long-distance shipping. The effect of ion levels in the culture medium was
assessed by decreasing the concentration of major and minor ions to 25%. Then, 1/4 MS
medium without or with either daminozide (B9; 60, 80, 100, 120 or 140 mg/L), chlormequat
chloride (CCC; 25, 50, 75 or 100 mg/L), paclobutrazol (PP333; 1, 2, 3 and 4 mg/L), or
abscisic acid (ABA; 1, 2, 3 and 4 mg/L) was tested. The application of 38 treatments
resulted in a combination of 2 plants with 19 media. ZHB and G-2 explants measuring
approximately 0.4 cm in length from micropropagated plants were maintained in 300 mL
glass jars with 40 mL of medium and stored for 60 d under standard culture conditions
as noted above. The survival rate (%) and new tissue regrowth (%) were measured after
incubation. Then, the morphology indices, such as plant height (cm) and the number of
newly formed leaves, roots, and tillers (for ginger) were also calculated to evaluate the
effects of ion density and plant growth regulation (Figure 1I). The most efficient media
were then loaded in microplates and used in the following experiments.

2.5. Regrowth Capacity Assessment of Maintained Plants

The micro-cuttings of ZHB and G-2 derived from routinely propagated in vitro plants
were maintained in 1/4 MS medium supplemented with 100 mg/L CCC (1/4MS 100 CCC
medium) in sterilized microplates (Figure 2a–c). The plates were then vacuum-sealed
with non-sterile packages (Figure 2d,e). The cultures were maintained at 10 ◦C in the
dark (Figure 2f). Micro-cuttings were transplanted into MS medium after 60 days of
incubation, and incubated under normal culture conditions. The regrowth capacity in
terms of percentage of shoots resuming normal growth was evaluated 30 days after sample
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release (the 1st cycle of culture). The subculture and incubation of recovered ZHB and G-2
plants were repeated (the 2nd cycle of culture). The regrowth capacity and morphology
indices were measured as well. In order to test the feasibility of the present method in
other plant species, sweet potato HXS in vitro cuttings (0.4 mm long shoot with one 0.2 mm
petiole) were harvested and transplanted in sterilized microplates supplemented with 1/4
MS 100 CCC medium. The plates were vacuumized and maintained at 10 ◦C in the dark
for 60 d, followed by analysis of the survival and regeneration (Figure 1J,K).
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2.6. Assessment of Genetic Stability

The morphology indices, including plant height, number of leaves (tillers), length of
roots, and number of roots, were measured to assess the generic stability on a morphological
level. For the molecular marker test, total genomic DNA was extracted from 100 mg of
leaves obtained from ZHB and G-2 plants, which was released from a microplate and
subcultured twice using the GeneJET Plant Genomic DNA Purification Mini Kit (Thermo
Scientific, Waltham, MA, USA). DNA quality was checked using electrophoresis of the
samples on 1% agarose gel and stained with StarStain Red Plus (GenStar, Beijing, China).
DNA concentration was determined via spectrophotometry. The molecular analysis was
performed using 5 SSR and 5 ISSR primers (Table S1). The amplifications were carried
out in 20 µL volumes, containing 2 ng genomic DNA, 1X PCR buffer (Biotools, Madrid,
Spain), 200 µM of each dNTP (Roche, South San Francisco, CA, USA), 0.25 U of Taq DNA
polymerase (Roche, Basilea, Suiza), and 0.2 µM of forward and reverse primers. The PCRs
were carried out using a gene amplification instrument (FastAmp-T96, BIO-DL, Shanghai,
China) with initial denaturation at 94 ◦C for 5 min, followed by 40 cycles of 94 ◦C for
30 s (94 ◦C for 50 s for ISSR), annealing temperature at 56 ◦C for 30 s (58 ◦C for 50 s for
ISSR), 72 ◦C for 2 min (72 ◦C for 1 min for ISSR), and a final extension at 72 ◦C for 10 min.
Automatic acquisition and reading was performed using ChampChemi610 (BeijingSaizhi,
Beijing, China). All fragments in the size range of 100–2000 bp generated from ZHB were
assumed to represent a single dominant locus. Fragments in the range of 100–3000 bp were
considered and registered as a single codominant locus. All the reactions were performed
in triplicate with 10 plantlets selected randomly (Figure 1L).
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2.7. Transportation Tolerance Test

The vacuum-packaged plates carrying ZHB, G-2, and HXS samples were delivered
by express mail through automobile transportation without any cushioning materials to
test their transportation tolerance. The plates were delivered to four destinations from
the starting point at Guizhou University, Guizhou City, Guiyang Province, China. The
first location was an ornamental plant germplasm resources nursery on Huangzhuang
South Road in Baiyun District, Guangzhou City, Guangdong Province, which is 925 km
away from the starting point. The highest temperature at the arrival date was 20 ◦C and
the temperature in the car ranged from around 10–22 ◦C during a 2-day trip (courier No.
YT6303669102525). The next destination was 99-1 Yingchengzi Street, Hunnan District,
Shenyang City, Liaoning Province, which is 2293.6 km away from the starting point. The
highest temperature at the arrival date was 9 ◦C and the temperature in the car ranged from
around 9–10 ◦C during a 3.5-day trip (courier No. 75853845991528). The third location was
Beijing Agricultural College, Changping District, Beijing, which is 2214 km away from the
starting point. The highest temperature at the arrival date was 7 ◦C and the temperature
in the car ranged from around 7–10 ◦C during a 7-day trip (courier No. 9886429762337).
The final destination by car was to Jingfengjiayuan residential quarters, Taoshan District,
Qitaihe City, Heilongjiang Province, which is 3681 km away from the starting point. The
highest temperature at the arrival date was 7 ◦C and the temperature in the car ranged from
around 7–10 ◦C during an 8-day trip (courier No. 9886429709918). Furthermore, plates were
carried in a coat pocket and suitcase and transported 1426 km by train to Hefei City, Anhui
Province to test their ability to withstand shipping stress. The temperature in carriage and
car were around 12–16 ◦C and it was taken 7.5 h by train. The integrity of packaged plates
and micro-cuttings was immediately checked after arrival (Figure 1M).

2.8. Experiment Design and Statistical Analysis

For the detailed experiment design, see Figure 1. A complete randomized design
was used. At least 10 samples were included in each of the experiments. All experiments
were performed in triplicate and conducted at least twice. Data were subjected to one-way
ANOVA and the least significant difference (LSD) was calculated at p < 0.05.

3. Results
3.1. The Plant Growth and Contamination Response to Package Types

Vacuum-sealed packaging significantly influenced the survival and new tissue germi-
nation of the micro-cuttings of both ZHB and G-2. ZHB plantlets in vacuumized microplates
showed a significantly lower survival rate (85.8–87.7%) and regrowth rate (61.8–62.5%)
compared to the non-vacuumized counterparts. Similarly, in ginger G-2, vacuumization
resulted in low survival (20–30%) and no new tissue germination. When vacuumization
was not conducted, all of the ZHB micro-cuttings and 72.4–83.3% G-2 cuttings survived
after 30 days of culture under normal subculture conditions, and 94.0–100% of ZHB and
67.0–83.3% of G-2 germinated new tissue (Table 1). Increased germination of in vitro cut-
tings during long-distance storage and transportation depletes the growth resources of
plants, leading to aging. We found that the germinated and elongated potato seedlings
pushed the cover and separated the lid and plate (data not shown), which increased the
potential risk of contamination, suggesting that vacuum packing was needed. Unsterilized
packages did not result in the contamination of the samples or medium if the mother
plants were in a sanitary condition (Table 1). Furthermore, high temperature and pressure
damaged the plastic membrane. Thus, in the following study, vacuum packages with
unsterilized bags were used.

3.2. Plant Growth Response to Incubation Conditions

The variation of the culture period and conservation conditions significantly affect
the survival and regeneration of micro-cuttings in vacuum-packed plates. Compared
to 30-day incubated samples (Table 1), normal culture conditions for 60 d resulted in a
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significant decrease in the vitality of ZHB (35.7% survival and 20.8% regeneration) and G-2
(0% survival and regrowth), which was even worse in the dark (Table 2). Regardless of
illumination conditions, nearly 80% of micro-cuttings developed new tissue before they
lost vitality at 25 ◦C. Such samples were still counted as non-survival and regrowth as those
without living cells or new tissue formed on cuttings. In potato ZHB, the conservation
resistance of cuttings under encapsulated conditions was significantly improved by low
temperature treatments ranging from 4 to 10 ◦C, and the survival rate was elevated to 81.4%
to 100%. Furthermore, the darkness enhanced the stability of the cuttings and significantly
less new tissue regrowth was detected. A slight difference was observed with ginger G-2,
as the survival declined when samples were incubated in the dark compared to light, but
this difference was not significant, and similar tissue regrowth was observed under both
treatments. However, no increased survival rate of G-2 occurred at 4 ◦C (Table 2). The
morphology of surviving, regenerated, and dead micro-cuttings is shown in Figure 3. It
is worth noting that, during conservation, very limited (less than 0.5%, data not shown)
ZHB cuttings developed a callus (Figure 3(b1)), while the majority of regrowing samples
developed an elongated stem (Figure 3b). In contrast to potato, the main shoot terminal
tended to germinate tillers instead of elongated stems (Figure 3e). Considering that both
ZHB and G-2 only survived at 10 ◦C, the 16 h photoperiod induced an increase in tissue
germination in ZHB, which prevented germplasm storage and transportation. Darkness
was similar to the real transportation environment. Therefore, the conservation conditions
of 10 ◦C and darkness were selected for the following experiment.

Table 1. The effect of package types on plant survival, new tissue regrowth, and medium contamination.

Sample Vacuum Package Package
Sterilization Survival (%) New Tissue

Regrowth (%) Contamination

Potato ZHB
Vacuumized

+ 87.7 ± 8.4 b 61.8 ± 6.3 z −
− 85.8 ± 7.1 b 62.5 ± 8.8 z −

Non-vacuumized
+ 100.0 ± 0.0 a 100.0 ± 0.0 x −
− 100.0 ± 0.0 a 94.0 ± 3.5 y −

Ginger G-2
Vacuumized

+ 30.0 ± 0.0 b 0.0 ± 0.0 z −
− 20.0 ± 0.0 c 0.0 ± 0.0 z −

Non-vacuumized
+ 83.3 ± 3.3 a 83.3 ± 3.3 x −
− 72.4 ± 10.5 a 67. 0 ± 15.4 y −

Microplates were placed at a consistent temperature of 24 ± 2 ◦C under 16 h photoperiod conditions. Survival
and regrowth were recorded 30 days after culture, while contamination was measured 10 days after culture.
“+” in “Package sterilization” indicates package was sterilized; “−” indicates package was not sterilized. “+” in
“Contamination” indicates samples were contaminated; “−” indicates not contaminated. Data are presented by
means ± SE, with different letters indicating significant differences analyzed by one-way ANOVA at p < 0.05.

Table 2. Survival and new tissue regrowth of cuttings encapsulated in microplates wrapped in
vacuum package under various incubation conditions.

Conditions

Potato ZHB Ginger G-2

Survival Rate (%) New Tissue
Regrowth (%) Survival Rate (%) New Tissue

Regrowth (%)

25 ◦C + 16 h light 35.7 ± 17.1 c 20.8 ± 8.8 y 0.0 ± 0.0 d 0.0 ± 0.0 y
25 ◦C + dark 18.0 ± 10.5 c 0.0 ± 0.0 z 0.0 ± 0.0 d 0.0 ± 0.0 y

10 ◦C + 16 h light 100.0 ± 0.0 a 83.1 ± 8.4 x 100.0 ± 0.0 a 2.6 ± 0.2 x
10 ◦C + dark 100.0 ± 0.0 a 27.7 ± 11.6 y 83.3 ± 16.7 a 2.0 ± 0.2 x

4 ◦C + 16 h light 81.4 ± 8.2 b 14.3 ± 5.0 y 14.6 ± 3.3 c 0.0 ± 0.0 y
4 ◦C + dark 100.0 ± 0.0 a 0.0 ± 0.0 z 35.0 ± 8.3 b 0.0 ± 0.0 y

Survival and regrowth were measured 60 days post-culture. Data are presented as means ± SE. Letters indicate
significant differences, a–d indicate significant differences among survival rate, while x, y, z indicate significant
differences among new tissue regrowth rate. Significant differences were analyzed within ZHB or G-2 via one-way
ANOVA at p < 0.05.
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Figure 3. Survival and new tissue regeneration by micro-cuttings or loss of vitality. (a) Potato ZHB
survived cutting without new tissue germination; (b) new tissue germinated ZHB cuttings, (b1) ZHB
micro-cutting with callus and bud germination; (c) dead ZHB cuttings; (d–f) ginger G-2 survived
cutting, new tissue germinated, and dead cutting, respectively. Images were acquired post 60 d of
conservation. Bar indicates 2 mm.

3.3. Plant Growth Response to Slow-Growth Culture Media

Both MS and 1/4 MS media showed 100% survival and total regrowth after 60 days
in storage on both potato ZHB and ginger G-2. For ZHB, B9, PP333, and ABA caused
partial death of samples in general. CCC-supplemented plants showed the highest survival
rate in potato ZHB. Except for MS medium treated with 75 mg/L CCC medium, 25, 50,
and 100 mg/L CCC did not decrease the survival (Table 3). In addition, all the plantlets
incubated in 25 mg/L and 100 mg/L CCC-supplemented MS medium reformed new
tissues. Malformation including leaf bleaching, leathery leaves, tissue necrosis, or swelling
of samples were seen on a majority of media except those treated with 75 and 100 mg/L
CCC (data not shown). Generally, B9, PP333, and ABA caused malformation on G-2. For
G-2, samples incubated in 1/4 MS medium supplemented with 25 and 100 mg/L CCC
showed nearly 100% survival and no malformation of micro-cuttings. The addition of ABA
led to a significant decrease in survival or regrowth of samples compared to the control
(Table 3).

Morphology indices of in vitro plants under each treatment were measured. For ZHB,
compared to MS medium, 1/4 MS medium significantly increased the roots but decreased
the shoot growth; no obvious changes on other morphological indexes were observed.
Following 1/4 MS-medium-based treatment, 60–100 mg of B9 did not significantly affect the
regeneration of leaf and root, while 120–140 mg of B9 inhibited it; however, the elongation
of the shoot was reduced regardless of dose. Treatment with 25 and 100 mg of CCC
suppressed potato growth whereas 50 and 75 mg did not, while 100 mg of CCC generated
the shortest plantlets among all CCC treatments. ABA addition resulted in the lowest
average number of leaf, root, and stem height on potato ZHB in general, followed by PP333
supplementation (Figure 4). For ginger G-2, decreasing the iron content to 1/4 inhibited
rooting and tillering. Regeneration and growth were enhanced by B9 and PP333 depending
on the dose. Exposure to 50 and 70 mg of CCC improved the development of roots, leaves,
and stems, while 25 and 100 mg doses significantly inhibited all indices, except for the
number of tillers. The low regrowth rate under ABA treatment resulted in the shortest and
the most undeveloped G-2 plantlets (Figure 5).



Horticulturae 2022, 8, 609 9 of 17

Table 3. Survival and new tissue regrowth of micro-cuttings cultured in different growth media.

Mediums
Potato ZHB Ginger G-2

Survival Rate (%) Regrowth (%) Malformation Survival Rate (%) Regrowth (%) Malformation

MS 100.0 ± 0.0 a 100.0 ± 0.0 a − 100.0 ± 0.0 a 100.0 ± 0.0 a −
1/4 MS 100.0 ± 0.0 a 100.0 ± 0.0 a − 100.0 ± 0.0 a 100.0 ± 0.0 a −

1/4 MS 60 B9 91.7 ± 8.3 ab 91.7 ± 8.3 ab + 91.7 ± 8.3 a 91.7 ± 8.3 ab +
1/4 MS 80 B9 91.7 ± 8.3 ab 91.7 ± 8.3 ab + 100.0 ± 0.0 a 91.7 ± 8.3 ab +
1/4 MS 100 B9 75.0 ± 14.4 ab 75.0 ± 14.4 abc + 75.0 ± 14.4 ab 41.7 ± 30.5 abc +
1/4 MS 120 B9 58.3 ± 8.3 cd 58.3 ± 8.3 abc + 91.7 ± 8.3 a 91.7 ± 8.3 ab +
1/4 MS 140 B9 83.3 ± 8.3 ab 83.3 ± 16.7 ab + 83.3 ± 8.3 a 83.3 ± 8.3 ab +

1/4 MS 25 CCC 100.0 ± 0.0 a 75.0 ± 25.0 abc + 100.0 ± 0.0 a 91.7 ± 8.3 ab −
1/4 MS 50 CCC 75.0 ± 0.0 ab 83.3 ± 16.7 ab + 75.0 ± 14.4 ab 50.0 ± 0.0 abc −
1/4 MS 75 CCC 100.0 ± 0.0 a 100.0 ± 0.0 a − 50.0 ± 0.0 c 41.7 ± 8.3 abc −
1/4 MS 100 CCC 100.0 ± 0.0 a 100.0 ± 0.0 a − 100.0 ± 0.0 a 91.7 ± 8.3 ab −
1/4 MS 1 PP333 66.7 ± 8.3 ab 62.5 ± 12.5 abc + 91.7 ± 8.3 a 83.3 ± 8.3 ab −
1/4 MS 2 PP333 66.7 ± 8.3 ab 75.0 ± 14.4 abc + 91.7 ± 8.3 a 83.3 ± 8.3 ab +
1/4 MS 3 PP333 83.3 ± 8.3 ab 83.3 ± 8.3 ab + 83.3 ± 8.3 a 58.3 ± 16.7 abc +
1/4 MS 4 PP333 58.3 ± 8.3 cd 58.3 ± 22.1 abc + 91.7 ± 8.3 a 83.3 ± 8.3 ab +
1/4 MS 1 ABA 41.7 ± 8.3 cd 41.7 ± 8.3 bc + 33.3 ± 8.3 c 16.7 ± 8.3 c +
1/4 MS 2 ABA 91.7 ± 8.3 ab 91.7 ± 8.3 ab + 41.7 ± 8.3 c 25.0 ± 0.0 bc +
1/4 MS 3 ABA 58.3 ± 8.3 cd 58.3 ± 30.1 abc + 52.2 ± 4.2 c 50.0 ± 0.0 abc +
1/4 MS 4 ABA 58.3 ± 8.3 cd 50.0 ± 14.4 abc + 41.7 ± 8.3 c 25.0 ± 0.0 bc +

1/4 MS 60 B9 refers to 1/4 MS medium supplemented with 60 mg/L B9, and so on. Data were surveyed 60 days
post-culture. Data are presented as means ± SE. Letters indicate significant differences. Data were analyzed using
one-way ANOVA at p < 0.05.
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Figure 4. Growth status of ZHB plantlets incubated in slow-growth media. Data were surveyed
60 d post-culture. 1⁄4 MS 60 B9 refers to 1⁄4 MS medium supplemented with 60 mg/L B9, and so
on. (a–c): Average plant height, number of new leaves, and number of new roots of potato ZHB,
respectively. Data are presented as means ± SE. Significant differences were analyzed as one-way
ANOVA at p < 0.05.
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Figure 5. Growth statues of G-2 plantlets incubated in slow-growth media. Data were surveyed
60 d post-culture. 1⁄4 MS 60 B9 refers to 1⁄4 MS medium supplemented with 60 mg/L B9, and so on.
(a–d): Average plant height, number of new leaves, number of new tillers, and number of new roots
of ginger G-2, respectively. Data are presented as means ± SE. Significant differences were analyzed
as one-way ANOVA at p < 0.05.

High survival, “true to type” morphology, and inhibition of vegetative growth ensure
a stronger shipping resistance. Thus, 1/4 MS medium treated with 100 mg/L CCC led to
100% survival, no malformation, and restricted vegetative growth on both ZHB and G-2.
Such plantlets were selected for the following experiments.
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3.4. Regrowth of Packaged Micro-Cuttings

Taking 1⁄4 MS 100 CCC as the culture medium, ZHB and G-2 micro-cuttings were
encapsulated in microplates in vacuum-sealed packages. Sweet potato HXS were used to
test the feasibility of this system on different plant germplasms. Rates of 100.0%, 75.3%, and
100% survival were identified for ZHB, G-2, and HXS, respectively, and their regeneration
rates were 0% for the first two and 6.7% for HXS (Table 4). Although the survival was
lower in G-2, the new tissue regrowth was significantly decreased in both ZHB and G-2
when compared to those incubated in MS medium in the same incubation environment
(Table 2). The multiplication, which indicates the quantities of a shoot that a micro-cutting
with a single bud would generate, was measured. After releasing them from the plate, an
average of 4.4 nodes from ZHB cuttings were harvested after the first cycle of incubation
(first 30 days), and significantly higher number of nodes were measured from the other
30-day cultured plantlets (6.9 nodes). Similarly, in the case of sweet potato HXS, an average
of 2.4 and 3.6 nodes from the 1st and 2nd cycle of subcultured plantlets, respectively,
were identified. Interestingly, for G-2, significantly more shoots were tillered from packed
cuttings whereas 4.3 buds were found in the first cycle of culture; the multiplication was
decreased to 2.5 on average after the 2nd cycle of incubation (Table 4).

Table 4. Plant survival, new tissue regrowth, and subculture of packaged micro-cuttings conserved
at 10 ◦C in the dark with 1/4 MS 100 CCC.

Sample Survival (%)
New Tissue

Regrowth (%)
Multiplication

1st Cycle 2nd Cycle

Potato ZHB 100.0 ± 0.0 0.0 ± 0.0 4.4 ± 0.2 b 6.9 ± 0.1 a
Ginger G-2 75.3 ± 6.7 0.0 ± 0.0 4.3 ± 0.1 a 2.5 ± 0.1 b

Sweet potato HXS 100.0 ± 0.0 6.7 ± 0.7 2.4 ± 0.2 b 3.6 ± 0.4 a
Data were analyzed after 60 days of incubation and are presented as mean values ± SE. Letters indicate significant
differences. Significant differences were analyzed by one-way ANOVA at p < 0.05.

Similar patterns of vegetative generation of preserved ZHB and HXS recovered from
packed microplates were observed (Figure 6). Generally speaking, the stem height, number
of leaves, number of roots, and length of roots were significantly short and few in the 1st
cycle of cultured micro-cuttings; however, this inhibition was reversed by further subcuture.
The vegetative growth of plantlets was restored to similar levels after another cycle of
subculture compared to untreated plants, except for the stem height of sweet potato HXS,
which was shorter than in the control after the 2nd cycle of subculture (Figure 6). The
average stem height for ginger G-2, similar to ZHB and HXS, was significantly inhibited by
the packaging and recovered following successive subculture. However, the growth and
differentiation of leaves, roots, and tillers were significantly stimulated by the packaged
conservation, and these changes were temporary as well; the growth of cuttings resumed to
control levels following the 2nd cycle of subculture (Figure 6). No malformation or changes
in morphology of plantlets were observed (Figure S1).

3.5. Genetic Stability

ISSR and SSR profiles from recovered ZHB and G-2 plantlets stored in different
slow-growth media were compared to those obtained from their respective untreated and
normally cultured mother plants. The primers that we used showed different abilities
for detecting genetic variation. In both ZHB and G-2, out of 50 primers for each method
tested, 5 primers produced strong, clear, and reproducible bands, which differed between
the two species (Table 5; Figure 7). In ZHB, 11–14 bands were scorable; in 30 individual
samples, SSR primers produced 1860 bands in total (62 bands * 30 samples), and no poly-
morphic bands were identified (data not shown). Using the ISSR marker, the primers
yielded 1470 clean bands (49 bands * 30 samples). Three polymorphic bands were de-
tected, which accounted for about 0.2% genetic variation. In G-2, using the SSR marker,
the number of bands for each primer varied between 6 and 9, and a total of 1110 bands
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(37 bands * 30 samples) were generated from all samples (data not shown). One specific
band was detected, which accounted for less than 0.1% of genetic variation. Using SSR, five
primers generated 47 bands in a single sample. However, we were unable to detect any
signs of genetic variation (Table 5; Figure 7).
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Table 5. The numbers of amplified bands in plantlets regenerated after recovery in MS medium
under normal subculture conditions by SSR and ISSR.

Primer Name No. of
Bands

No. of
Polymorphic Bands Primer Name No. of

Bands
No. of

Polymorphic Bands

Potato ZHB

SSR

RSS2428 11 0

ISSR

6 9 0
RSS1457 12 0 8 12 0
RSS0881 14 0 13 8 1
RSS2112 13 0 807 9 2

RSS75 12 0 868 11 0
Total 62 0 Total 49 3

Ginger G-2

SSR

RSS2898 9 0

ISSR

6 8 0
RSS2114 9 0 17 11 0
RSS0347 6 0 19 9 0
RSS2474 7 0 20 9 0
RSS2428 6 1 807 10 0

Total 37 1 Total 47 0
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Figure 7. SSR and ISSR banding patterns in recovered potato ZHB and ginger G-2. Three repeats of
10 randomly selected samples were detected.

3.6. Transportation Feasibility

The transportation resistance of the present device was tested via express automobile
transportation and railway transportation in pocket and suitcase, across thousands of
kilometers. The packages remained complete and the micro-cuttings were tightly attached
to the medium in each cup (Figure 8).
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Figure 8. The transportation and shipping feasibility of micro-cuttings encapsulated in vacuum-
packed microplates.

4. Discussion

In vitro plant germplasm resources are currently transported in tubes, jars, or plastic
bags that are usually used for plant tissue culture. Different packages have drawbacks and
technical constraints that limit their efficiency and decrease the security of the shipped
biomaterials. Hence, it is essential to optimize the shipping systems in order to limit the
factors that can lead to the loss of plant germplasm and bio-contamination. This can mainly
be achieved by transportation-resistant packages and slow-growth systems.
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The results demonstrate that it is possible to store potato ZHB and ginger G-2 germplasms
in space-limited, vacuum-packed, slow-growth, dark conditions. The system was effective
in terms of 60-day storage, which requires no additional effort and ensures the vitality of
samples. Under normal culture conditions, the samples are not well-conserved in space-
limited culture in microplates and vacuum-sealed packages. A mere 85.8% of micro-cuttings
survived and the majority of them (62.5%) showed stem germination. In the case of G-2,
merely 20% of the cuttings exhibited fresh and live tissues during their 30-day incubation
period (Table 1). These cases suggest the disadvantages of long-distance shipping, which
decreased the vitality of plant germplasm in vitro [14]. An optimized result was achieved
with conserved and packed plates at 10 ◦C in the dark (Table 2). Lowering the culture
temperature and shading from light are important ways to delay the growth of in vitro
plants [26]. This strategy successfully resulted in the slow-growth conservation of globe
artichoke in vitro [27,28]. It was emphasized that, compared to osmotic stress, storing in
cold and dark conditions facilitated the medium-term conservation of globe artichoke [27].
According to De Lacerda et al. (2021) [17], rapidly growing plants P. glomerata and L. filifolia
were maintained for up to 360 days with 100% or 50% survival in 5 mL of mineral oil
at a temperature of 15 ◦C, while higher temperatures (20 ◦C and 25 ◦C) decreased plant
survival. Light is essential for plant growth and development as well as improving cutting
survival and regrowth of both ZHB and G-2 in the present study. Considering that increased
germination rates were a disadvantage during conservation and shipping, darkness was
selected to simulate the real transportation environment. Our findings suggest that the
germplasm should be transported during late autumn or late spring but not in extremely
cold winter, and the package should be shipped in an opaque express box under relatively
ambient air temperature.

To further postpone the germination of sample cuttings during transportation and
conservation, we tested the role of ionic concentration in the culture medium and growth
retardants on plantlet growth. Subsequently, we used an efficient combination in the pack-
aging system. Reducing the MS medium composition to 1/4 did not affect sample survival
or regrowth (Table 3) but resulted in a relatively slower shoot growth (Figures 4 and 5).
Our results were consistent with Catană (2010) [7], who reported that 1/4 or 1/10 MS
medium for the Caryophyllaceae family facilitated the conservation with optimal parameters
depending on the genotype. However, Arbeloaa et al. (2017) [29] reported totally different
results involving 138 different fruit trees belonging to 18 species, with generally higher
multiplication rates in 1/2 MS medium than in MS medium. Plant growth retardants,
including B9, CCC, PP333, and ABA were usually used in plant slow-growth conservation
in vitro [20,30–33]. Compared to B9, PP333, and ABA, 100 mg/L CCC in this study did not
inhibit sample germination and regrowth; however, it ensured that all samples were alive
and maintained normal morphology of plantlets (Table 3). In addition, compared to those
incubated in 1/4 MS blank medium, the regrowth of plantlets was significantly inhibited
when 100 mg/L CCC was combined (Figures 4 and 5). Furthermore, the application of
100 mg/L CCC supplemented with 1/4 MS medium in the vacuum-packed plates led to
significantly lower new tissue regrowth when compared to MS medium, which indicates
the advantages of this medium in delaying the germination of micro-cuttings, though it
slightly decreased the survival of G-2 (Tables 2 and 4). Notably, compared to ZHB, G-2
was more sensitive to the incubation parameters, including temperature, illumination and
plant growth regulators selected in this study. Obviously, the packing and conservation
systems presented here are not optimal for G-2. Further studies are needed to develop a
“special to genotype” system for different kinds of plant genotypes or a broader spectrum
adaptive method.

Compared to unpacked micro-cutting controls, variations in morphology were ob-
served after 60 days of storage in vacuum-sealed packages and without the addition of
plant growth regulators. Two manners of regrowth of ZHB micro-cuttings were observed,
including callus regeneration (though very few) or revival of normal stems. However, no
callus was seen in G-2; instead of shoot elongation, which was observed on ZHB, tillering
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was the main manner of G-2 regrowth in wells of plates (Figure 3). Callus formation may
increase the probability of somatic variation [34]. Evidence suggests that calluses carry high
levels of genome-wide CHH methylation, particularly across heterochromatic regions [35].
The biotechnological interventions in vitro may cause somatic variation [35,36], suggesting
the need for genetic stability assessment [19,37]. The genetic stability is usually estimated
via morphological identification and molecular marker assessments [19,37–39]. In order
to confirm the genetic stability of the present shipping system, we further compared the
morphology and reproduction of recovered plantlets, which germinated in vacuum-packed
microplates supplemented with 100 mg/L CCC. Molecular markers were analyzed as well.

Cuttings with callus germination or other malformed samples were not seen when the
packing system was treated with 100 mg/L CCC after 60 days of conservation (data not
shown). Although the analysis of the morphological data of the 1st cycle regenerated plants
revealed significant morphological differences, the differences were restored to control
levels after the second cycle of subculture (Figure 6). Interestingly, in contrast to ZHB
and HXS plants, whose growth was significantly slower in the 1st cycle of subculture, G-2
tillers produced double shoots after release (Figure 6). More particularly, even without the
supplementation of a plant growth regulator, G-2 generated tillers during 60-day packing
and conservation instead of stem elongation (Figure 3). The number of tillers is used to
evaluate the reproductive ability of ginger [40,41]. We found that space-limited incubation
and vacuum packing rather than plant growth regulators may have stimulated tillering
in the present study. Therefore, this method can be used commercially to accelerate the
propagation of in vitro ginger, and the underlying mechanism requires further study.

Molecular markers are frequently used to assess the genetic stability of in-vitro-derived
plantlets [19,42–46]. In the present study, SSR and ISSR were used to assess the genetic
stability of artichoke plantlets regenerated from a slow-growth packing system used by
Tavazza et al. (2015) [19]. Very limited polymorphism was detected in the present study;
in potato, about 0.2% genetic variations were detected by ISSR, while for G-2, less than
0.1% genetic variations were identified by SSR but not by ISSR (Table 5). According to
Liu and Yang (2012) [42] and Yin et al. (2013) [43], the somaclonal variation rate ranges
from 0.37% to 4.2%, suggesting “true-to-type” plants. Our results show that both ZHB- and
G-2-regenerated plants were genetically stable using the primers used, indicating that this
system did not have a detectable impact on genetic stability in this experimental system.

Ultimately, shipping resistance of the present packing and conservation system was as-
sessed using express automobile transportation or train transportation, which are relatively
slow and bumpy for logistics. The destinations were spread across China’s provinces and
the temperatures varied from 7 to 22 ◦C at the time of delivery. The packed plant samples
were shipped across thousands of kilometers and reached destinations in 2–8 days without
package and sample damage. This indicates that the present methods had positive effects
on sample integrity during express transportation under a wide range of temperatures.
However, further assessment should be conducted by international sea freight lasting
several months.

As far as we know there are very limited published reports describing a safe and
highly efficient protocol for long-distance shipping and conservation of in vitro plants,
validated by appropriate transportation tests. In conclusion, our results show that it is
possible to store and transport in vitro cultures of potato, ginger, and sweet potato for a
prolonged period of time by slowing down growth in a vacuum-sealed microplate. This
protocol can aid transnational transportation or long-distance shipping of plant germplasm,
which usually lasts months, without extreme high or low temperature variation or violent
collision. The significantly reduced risk of germplasm loss and biosafety issues have been
detected compared to conventional methods of shipping or custom inspection. Our results
facilitate the distribution of germplasm to curators and the wider user community.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/horticulturae8070609/s1, Table S1: SSR and ISSR primers and primer
sequences; Figure S1: Growth feature of ZHB, G-2, and HXS after recovery in MS medium.
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